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Exchange Narrowing: Magnetic Resonance Line Shapes and Spin
Correlations in Paramagnetic KMnFs, RbMnF„and MnF, )
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Analyses of line shapes and correlation functions are made to investigate the Mn++ EPR and I'9 &MR
in MnFs, KMnFs, and RbMnF&. Quantitative comparison of theory and experiment is now possible for
these systems, and the standard theoretical approximations have proven to be inadequate. However, the
form of the exchange interaction and broadening mechanisms is simple enough to allow us to extend earlier
work by calculating higher-order moments and higher-order times in the short-time expansion of the cor-
relation function than are usually feasible. We investigate several model line profiles consistent with the
second and fourth moments for EPR in the infinite temperature limit. Agreement with experimental line-
widths is obtained only for line shapes whose wing structure is non-Lorentzian, in contrast to the truncated
Lorentzian forms usually adopted. The correlation functions characteristic of these profiles are obtained
for the purpose of comparison with direct calculations later. We present short-time expansions (to fourth
order) of the correlation functions, and we find that. they decay more slowly than the Gaussian form usually
assumed. The NMR correlation can be obtained for all times by a small interpolation between the short-
time solutions and the predictions of a diffusion model for long times. The resulting function is consistent
with that obtained from the line-profile analysis and both are in substantial agreement with previous
spin-correlation studies. The linewidths predicted from this analysis and the moment method are both
in agreement with experiment.

L INTRODUCTION
' AGNKTIC-RESONANCE line shapes and linc-
' widths in nonmagnetic insulators have been

satisfactorily interpreted and, at least in some instances,
quantitative agreement between experiment and theory
has been obtained. ' ' However, a similar detailed study
of resonance profiles in strongly exchange-coupled
paramagnetic solids has not been made. Although the
fundamental processes of exchange narrowing are under-
stood, inadequate knowledge of the relevant parameters
(e.g. , exchange constants) has precluded such a quanti-
tative comparison. Recent precise measurements of the
exchange constants in rutile Mnpl and perovskite
KMnF3, RbMnF3 make possible a direct application of
exchange-narrowing theory yielding unambiguous pre-
dictions for the linewidths. However, there is a sys-
tematic discrepancy between the predictions of the
theory in its simplest form and F" XMR and Mn++
KPR experimental linewidths which substantially ex-
ceeds the uncertainties of either the calculated or mea-
sured quantities. ' A more detailed application of the
theory can account for the discrepancy.

There are two essentially equivalent approaches to
the problem of exchange-narrowed linewidths, each
with its own set of assumptions and limitations. In
the moment method, as developed by %aller and Van
Vleck, ' various even moments (MsPI4, . . .) of a sym-
metrical profile I(co) are calculated. The line would be
determined uniquely only if all moments were known.
The labor involved in computing more than the erst
one or two, however, generally prevents a precise deter-

$ Supported in part by the National Science Foundation.
~ J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
2 I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).' J. E. Gulley, 3. G. Silbernagel, and V. Jaccarino, J. Appl.

Phys. 40, 1318 (1969).
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mination of the shape. It is customary, therefore, to
assume a line profile vvhose parameters are characterized
by the moments available.

In the linear-response theories of Anderson and Weiss
(A-W), 4' and Kubo and Tomita (K-T), ' I(co) is shown
to be the frequency Fourier transform of the magnetiza-
tion correlation function (iV,(t)3f,(0)), which is com-
monly called the relaxation function q(t). Under very
general circumstances, 7 the correlation function of the
local 6eld

(co r to 0
4(r) =

is related to q(t) by

p(t) =exp —(co(0)') (t r)P(r)dr . —(1.2)

Then, if lb(r) decays much faster than &p(t), this re-
lation implies a resonance line which has I.orentzian
shape, at least near its center, regttrdless of the precise
form of ter(r). However, in order to extract more detailed
information concerning the shape of the line and, in
particular, its width, we must adopt an analytic form
for ib(r). A full calculation of ib(r) is extremely dificult
and it has been customary to approximate it by ending
the leading terms in a short-time expansion and using
the results to characterize an ctssumed form for i/i(r).
The accurate determination of P(r) is a central difficulty
in this approach to exchange-narrowing theory.

4 P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269
(1N3).

~ P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
7 R. Kubo, in Fluctuation, Relaxation, and Resonance in 3Iag-

netic Systems, edited by D. ter Haar (Plenum Press Inc. , New York,
1962).
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The MnF&, KMnF3, and RbMnF3 systems are especi-
ally suitable for a study of this problem. They form
simple lattices in which all necessary parameters are
accurately known. Since the ground state of the Mn++
ion is an orbital singlet, single-ion anisotropy and aniso-
tropic exchange effects are small; thus we may safely
neglect them. The simplicity of the remaining isotropic
exchange terms in the Hamiltonian greatly facilitates
calculation of the moments and leading coefficients of
the short-time expansion of g (t). We 6nd that the com-
putations of M2 and M4 in the EPR case and 352, M4,
and 356 in the NMR case are algebraically tractable
and involve only well-defined parameters. Previous
studies of this problem have made use of only M2 and
3f4, or equivalently the t' coeKcient in the P(t) expan-
sion. In the NMR case, the ability to calculate 3I6 and
the t' coefficient of P(t) exact'iy, gives us greater flexi-

bility in dealing with both the line profile and the initial
behavior of P(t). For EPR, a reasonable estimate of Mp
is also possible and we use this to study systematics
of the exchange-narrowing process in this case, as
well.

Ke have used the three available moments to investi-
gate line shapes with three adjustable parameters. Ke
6nd that only a restricted class of these gives substantial
agreement with experiment. This type of moment
analysis can be related directly to the linear-response
theories by Eq. (1.2), which determines the correlation
function f(/) appropriate to a particular line shape
/through its Fourier transform pp(t) j.This can be com-
pared to forms of P(t) which are calculated directly from
linear-response theory. In the NMR case, P(t) can be
decomposed into autocorrelation functions and pair-
correlation functions, and the short-time expansions of
each of these can be evaluated explicitly to order t'.
%e 6nd that neither any of the individual autocorrela-
tion components nor f(t) as a whole is Gaussian (as is
often assumed). Using the short-time expansion results
and a diffusion model to characterize P(t) at long time,
we have been able to obtain a P(t) which is in good agree-
ment with that predicted by the moment analysis.

Explicit expressions for M2, M4, M6 for NMR and
M~, 354 with an estimate of M6 for EPR are presented
in Sec. II. In Sec. III, these moments are used to study
three parameter profiles and the resulting linewidths
are compared with experiment. The correlation func-
tions appropriate to the pro61es discussed in Sec. III are
given in Sec. IV, and these are compared with g(t)
calculated from linear response theory. The results are
summarized and discussed in Sec. V.

II. MOMENT CALCULATIONS

In our study of line shapes and correlation functions,
we will use as fundamental input the limited exact
information we can obtain. In particular, we make ex-
tended use of the moments of the resonance lines, which
are given by closed expressions involving traces over

quantum-mechanical operators once the Hamiltonian
3C has been specified.

One of the useful features of the MnF2, KMnF3, and
RbMnF3 systems we have chosen to study is the par-
ticularly simple form of the exchange Hamiltonian X, .
Because Mn++ is an orbital singlet (PSp~p), terms in the
Hamiltonian representing crystal-field effects are small
and an estimate of their contribution to the moments
indicates that they may be neglected. Measurements of
the magnitude of the EPR g shift in these materials
indicates that both symmetric and antisyrnmetric aniso-
tropic exchange terms' may also be neglected. There-
fore, we have chosen an isotropic Heisenberg form for
BC, . The full Hamiltonian is then given by

X=Xp+X„+X, .

Here, Xp is the Zeeman term with the static field (H,)
along the s axis. BC„represents the perturbation respon-
sible for the homogeneous linewidth —a dipolar inter-
action (Xn) in the EPR case and a hyperfine interaction
(XHF) in the NMR case. The EPR Hamiltonian then
has the form

XE~a Hpy 6 Q S.*+(Ay )

+Q J,;S; S, , (2.1)

where 7, is the electronic gyromagnetic factor, S is the
electron spin, r@ is a unit vector in the direction from
spin i to j, and J;, is the exchange coupling constant
between spinsi and j.The indicesi and j are summed
over the magnetic sites only. In the presence of strong
excha, nge (X,„))XD),nonsecular terms in Xii contribute
to the linewidth and therefore must be retained in
moment calculations. '"This is in contrast to the situ-
ation in diamagnetic systems where these terms must
be excluded since they contribute to satellites rather
than to the central line. ' The %MR Hamiltonian takes
the form

XNMR=Hpy fi+I +Q I;.A;,"S;

+P J;pS,'Sp, (2.2)

where y„ is the nuclear gyromagnetic factor and the
index i is summed over nuclear spins, while j and k
label electron spins. The hyperhne tensor A;; is of the
form A;;8,; for the nuclei of magnetic ions (e.g. , Mn'P

in MnFp). If several magnetic ions contribute a (trans-
ferred) hyperfine interaction at the site i of a nonmag-
netic nucleus, then j summed over contributing sites.

S. Geschwind and V. Jaccarino (unpublished).' T. Moriya, Progr. Theoret. Phys. (Kyoto) 16, 23 (I956);
16, 64i {1956).

Io F. KeA'er, Phys. Rev. 88, 686 (1952).
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Higher even moments are generated in a similar manner.
The 6rst of the commutators above is

LX,M*j= LX„M*)+PC„,M*)+LX,„,M*j. (2.4)

Since the last term vanishes, exchange is not a broaden-

ing mechanism. The only effect of PCp M*j is to estab-
lish the position for resonance cop. We are interested in
the moments about rpp, ((pp —cpp)"), and since Xp does

not enter into their calculation, it will be neglected in
what follows. I'"urthermore, 3'.,„&&Kp, 3'.„so the domi-

nant contributions to the fourth and sixth moments are
given by the replacements

LX,LX,M*]j~ LX,,LX„,M*jj;
LX,LX,LX,M-jjj- LX,,LX,,I-X.,M*ljl. (2.5)

A. EPR Moments

Calculation of M2 with the full dipolar Hamiltonian
taken as X~ yields (after use of the standard angular-
momentum commutation relations, ")

Ms=y, 'O'$(S+1)-,' Q'B;;,
Bv=(1+7v') Irvl '

~

(2 6)

The sum is over j only and. j/i. p;; is the direction
cosine of rv relative to Hp. Eq. (2.6) is in agreement
with previous results, " and its isotropic average is
easily shown to be exactly. 10/3 times the powder for-
mula computed with a truncated dipolar Hamiltonian. '

The corresponding expression for M4 is

M4 =&.'$($+1) f (9/5) LS($+1)—']
XQ' Jv B +vS( +S1)Q' $21;,J,sC,; g, .

+Jv~g~(Ba —4cv; s)+Jv'(2B'I —4ca.;;s)j), (2.7)

In the in6nite temperature limit, the second and
fourth moments are given by'

1 T.pe, M.)~ 1 TrI X,I X,M*j)s
Q}2 ~ ~ Q)

O' TrLM*g'
(2.3)

3f'=y,5' for KPR, M'=y„I' for NMR.

made in general, since speci6c knowledge of the lattice
is necessary in order to average the C,;,.;I, and C;I, ;;
terms. "If dipolar sums are restricted to near neighbors
in cubic systems, this result reduces to the form given
by Cooper and Keffer. "In the numerical calculations
of KPR moments reported below, the sums in Eqs.
(2.6) and (2.7) were evaluated over a volume, seven
lattice constants on a side.

Explicit computation of the sixth and higher moments
for EPR with the untruncated dipolar Hamiltonian
becomes increasingly involved and we have not at-
tempted it. However, it is possible to make a reasonable
and useful estimate for M6 for the cubic systems
KMnFs and RbMnFq. The sixth moment for a simple
cubic system with Hp in the

I
100j direction has been

calculated taking X„ to be a truncated dipolar Hamil-
tonian":

Ms (100)= (9/4)y, 'J'A 'u 't 520(S(S+1))'
—230(S(S+1))'—14S(S+1)j, (2.9)

where a is the lattice constant and only highest-order
terms in J have been retained. We assume that if X„
is untruncated Ms~(10/3)Msr(100). The correction
factor 10/3 is expected to apply only for an isotropic
average of M6~. Since M6~ is undoubtedly somewhat
anisotropic, the value chosen here is not strictly correct.
Analysis of JJ/I2~ and 3IE4~ ' indicates that the error in-
volved in this assumption should not exceed a factor
of 2.

B. NMR Moments: Magnetic Nucleus

These difFiculties with the sixth moment are not as
severe in the nuclear case, where the perturbation
Hamiltonian is much simpler, and we have been able
to calculate M6 explicitly. Moment calculations for
nuclear resonance fall into two groups: those pertaining
to the resonance of the nucleus of the magnetic ion, and
those for the nucleus of a nonmagnetic ion. The latter
group is comprised of those nuclei which experience a
transferred hyper6ne interaction.

As mentioned above, K„ for the magnetic nucleus
has the diagonal form

where 8;; is de6ned above and
Xy=XHp=g A„„I;"$;", (2.10)

~' A= f —
z Lv"(1—27'p')+7's'(1 —27' ))

+ z (1—Vv') (1—v'")cos'&+ (5)v"v's
XI (1-~;,')(1-~;")7"'cosyI.;;I-'I.;,I- . (2.8)

Here g is the angle between r;; and r;& projected onto
the xy plane.

Again the sums are independent of i and are restricted
to i/ j/k/i. The isotropic average of 354 cannot be

"E.Ambler, J. C. Eisenstein, and J. F. Schooley, J. Math.
Phys. 3, 118 (1961)."See, for example, B.R. Cooper and F. Eever, Phys. Rev. 125,
896 (1962),

where v=x', y', s' represent the principal axes of the
hyper6ne tensor. We shall assume that Hp is directed
along the s' axis, which is appropriate for the systems
studied.

The second moment is easily shown to be

Ms= Ct'h 'I sS(S+1)j, (2.11)

where Ct'=—A, ,'+s~ (A, ,'+A„.„').The corresponding

~3 A. J. Buslik, thesis, University of Pittsburgh (unpublished)."G. Ia. Glebashev, Zh. Eksperim. i Tear. Fiz. 32, 82 (1957)
LEnglish transl. : Soviet Phys. —JETP 5, 38 (f957)g.
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results for 3f4 and M6 are

3f4 =26'h 4PS(s+1)O'Q'J. '
1

~s=—e L-;S(S+1)~ ((4S'+4S—1)Z'J"
(2.12)

MnFz KMn F~{RbMnF~)

0 d)
+Ps(s+1)]Q' (14J.'J.s' —4J. Jg, 'Jjs) ), (2.13)

where, as before, the index i is not summed and the
primes restrict summation indices j, k to be unequal to
i. For a two-sublattice antiferromagnet with only inter-
sublattice exchange the J;jJ,I,'J, I, term in M6 vanishes.

K{Rb)
~ Mn

QF 4 ~ 4V

Xnp ——QI; A;; S;. (2.14)

The index i labels the nonmagnetic resonant sites and

j refers to the magnetic sites. In MnF2, for example, a
given F"nucleus is coupled via a transferred hyperfine
interaction to three neighboring manganese sites. In
KMnF3 and RbMnF3, the Quorines are involved in a
similar interaction with two manganese ions, as shown
in Fig. 1.

We shall assume that each resonant nucleus interacts
with n equivalent neighboring spins. The moments are
generated as in the case of the magnetic nucleus except
for the manner in which the sites are enumerated. The
results are

Ms = (1/bs)Lss(s+1) jn 0,',
m, =(2e/a)L-', s(s+1)] g J.p,

(2.15a)

(2.15b)

~s=(~'/&')Les(s+1) j'((4S'+4S—1)2J 4'

+Lss(S+1)$ Q (MJ.rsJ, P+4J.4sJ, s

—4J- 'Js J-s')+LsS(s+1)1

X Q (1OJ.4sJ. '+4J PJ4 ' —4J 4J „J,„')),
e,E&m

(2.15c)

where 4r, P= 1, 2, ..., n; f, ns=n+1, . .., E, and X is the
total number of magnetic sites. The l, m sums are
restricted to spins outside of the cluster, because
LJ~ S4 S,P t" S j=O for l, rn&n. In the special
case n= 1, the expressions reduce to the corresponding
moments for the magnetic nucleus.

It is useful to dispaly the explicit forms of Eq. (2.15)
appropriate to the F" nucleus in, MnF2, KMnF3, and
RbMnF3. The local environments of the F'9 nucleus

C. NMR Moments: Partially Magnetic Nucleus

In this case the resonant nucleus of a nonmagnetic
ion is coupled to adjacent electron spins through an
eRective hyper6ne interaction

and the unit cells of these systems are shown in Fig. 1.
In MnF2 the F" couples by A„„' to two Mn~ ions and
by A„„r to one MD~ ion. We shall neglect the small
((2%) difference between CV and 8".These magnetic
ions form a body-centered tetragonal lattice with next-
nearest-neighbor exchange. In KMnF3 and RbMnF3,
the Quorines couple to two equivalent Mn++ ions which
form corners of a simple cubic magnetic lattice with
nearest-neighbor exchange. Explicit calculation of the
sums indicated in Eq. (2.15) for these special cases are
listed in Table I.

The necessary parameters and numerical values for
the moments as given by Eqs. (2.6)—(2.8) and Table I
are listed in Table II. Errors assigned to the moments
are the result of the indicated uncertainities in the
physical constants. These moments are applied below
in the discussion of line shapes and correlation functions.

GL MODEL LINE SHAPES

Having determined the Grst few moments of the
NMR and KPR lines, we are now in a position to study
possible resonance line shapes I(4d). In this section, we
consider some model line shapes consistent with experi-
ment and with the calculated moments. In the strongly
exchange-narrowed. limit, the truncated Lorentzian
prodle has generally been adopted for two main reasons.
First, experimental line shapes are Lorentzian within
the observable region. Second, since this pro61e is corn-
pletely characterized by two parameters, the linewidth

TABLE I. NMR moments for F'9 in
MnF~, KMnF3, and RbMnF3.

MnF"2

M'4=3e'it 'p-,'S(S+1))
M4 ——40e'J'A 4L-,'S(S+1)j'
3E4 ——20e'J4it 4L-',s(s+1)j'

X {104L-:S(S+1))—1)

KMnF193 RbMnF193

2e'it 'p-;S(S+1)g
20e'J'A-4pS(S+1) j'
10e'J4444 4pS(S+1)j'

X{76L-'S(S+1)g
—1)

(b)

FIG. 1. Unit cells for rutile (a) and cubic perovskite (b) struc-
tures. Below each.is shown the local environment of a F"nucleus.
Hyper6ne and exchange interactions are indicated explicitly.
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TABLE II. Physical parameters and moments. Hyper6ne constants
are calculated according to definition given below Eq. (2.11).

MnF2 RbMnF3 KMnF3

Physical parameters
lattice (x)

J('K)
C(10 4 cm ')

Moments
NMR:

Ms(10" sec ')
Mc(104' sec 4)

Me(IO" sec ')
EPR

M2(10" sec ')
Mc(104' sec c)

Mc(10" sec ')

u=&.87 a=4.19
c=3.31

3.»a0.03 6.8 ~0.6b 7.60~0.08
I 22.56%0.22d 24.83&0.81' 25.67a0.41

II 23.00+0.32

a=4.24

1.59+0.03 I.27&0.08 1.36%0.04
$.3i&0.03 2.93&0.54 3.92&0.14
4.21&0.18 25.8 +9.2 42.8 &2.2

10.30 2.68 2.88
T.99&0.04 1.00+0.17 1.34+0.02

~ ~ ~ ~3g ~sg

C. Trapp and J. W. Stout, Phys. Rev. Letters 10, 157 (1953).
b C. Q. Windsor and R. W. H. Stevenson, Proc. Phys. Soc. (London}

8P, 501 (1966).
& S. J.-Pickart, M. F. Collins, and C. G. Windsor, J. Appl. Phys. 3'F,

1054 (1966).
~A. M. Clogston. J. P. Gordon, V. Jaccarino, M. Peter, and L. R.

Walker, Phys. Rev. 117, 1222 (1960).
e M. B. Walker and R. W. H. Stevenson, Proc. Phys. Soc. (London)

SV, 35 (1966).
& R. Q. Shulman and K. Knox, Phys. Rev. 119,94 (1960).
I This value is an estimate based upon Eq. (2.9), see text.

(81.) and the cutoff frequency (cr), only two moments
(M'c and Ms) are required. In these systems, the cutoff
occurs at frequencies of the order of the exchange fre-

quency, which is thousands of times the linewidth, so
the assumed Lorentzian shape extends far into the
wings and outside the region of observation, where it is
finally abruptly terminated. This model correctly de-

scribes the central portion of the line, and it has been
customarily assumed that such parameters as the line-

width do not depend strongly on the particular details
of its high-frequency cutoff. However, the fourth and
higher moments are increasingly sensitive to this region

of the line. The functional form of S(ce) far in the wings

therefore does significantly affect the manner in which

the calculated moments are related to the linewidth,

contrary to the usual assumption. An in6nite number of
moments is required to completely describe the entire

line, whereas only the calculation of the 6rst few is
mathematically practical. However, it seems reasonable
to make whatever adjustments are possible to the wing

structure of the line within the restrictions of the erst
three moments we have computed. This means that we

may choose prohles with three adjustable parameters.
The model lines must conform to two general require-

ments. They must be very nearly Lorentzian within the
experimentally accessible region, and they must have
finite moments if they are to represent physical line

shapes. As an initial example consider a two parameter
"Gaussian-Lorentzian" (GL) profile

I-(.) =(~/.)-pL-(-/-) j/(~+-'). (3.1)

Here, cr should be characteristic of exchange frequencies.

Thus, n)) 8 and IoL(cd) is nearly Lorentzian at the center
but the wing structure falls off' continuously rather than
being abruptly terminated. If terms of order o/u are
neglected, this profile yields

Ms = crb/m'" M = -'cr'8/s-"',

cr/8= 2s. 'tsMe/Mss.
(3.2)

In these systems M4/Mes 10s-104, so the condition
n»b is well satisfied. Solving for 8, we hand that

bo = P7r)'t'Ms't'/M 'ts (3.3)

In Sec. IV, we show that this GL profile is equivalent
to the assumption of a Gaussian form for f(t). These
results are to be contrasted with those of a truncated
Lorentzian (TL) 's

MsTL=2crb/s. , McTL=2crsb/3s,

PL= (-'s/v3)Ms't'/Mc't'

where cr is the truncation frequency. Equation (3.3)
leads to a width (6/s.)"' larger than that given by Eq.
(3.4). However, both 8 and P severely underesti-
mate the experimental linewidth. %e seek a profile
which is more consistent with experiment. Initial in-
vestigations of three-parameter line shapes" have
indicated that only a restricted class will accomplish
this. The appropriate shape is Lorentzian near coo, but
then passes through an extended region approaching a
1/ce' frequency dependence before falling off in a manner
so as to preserve 6nite moments. Deviations from a
Lorentzian form are understood to occur far into the
wings and outside the region of observation.

To illustrate this technique and explore the sensitivity
to the details of the wing structure, we shall consider
two such three-parameter line shapes which are anal-
ogous to TL and GL discussed above. A simple form
with the desired functional dependence in the wings
but with abrupt termination is the "truncated double
Lorentzian" (TDL) given as

~"'(~)= («"/w) C(~'+&')(~'+~")j-', ~&~"
=0 ce&cr" (3.5)

where again a' and n" are of the order of exchange fre-
quencies so that e"&n'»b. As for the simpler line
shapes, the three parameters (B,cr', cr") can be related
to the moments (&Vs,Mc,Ms) where

M s= cr'bA (rt), M4= (2/s-) bcr"cr"B(rt),

Ms= (2b/3s. )cr"cr"'C(r)),
with

2 (g) = (2/~) tan —'(1/rt), B(rt) = 1—
rt tan —'(1/rt)

C(rt) = 1—3rt'+3rts tan '(1/rt), rt =cr'/cr".
(3.6)

"See, for example, A. Abragam, 2'he Principles of Euclear
Mugrtets~sm (Oxford University Press, New York, 1961),p. I07.

'6J. E. Gulley, B. G. Silbernagel, and V. Jaccarino, Phys.
Letters 29A, 657 (1969).
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TABLE III. Cutoff and linewidth parameters of model line shapes, as defined in Eqs. (3.1), (3.3), and (3.9).

s-p(G)
TL

STL(G)
nT (10 sec )

GL
gGL(G)
noL(10" sec ')

TDL
eTDL(G)
n (10» sec-1)
n"(10"sec ')
n =n'/n"

GDL
eoDL(G)
n'(10" sec ')
~"(10» sec-1)
g =n'/n"

MnF~

37.2 &1

19.9 &0.5
4.97~0.05

27.5 a0.7
4,06&0.04

NMR
RbMnF3

19.7 +1
9.5 ~1.0
8.3 &0.7

13.2 ~1.4
6.8 &0.6

31.8 +0.8
3143&0.03
6.01&0.06
0.57

15.0 ~1.5
5.88+0.52
9.90+0.9
0.59

40.4 &1.0 19.0 +1.9
1.80+0.02 3.03+0.26
8.70&0.09 14.4 &1.3
0.21 0.21

KMnF3

19.5 +1
9.1 +0.3
9.3 &0.1

12.6 +0.4
7.59+0.07

18.1 ~0.6
3.46&0.03

16.0 &0.2
0.22

14.3 +0.5
6.75+0.07

10.95+0.1
0.61

MnF2

260 +10

120.8 ~1.2
7.61~0.07

165.9 +3.3
6.21~0.06

EPR
RbMnF3

58 &3

22.6 &2.5
10.6 &0.9

31.2 +3.4
8.63+0.7

72~
2.2

28.4
0.08

54
3.3

22.0
0.15

KMnF3

59 +3
21.8 +0.7
11.8 a0.11

30.0 &1.0
9.64~0.10

69'
2.5
31.7
0.08

52
3.7

24.5
0.15

32 The values for GDL and TDL EPR are estimates because they involve the use of Eq. (2.9).

We assume 0,', n")&8, but have retained all orders in g,
since n' and n" may have comparable magnitudes.
From Kq. (3.6) we have

2v3 /iII 1/2/iII 2 g(~)3/2
gTDL

2r /iII43" C(2/)'/'A(t/)'

where g is determined self-consistently by

(3.7)

2/= -3,tr(/M'32/M21V3)
C

A (2/) C(2/)/B(r/) 2$. (3.8)

We shall compare the characteristics of this line with
one whose wing structure is smoothed out, avoiding the
abrupt termination. We propose the "Gaussian double-
Lorentzian" line (GDL)

3 n" expL —(o)/n")'j
IGDL(~)

tr (o/2+bs)(o/2+n")

Proceeding as with TDL, we obtain

Ms= 8u'a(2/), Ms = 82r '/sn"u" b(1/),

1
btr

—1/snt2ni/3c(2/)

/3(r/) = e erfpc(r/), b(2/) = 1—tr'/22/es'erfc(t/)

(3.9)

c(r/) =1 22/'+22—r'"2/sep'erfc(r/),

(2) 1/2 ~ 1/2/iII 2 b(~)3/2
bGDL —

i

Etr/ M43" C(2/)'"/3(2/)'

(2r) "' IIII42 a(r/)c(2/)

(2i M2M3 b(t/) 2

(3.10)

It should be noted that there is no necessary relation
between the values of g for these two profiles.

The cutoffs and linewidth parameters of the four
model line shapes, as determined by the calculated
moments, are given in Table III for NMR and EPR

in MnF2, KMnF3, and RbMnF3. The experimental
values of 5 are included for comparison. We point out
that the more flexible three-parameter forms (TDL and
GDL) exhibit an extended region (n'&o/&n") of non-
I orentzian behavior. In Table IV, where the ratios of
experimental to theoretical values of 5 are presented,
we Gnd that these same profiles give improved agree-
ment with the observed linewidths. It is perhaps sur-
prising that TDI. gives substantially better agreement
than GDL; this will be discussed further in Sec. V.

We believe that the above analysis represents more
than simple curve fitting. The results can be shown to
be consistent with a study of the related correlation
functions, which is the subject of Sec. IV.

TABLE IV. Ratios of experimental to theoretical linewidth
for various model profiles.

NMR
MnF2 RbMnF3 KMnF3

EPR
MnF2 RbMnF3 KMnFI

gexp/gTL
gexp/gG L

gexp/g GD L

eexp/3 TD L

1.87
1.35
1.17
0.92

2.07 2.14
1.49 1.55
1.31 1.36
1.04 1.08

2.15 2.57 2.71
1.57 1.85 1.97

~ 1.07 1.13
~ ~ ~ 0.80 0.86

IV. CORRELATION FUNCTIONS

In principle, it is possible to determine the correlation
function lt(t) corresponding to any I(o/). The Fourier
transform of I(o/) is the relaxation function rp(t) which
is related to lt(t) by Kq. (1.2). Differentiation of that
equation gives

lt (t) = L(t 2/3 2) —(3/t )j/(~(0)')

The calculational difhculties then all lie with performing
the Fourier transformation of I(a&). Kq. (4.1) can be
simplified in the limit of strong exchange narrowing
when lt (t) decays in a time of order ts/J (I is the ex-
change constant). In this large I limit /2/J is much less
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!.0

0.5

0
0

This behavior of P(t) is directly related to the values
of the linewidth determined in Sec. III. From Eq. (4.2),
we see that p(t) is exponential except near t=0, so the
central portion of I(&u) is Lorentzian with width
8= (cu(0)')/40, . Thus, 8 is proportional to 1/a&„which
from Eq. (4.3) is equal to the area under the P(t) curve.
A comparison of the magnitudes of 5 given in Table
II and the forms of P(t) shown in Fig. 2 verifies that the
TDL profile, which predicts the largest values of 8, also
has the largest value of J'P(v)dr by virtue of the slow
decay of P(t) for t) 1/~, .

FIG. 2. Correlation functions for GL, GDL, TDL model line shapes
appropriate to MnF&. v is de6ned in Eq. (4.24}.

than the relaxation time characterizing q(t), and for
t&)A/J, Eq. (1.2) may be written' approximately as

q (t) =exp —(a)(0)')t P(r)dr .
0

(4.2)

It is convenient to set the time scale of P(t) by the
integral in Eq. (4.2) rather than by i4/J'. We make the
conventional definition of an exchange frequency ~, as

p(7)d7. (4 3)

Thus, p(t) decays in a time of order a&./(o&(0)'). Since
f(t) is negligible after tiines of order 1/~,&&a&./(ru(0)'),
we can simplify Eq. (4.1) by the approximations rp(t)
= q (0), j (t) =0,

A. Correlation Function

We would like to compare the P(t) obtained from the
line-shape analysis with direct calculations from linear-
response theory. As with the moments, we can obtain
in practice only a limited amount of explicit information
about P(t), namely, the coefficients of the leading terms
of its small-time expansion. Again, the simplicity of
the Hamiltonian for these systems enables us to carry
this analysis further than previous workers have, and
to check the validity of their assumed forms for P(t).
It is obvious from Fig. 2 that it will also be necessary to
exercise some care in determining the long-time be-
havior of 1t(t). Although an exact calculation is not
possible in this instance, it is known that a di6usion
model gives a good approximation to the spin dynamics.
We show in Sec. IV C that only a short interpolation
is required to connect the results to the short-time
expansion, so that P(t) is well determined for all t

The short-time behavior of P(t) is directly related' to
the moments of I(&u), again through Eq. (1.2), since

k(t)= —-(t)/L (o)( (0)')) (44)

For the GL profile, q (t) can be obtained analytically as

i4 (t)/q (0)= (e "erfc[(B/n) ——,'nt)+ e"erfc
X[(8/n)+-', nt))/2erfc(b/n) . (4.5)

dn

(—i)" q (t)
dt" )=p

Gl I(M)die

((g)Ida) =M„. (4.8)
where erfc is the complementary error function. Sub-
sequent differentiation yields

0(t)/4(o)=e PL —-'( t)'), (46)

where n'= 2tV4/M2 has been defined in Sec. III [Eq.
(3.2)). A similar analtyic expression can be obtained for
the GDL profile

0(t)/0(0)={e "'er«(~ —2T')

+e&rerfc(it+ —', T))/2 erfcg, (4.7)

where T=n"t. For the TL and TDL pro6les, the ex-
pressions for P(t) and P(t) can be obtained numerically.
The results of these calculations for the P" NMR in
MnF2 are shown in Fig. 2, where the correlation func-
tions for GL, GDL, and TDL pro6les are shown ex-
plicitly. For co,t(1, the three forms of P(t) are nearly
indistinguishable, but their behavior at longer times is
substantially di6erent; the TDL profile decays Diuch
less rapidly than the GL and GDL forms.

Thus, successive differentiation of Eq. (1.2) gives

((u(0)')=F2,

p(0) = —(iV4/Mg)+3cV2,

(4.9a)

(4.9b)

P&'v&(0) = (M,/M, ) —15M4+303f,'. (4.9c)

If all moments where known, P(t) would be determined
exactly. Since only 352 and 3f4 have been generally
available, it has been necessary to assume particularly
simple forms for g (t). A common assumption has been
the Gaussian f(t) = exp( —4i~co, 'P), where co, is defined
in Eq. (4.3). It is then found that'

~ '~(2/~)(M4/M2) b= (-'vr)"'(M2"'/3f4'i') (4 10)

We point out that the GL-model line profile implies
precisely this f(t) [see Eq. (4.6)), and the linewidth
tioL of Eq. (3.3) is therefore identical to 8 in Eq. (4.10).
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The first few moments are thus su@.cient to determine
the parameters &ce(0)'& and re, . Since we have evaluated
3I6, it is now possible to check the validity of the
Gaussian assumption for lt (t). The short-time expansion
of P(t) can be written in the form

1
P(t) =1——et+ Pt'—

2t 4t
(411)

where n= —p(t) ~, e, p=P' (t) ~, s, are given in terms
of the moments by Eq. (4.9). If P(t) were Gaussian,
P/n' would be identically equal to 3. In the limit of
strong exchange narrowing n~+M4/Ms, p~Ms/Ms,
so P/u'=MsMs/M4' provides a useful test for the
Gaussian form. Using the explicit values for the NMR
moments given in Table II, e, P, and P/o. ' are obtained
for MnF2 and KMnF3, and are listed in Table V.
Since P/o. ')3, P(t) decays more slowly than a true
Gaussian as our earlier line-shape analysis leads us to
expect. The estimate of the KPR sixth moment is not
considered sufficiently reliable to be used in this rather
sensitive test. The near equivalence of the two values
of P/u suggests that this ratio is characteristic of short-
range, isotropic exchange interactions. This point will
be explored further in Sec. V.

where the j sum extends only over the magnetic spins
which are neighbors to site i. Formally, the correlation
function may be written as

%t (t) = (H'"'(t) H'"'( )&/&H'"'(0) 8'"'(o)&

where
(0)=Tr(e e~—0)/Tre e~ (4.13)

In the in6nite-temperature limit the denominator is
particularly simple since TrS,&S,"= L:s,S(S+1)jb;,8„.,
where i, j are site indices and p, v are Cartesian com-
ponents of the spin vector. The following discussion
will be restricted to the infinite-temperature limit. If

A,, is the same for each j in the above sums, then Eq.

B. Autocorrelation and Pair-Correlation Functions

it (t) is the correlation function of the full local field,
which is in general the sum of contributions from many
spins. Thus, P(t) represents a combination of all possible
correlation functions between pairs of these spins (in-
cluding the autocorrelation functions). It is often help-
ful to calculate these components of P(t) separately.

For NMR, the analysis is particularly simple, be-
casue local fields arise almost entirely from the short-
range hyperfine interaction, and only a few spins are
involved. Then, it(t) is composed of the small number
of correlation functions between pairs of these spins.
The local Geld at a nuclear site may be written as

0;i"= (1/q„h)QA, ,"S, , (4.12)

TAnLz V. n, P and P/n' in the limit of strong
exchange narrowing.

a(10r4 sec ')
P(10" sec 4)

p/~ 2

MnI g

8.24+0.08
2.65+0.05

3.9

28.8 &0.30
31.47&0.63

3.8

(4.13) reduces to

4(t) =3 2 &S *(t)Ss'(0)&/~S(S+1). (4.14)

j, k are summed over the n magnetic sites contributing
to the local field at i and S,'(t) is a Heisenberg operator
evolving in time according to the full Hamiltonian (K).
This assumption concerning A,, is exactly satisled in the
perovskites and leads to small corrections in MnF~. '~

The numerator of Eq. (4.14) is a linear combination
of autocorrelation (j=k) and pair-correlation functions
(jWk). It is instructive to consider them separately. "
The short-time expansion of each has the form

n= &)X,S;*gLSs*,Sej&,

P= &t X,t 3'.,S,'jjL/S. ,X)pc7&.

(4.16a)

(4.16b)

In the case of strong exchange narrowing we may take
X=BC,„in the above expressions.

For the nucleus of a magnetic ion, only the autocor-
relation function is required because the hyperhne Beld
is essentially produced by a single electron spin. Evalua-
ation of Eq. (4.15) for j=k (autocorrelation) yields

&St*S~'&= sS(S+1), (4.17a)

&A = 2~ sLrS(S+1)fs Qs J ss (4 17b)

P, = I-'f-', S(S+1)g {(4S'+4S—1)g J;.4+L~S(S+1)g

&(P(10J i'J P+4J s'JsP)) (4.17c)
k&l

We have dropped terms such as J;s'J;iJsi from P~
since they do not contribute in these simple antiferro-
magnets. Reference to the magnetic nucleus moment
formulas LEq. (2.11)—(2.13)j shows that

and
ng/LrsS(S+1)j= —(3E4/cVs) I's

p~/$s'S(S+1) j= (Ms/Ms) I'a
~~ Although there are appreciable differences between the A;;

for diR'erent j in Mnp~, the combinations which appear as coeK-
cients of the correlations are found to differ from each other by no
more than a few percent."See, for example, B. G. Silbernagel, V. Jaccarino, P. Pincus,
and I.H. Wernick, Phys. Rev. Letters 20, 1091 (1968).

1 1
(S,'(t)S,'(0)) =&S,'S,')+ —t + —P«+ . , (4.1S)

21

where n and P are given by'
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cn
+
CO

FO

1.0

0
0

and P(t) is characterized by two autocorrelation func-
tions and two pair correlation functions of type 1. The
coefficients of the expansions are

ng ———2sL st5(5+1)g'(J/ts) ',
p.=(J/~)'L-'5(5+ 1)j'

Xs{(45+45—1)y 14(s—1)L-;5(5+ 1)j~,
~»=2(J/&)'I:sS(5+1)j'
p»= —(J/&)'LsS(5+ 1)j'

X{(45'+45—1)+20(s —1)L-s'5(5+ 1)g),

.IO

.05
+
CO

V)
0

(b) where z is the coordination number (which is 6 for
KMnFs). As with the magnetic nucleus, by reference to
the nonmagnetic nucleus formulas LEq. (2.16)j, it is
easily shown that

(ng+n»)/Lsts(5+ 1)j= (M4/3I, )—
(P~+P»)/L-s'5(5+1) $= (3fs/M, )"I

—.05

and we have verified that Eqs. (4.17) are in agreement
with the general results (4.9).

For the nucleus of a nonmagnetic ion, pair correla-
tions (jWk) among the spins in the cluster contributing
to the hyperGne Geld must also be considered. These
fall into two categories, those involving pairs within
the cluster which are directly coupled by exchange (case
1) and those which are coupled only indirectly through
intermediate spins (case 2). For type-1 pairs (j,k),
(S.sS„s) 0, and

~p, =2ts—sJ.„sLtS(5+1)y (4.18a)

Pi i ———Ls5(5+1)$'ts '{J;s'(45'+45 —1)+[a5(5+1)1
Xpi (20J s'J i' —6J;PJsi')) (4 18b)

For tyPe-2 Pairs (j,k), where J,&
——0, (5,'Ss*)= 0, nz& ——0,

and
(4.19)Pi s=L'sS(5+1)j—'6ts—'gt J;i'Ji i'.

As a speciGc example, consider the KMnF3 lattice
shown in Fig. I. For the Mn" nucleus, only the auto-
correlation function is required. For the F" nucleus,
two spins contribute equally to the nuclear hyperGne
Geld and are directly coupled to each other by exchange.
Thus,

—10—

FIG. 3. Theoretical-autocorrelation (a) and pair-correlation
(b) functions for KMnFs. The interpolations between short-time
expansions t Eqs. (4.24) and (4.25)g and the long-time asymptotic
approximation (4.26) are shown dashed. The usual Gaussian ap-
proximation for the autocorrelation function is shown for com-
parison. The time scale is the same as in Fig. 2.

(& 5'(t)& 5 *)=3(5 '(t)5 '(o))+4(5 '(t)5 '(o))

+2(Si'(t)Ss'(0)). (4.22)

Equation (4.21) is still applicable (with x=8) and we
need in addition

Pi s=24(J/It)4I sS(5+1))' for MnFs. (4.23)

The sum of functions given above again correctly repre-
sents lt (t) in terms of (cV4/cVs) N I s and (3fs/ilf s)
for MnF2.

As was the case with the moment calculations, the
particularly simple NMR Hamiltonians for these sys-
tems have made possible the explicit calculation of the
t' coeKcients (P's); whereas, usually it is only feasible
to calculate the ts coeKcients (n's). It is now possible,
therefore, to compare the leading terms of the auto-
correlation function with the Gaussian that has usually
been assumed for this function. ' Using n~ and p~, we
find that

(5"(t)5"(0)&=LlS(5+1)j 1—— —
I + —1——

2 rl 48 7s

3
XI 1+- ~ 0 ~

2S(S+1) 4 (4.24)

Thus, for KMnF3 and RbMnF3, we again Gnd agree-
ment with the general results (4.9).

For the F" nucleus in MnF2, three autocorrelation
terms appear. The pair correlation is more complicated
because spins 1 and 3, and spins 2 and 3 are directly
coupled by exchange (case 1) while spins 1 and 2 are
only coupled through a spin such as 3 (case 2) (see Fig.
1). Thus,

((5,(t)+5,(t))(5,+5,)) where (1/r)'=-2s(J/A)'C sS(5+1)j.As was true for the
full lt (t), the autocorrelation function decays less rapidly

=2(5 '(t)Si'(0))+2(Si'(t)Ss'(0)) (4.20) than a Gaussian. The expansion of the type-1 pair-
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correlation function can be displayed similarly as

1 5(5+1)
(5;*(t)SJ'(0))1———

I.O

0 RFITER (REF. 2I)

(4.25)

C. Long-Time Beha.vior

It is clear that if we are to make a quantitative com-
parison of calculated correlation functions with those
generated from the model line shapes we must have
specific information about their long-time behavior,
whereas until now we have dealt only with short-time
expansions. However, we can also determine approxi-
mately the long-time asymptotic behavior of P(t), and it
turns out that only a small interpolation is required to
connect the short- and long-time approximations. If an
exchange-coupled spin system is perturbed from its
equilibrium condition at one site, the effects of this
disturbance will propagate from the site in question by
means of the exchange interaction. At a suKciently
long time after the initial perturbation, the effect will
have involved a large number of spins; the original
highly localized disturbance becomes one varying slowly
over distances of the order of a lattice parameter. In
this limit, the process may be characterized approxi-
mately as diRusion in an effective continuum of spins,
in which case the correlation function P(r, t)
= 3(5„'(t)Ss'(0))/5(5+1) obeys the equation

AV'f(r t) = (r)/r)t)P(r, t) . (4.26)

The diffusion coefficient A has been calculated" " in
several different ways and the results of the more
sophisticated theories"" are in close agreement. At
infinite temperature we know that lt (r, 0) ~ 3,s (at equal
times spins are uncorrelated for T —+~ ), but this cannot
be used as a boundary condition on Eq. (4.26), since

f(r, t) varies too rapidly with position at short times for
the continuum approximation to be valid. However, the
Taylor series expansion in t/r of parts A and B of this
section is accurate in this time region. We have matched
the long-time behavior to this by taking as the boundary
condition for Eq. (4.26) the values of f(r, ,t) given by
the short-time expansions at roughly the maximum
time for which these expansions can be trusted, t/r = 1.
This gives

xexpL I r' rtI'/ 4(tter)3, t) r. (4.27)
' P. G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958); W.

Marshall, Natl. Bur. Std. (U. S.), Misc. Publ. No. 273, (1966).
2 H, Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)

27, 529 (1962); P. Resibois and M. De Leener, Phys. Rev. 152,
305 (1966); 152, 318 (1966)."G. Reiter (unpublished). We are grateful to Dr. Reiter for
discussions of his work prior to publication.

.6—

0
0

Fio. 4. The normalized correlation function for F" NMR in
KMnF3. The appropriate combination (4.20) of the curves of
Fig. 3 is compared with the form of lt (t) obtained from the TDL
line shape (dashed line) and with the results of Refs. 21 and 22.
The Gaussian approximation is again shown for comparison.

The resulting p~(t) (r=0) and it~(t) (r=a, where a is
the near-neighbor distance) for KMnFs are given in
Fig. 3. The short-dashed lines represent interpolations
between the two limiting forms and the Gaussian ap-
proximation so f~(t) is shown for comparison. The cor-
relation function of interest for the F"NMR in KMnF3,
lt (t) = 2$~(t)+2/„(t) is shown in Fig. 4. It is compared
with the P(t) obtained from the TDL study and with
the Gaussian assumption for lt (t). Since the linewidth
is proportional to fP(t)dt, it is of interest to compare the
area under these three lt(t) curves: GL=1.25, TDL
= 1.80, correlation analysis=2. 06 (in arbitrary units).
The two latter values are within the experimental un-

certainty of the observed linewidth (3'"v= 1.94&0.15 in
these units). Both forms of the correlation function
represent a substantial improvement over the Gaussian
approxima, tion for lt (t) (we point out again from Table
III that the truncated Lorentzian line shape leads to
even worse results). The TDL shape is too simple in
form to give the long-time diffusion tail for P(t). It falls
off more rapidly than t 't' beyond t/v=5, so that the
area under the correlation analysis f(t) actus, lly exceeds
the TDL one. However, it appears to be consistent with
the correlation-function analysis over most of the range
of times substantially involved in determining the line-
width. Also included in Fig. 4 are the results of two other
calculations of P(t): a microscopic analysis of the spin
dynamics, "and a numerical calculation of spin correla-
tions in a classical Heisenberg ferromagnet. "Both of

"C. G. Windsor, Proc. Phys. Soc. (London) 91, 353 (1967).
The results of this computer study of classical spin dynamics
agree closely over the range of their validity with the results of
Ref. 20.
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these are in reasonable agreement with the forms of
f(f) determined here.

V. DISCUSSION

In the preceding three sections, we have explored, in
some detail, alternate descriptions of strongly ex-
change-narrowed systems. In each case, we have used
exact calculations of the leading terms in an expansion—
namely, the first few moments of the line profile and
the short-time behavior of the spin-correlation func-
tions. We have been able to obtain more detailed infor-
rnation about these systems by examining one more
term in each expansion than has been used heretofore
and by making use of self-consistent comparisons be-
tween the line profile and correlation-function descrip-
tions.

Within the restricted class of line shapes consistent
with calculated second, fourth, and sixth moments, we
have examined two model three-parameter profiles.
Both of these give improved agreement with experi-
ment over two-parameter forms fit to the second and
fourth moments only. As we mentioned in Sec. III,
it may at first seem unphysical that the best agreement
with experiment is obtained using the abruptly termi-

nated TDL shape, since it is clear that the spectrum of
final states contributing to the absorption has no upper
energy limit. However, if these states are separated into
two-particle, three-particle, etc., classes, then each class
is characterized by a well-defined upper energy bound.
Furthermore, the usual phase-space restrictions lead to
rapidly decreasing contributions from states of more
than two particles, so that a sharp reduction in absorp-
tion at the maximum two-particle energy should be
expected. "We believe that this is the physical origin
of the sharp cutoff.

It is significant that the values of g for each profile
are very similar in the NMR cases where 352, 314, and
M6 have been explicitly calculated, in spite of the fact
that the strength of the broadening mechanism, the
magnitude of the exchange, and the crystal structure
are diff erent in the rutiles and perovskites. This result is
closely related to the observations of Sec. IV, where a
study of the two leading coefficients of f(t) indicated
that the quantity P/n' also assumed a nearly constant
value for all NMR cases investigated. In terms of the
moments P/n' &2316/cV4', —while ii for the three-
parameter profiles has the form ii ~&4'/3E2M6. Using'
the expressions appropriate for a magnetic nucleus
(Eq. 2.13), we find that

((45'+45—1)2' ~'~'+35(5+1)2 14~v'~'~' j/(2 S~P)',
25(5+1)

where terms of the form J;,J;I,'J;I, have been neglected
in M6 since they vanish for a two-sublattice antiferro-
magnet of the types discussed here. If a single-exchange
interaction between neighboring spins is assumed, Eq.
(5.1) reduces to the form 7—(25' —25—3)/2sS(5+1).
In that case, 3f2&6/cV4' is not dependent upon A, 5, or
J and ha, s only a 1/s dependence upon the nature of
the magnetic lattice. A similar weak dependence can be
demonstrated for a partially magnetic nucleus.

The corresponding reduction of 3I23/I6/cV4' is not
possible in the EPR case because of the more compli-
cated form of the dipolar interaction. However, if we
assume a TDL line shape, we can find the appropriate
value of ii from 352, cV,, and 8'"& Lsee Eqs. (3.7) and
(3.8)j. The reasonably good linewidth prediction of
TDL for EPR in KMnF3 and RbMnF3 (Table III)
suggest that this is in fact a sensible model line shape.
We have estimated p in this way for a number of
materials (KMnF3, RbMnF3, MnF2, EuO, EuS), and
we find 0.08&g&0.2. This relatively small range of
values implies that the EPR line, profiles in exchange-
narrowed paramagnets are quite similar to one another;
they are also very similar to the NMR shapes (where

g =0.22).

Our investigation of the moments has led us to a
simple model profile for exchange-narrowed resonance
lines which is physically plausible and is in substantial
agreement with experiment. Our study of correlation
functions using short-time expansions and a diffusion
model for long times yield a form for P(t) which is con-
sistent with the line-shape analysis and is in agreement
with the forms predicted from microscopic theory. "
In the context of the preceding two paragraphs, we
feel that these results may have more general applica-
tion than to the three systems explicitly considered in
this paper. Therefore, we believe that the current
understanding of resonance in exchange-narrowed
systems is comparable with that in nonmagnetic
insulators.
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