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ESect of the Positron-Phonon Interaction on Positron Motion~
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We have made a calculation of the eRect of the positron-phonon interaction on positron motion in simple
cubic metals. We use a slightly modified jellium model to treat the positron-phonon interaction, and several
approximations are introduced. Still, we feel conhdent that our calculations are qualitatively correct, and
we conclude that phonons must play a role in determining positron motion in metals at low temperatures.
In this region, phonon excitation provides an important additional mechanism for energy loss although it
does not appear to contribute significantly to the eRective positron mass.

I. INTRODUCTION

'HE present status of the problem of positron
thermalization in simple metals (i.e., Li, Na, K,

Rb, Cs) is one of qualitative agreement between theory
and experiment in support of the view that positrons
generally annihilate in these metals at temperatures
below room temperature before they reach equilibrium
with their surroundings. Experimental work by Kim,
Stewart, and Carbotte' and a complimentary calcula-
tion by %oil and Carbotte' provides much of the
evidence on which this view is based. The purpose of
the present work is to estimate the importance of the
eRect of positron-phonon interaction on the process of
thermalization in comparison with the effect of positron-
electron interaction. The former was neglected by Moll
and Carbotte' after some consideration of the positron
and phonon dispersion curves. These curves intersect at
extremely low energy, typically about 3'K and it is
therefore reasonable to assume that positron-phonon
coupling will be negligible at least in the range of energy
relevant to thermalization. However, early work of
DeBenedetti et at. ,

' who showed that positrons would
thermalize in Au at room temperature due to inter-
actions with phonons alone, suggests that this assump-
tion may not be justified. Further evidence supporting
this view may be found by looking at the analogous
case of the damping of electronic excitations by phonon
emission where it is known that the damping is domi-
nateds by the phonons in the low-energy region (below
about as ev), except for the lowest energies.

A straightforward "6rst-principles" calculation is
presented. The positron-phonon coupling constant is
calculated in Sec. II using a modified jellium model
approximation which allows us to take some account
of the exclusion by Coulomb repulsion of the positron
from regions close to the ions. The formalism parallels

*Research supported by the National Research Council of
Canada.

t Present address: Unilever Research Laboratory, Sharnbrook,
Bedfordshire, United Kingdom.' S. M. Kim, A. T. Stewart, and J. P. Carbotte, Phys. Rev.
Letters 18, 385 (1967).'E. J. Woll, Jr., and J. P. Carbotte, Phys. Rev. 164, 985
{1967).

'S. DeBenedetti, C. E. Cowan, W. R. Konneker, and H.
Primakoff, Phys. Rev. ?7, 205 (1950).

J. R. SchrieGer, Theory of Supercondlctkity (W. A. Benjamin,
Inc. , New York, 1964).

the familiar formalism of the electron-phonon inter-
action since the interactions are quite similar. In Sec.
III, the rate of energy loss of the positron is obtained
from the imaginary part of the positron self-energy and
the contribution to the positron eRective mass of
phonon self-energy corrections is shown to be small, in
agreement with the results of Mikeska. ' The energy
loss rate due to electron-hole pair excitation is combined
with the phonon contribution in Sec. IV and the results
are given in Sec. II. Numerical calculations are carried
out for Na only. Calculations for the other metals in
the alkali series can readily be obtained in the same
way. An outline of what happens at finite temperatures
is given in Sec. VI. Results are discussed in Sec. VII
and conclusions are presented. Two Appendixes are
included to give further details of the evaluation of the
positron-phonon matrix element and the positron
eRective mass.

II. POSITRON-PHONON INTERACTION

Positrons interact with the ions of a metallic crystal
through a repulsive Coulomb potential screened by the
conduction electrons. The interaction is basically the
same as the electron-ion interaction except for the
change in sign and the absence of exchange scattering
with the core and screening electrons. Formulation of
the positron-phonon interaction is therefore similar to
the well-known formulation of the electron-phonon
interaction. Thus, if r; and R~ are the positions of the
ith positron a.nd the /th ion and V(r, —K,) is the inter-
action between them (assumed to be spin-independent),
the contribution to the total Hamiltonian is

where
H...;.„=Q,Qt V(r, —R ) =P, W(r, ),

5'(r) =Qt V(r —Rt).

In second-quantized form, Hp„, ;,„becomes

epos-ion =Qq pz pa (sc+tl
~

W
~

sc)&z+qo &ax y

where c~, c are positron creation and destruction oper-
ators and the complete set of positron wave functions

~

qc) are taken to be Bloch functions defined by

t
sc) = (1/0"') tt„(r)e'" ',

~ H. J. Mikeska, Phys. Letters 24A, 402 (1967).
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where 0 is the volume of the crystal and u„(r) has the
periodicity of the lattice. Hence

(qq+ q [ W l x)=ES(q)M„~q,„,
where S(q) is the structure factor defined by

(3)

1
S(q) = —P&e-'q "i,

and M,+~ „ is the single-ion matrix element given by

M„+q „=— e-'q *I„+q*(x)e„(x)V(x) dx.
0

E is the number of primitive cells in the crystal. For the
metals, Li, Na, K, Rb, and Cs, there is one ion per
primitive cell. The ion potential is well localized in the
crystal so that the integral in Eq. (4) really extends
only over one cell.

S(q) may be expanded for small displacements Ui
about the equilibrium lattice sites Rip. To first order in
the displacements,

S(q) = —pie '2 R&'(—1 iq U—i).
E (5)

The erst term leads to the static crystal Geld; the
second leads to the positron-phonon interaction. Using
Eqs. (1), (3), and (5), we can therefore express this
interaction in the form

Hpos-ph & Pq Pz Prr Mz+q, mal e q' Utcz+qe CLa ~

Ui can now be expressed in terms of the normal co-
ordinates Q(k, X) through the relationship

Ui —(M/y) if2 g gi, Q(k y)q)(k)e~~ uP

where the sum on k extends over the first Brillouin zone
(FBZ) and M is the ion mass. Introducing the phonon
creation and annihilation operators a~), and a~), which
are related to the normal coordinates through the
relationship

Q(k, h)=-[2co (k)$ "2(a t+a ),
and substituting for Ui and Q(k, li) inHp, , ps gives the
familiar looking result

Hpos-ph =g~ Qq Qs gx gspq, a, i&~+qn &a~(+—qx +iiqx) ~

where the coupling constant is given by

g„+q, i,= —i[ hsV/2n~g(q)M j'"q si(q)M„+q „(6)

(~+q[II I&)=—Z&e 'q "' dre *q l' "')
Q

y V(r —Rt)N„+,*(r)u„(r) . (2)

If we let x= r —Ri, it follows that

1 4xe'
g, = —iLfi V/2cog(q)M]'~2 — [Ns ['.

0 q

(7)

The screened coupling constant g~ is related to g~ by

where s(q, n&) is the dielectric function of the conduction
electron gas. It has been shown by Carbotte and Arora~
that the static, long-wavelength limit of the randorn-
phase approximation (RPA) dielectric function is a
good approximation when electron-hole pair excitation
is the dominant thermalization mechanism. That this
is so follows from the fact that the therma)ization
process is dominated by small momentum transfers and
hence small energy transfers. Ke will assume that the
same approximation holds good for thermalization due
to phonon excitation because in the region of positron
energy where the rates of energy loss due to phonon
excitation and to electron-hole pair excitation become
comparable, it can be shown that only momentum
transfers (~'~X are allowable, where X is the reciprocal
of the Thomas-Fermi screening length. Hence,

& (q ni) ~ &
RPA

(q O)
—1+$2/q2~$2/g2

where I, is related to the Fermi wave-vector by the

' J. P. Carbotte, Ph.D. thesis, McGill University, 1964
(unpublishedl.

7 J. P. Carbotte and H. L. Arora, Can. J. Phys. 45, 387 (1967).

and &ui(q) and sq(q) are the frequencies and polarization
vectors of phonons with polarization X.

Evaluation of the matrix element M „+,„is carried out
in Appendix A and is based on a slightly improved
jellium approximation, using known positron wave
functions calcula, ted by Ca,rbotte. ' It is shown that,
for Na, ,

1 4ze' 1 4xe' 1
M,+q

——— [upl
-'

0 q' 0 q' V2

i.e., the matrix element is the simple plane-wave matrix
element multiplied by a numerical factor which is
derived from the calculated positron wave functions.
This factor is a measure of the exclusion by Coulomb
repulsion of the positron from regions close to the ion
cores. For two rea, sons, this approximate treatment of
the matrix element is expected to be reasonably good.
First, in the simple cubic metals considered here, for
normal processes the coupling to transverse phonons is
negligible because the polarization vector is very nearly
perfectly normal to the propagation vector throughout
the FBZ. Second, because the thermalization process is
determined almost entirely by what happens below
positron energies of about 0.1 eV, umklapp processes
can be ignored since they are energetically impossible
at these energies. Hence, the coupling constant sirnpli-
fies to
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equation
)i'= 4a R/rrap,

where uo is the Bohr radius.
In the model we are using here, the (dressed) phonon

frequencies pp(q) are given by

Fco. 1. Lowest-order positron
self-energy correction due the posi-
tron-phonon interaction.

&u(q) = (m/3')'~'vRq= aq (10)
so that

Q(x+q, «p —«)

where
g.q-.= (1/fl) I»l'~q,

p = Sz-'e'hn/o. M)i4 (12)

and n=lV/Q, the density of conduction electrons.

III. POSITRON SELF-ENERGY

The full positron propagator contains a self-energy
correction due to the interaction of the positron with
phonons. The self-energy correction due to positron-
electron interaction is omitted from the propagator here
but the effect it produces on the rate of energy loss and
the effective positron mass can be included later. Thus,
within the Migdal' approximation, the self-energy of
the positron Z(s«, o&) is given by the lowest-order graph
(Fig. 1).

The full positron and phonon propagators are defined
in the momentum-energy representation by

G(~,~) = 1/I ~—E(x)—Z(x,~)+is),
D(q, «) = 2«p(q)/L«' —pp'{q)+id),

where h has been dropped for convenience. E{x) is the
positron dispersion relation in the noninteracting
system.

Evaluating the self-energy graph according to the
usual rules (given, for example, by Schrieffer'), we get

—iZ(s:,pp)

where m is the electron mass, e& the Fermi velocity, and
o the sound velocity. Using Eqs. (7)—(10), we find

and using the standard formula for factors appearing
inside the integral

we obtain the real and imaginary parts of g (v.,«p).

Thus,

d 9ÃaR —e

pp —pp(q) —E(x+q)

0
gR (x,«p) = P-

Sx'
(14)

may be dropped from the integrand in Eq. (13). This
approximation can be restated by saying that the self-
energy is determined almost entirely by the lowest-
order diagram in which the dressed positron propagator
is replaced by the bare positron propagator. This
procedure has been shown by Migdal' to be quite
reliable for the electron-phonon problem and we assume
it is also applicable for the present work.

The intergral over e can now be carried out by going
to the complex e plane and closing the contour in the
lower half-plane. There is no contribution from the
second part of the integrand and the result is

Z(~,M) =Zp g.g-./I:~ —~{q)—E(~+a)+i8).
Converting the summation on q to an integral according
to the relation

d6
RaC—e

— 2' X d'qg, g, &$&p «p(q) E(~+q))—, (15—'j

X
«p —« —E(x+q) —Z(x+g, M «)+i8—

j.
X — — — —— (»)

« —«p(q)+18 «+«p(q) —s8

on substituting for the propagators. Equation (13) is an
integral equation for the self-energy. To simplify the
problem we assume that the self-energy correction to
the noninteracting dispersion relation E(x+q) is small,

' A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
LEnglish transL: Soviet Phys. —JETP 7, 996 (1958)g.

where I' denotes that the principal value of the integral
is to be taken. Evaluation of ZR(L, oi) shows that it leads
to only a small correction to E{x)which can therefore
be represented in terms of an effective positron mass.
Details of this calculation are given in Appendix 8
where it is shown that the self-energy correction arising
from positron-phonon interaction produces an increase
in the positron mass of a few percent, in agreement with
the results of Mikeska. ~ Throughout the subsequent
calculations this correction will be neglected. The posi-
tron mass will be denoted by m* and any deviation of
m* from m will be due entirely to positron-electron
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"34-

= '&2 . The limits on the q integral a and b areco=K ( 5$

determined by the integration over p. Cy in rica
s mmetry about the direction of q is assumed. Sub-sym
stituting from Eq. (11), we find

pm*
I
us

I

4o q+P)
E(~) = — — q'(/tt du 6 u+

2m. h'~ 2K

-I8 -I2 -6 0
ln E (crgs secs ')

FIG. 2. Relationship between the two components off the total
energy loss rate I see Eq. (18)j and the positron energy. A iog-
arithmic plot shows both curves to be linear at high energy. At

l of E the honon component of the rate decreases
more rapidly to zero as the positron drops to an energy
sponding to a few degrees absolute. At this point the "classica
speed of the positron is equal to the speed of sound.

effects. Hence we can replace co by It /2m 'n q. ( )*i E . ~15) to
a ood approximation. Zz is directly proportional to the
damping rate of the positron by phonons and hence is
closely related to the thermalization rate of the positron.

IV. POSITRON ENERGY LOSS RATE

Assuming that the positron decays from one well-

defined momentum state into another such state, the
probability for such a transition with momentum
transfer Aq is related to the imaginary part of the self-

energy by the equation

1/r = —2Zr/A.

The same result can be obtained directly from the
Fermi Golden Rule for transition probability. The rate
at which the positron loses energy is simply the transi-
tion probability (or damping rate) times the energy
transfer associated with the momentum trans er hq.
This energy is just Pirrq, the energy of the created
phonon. It must be included inside the integrand o
Eq. (15) and hence the rate of energy loss E(x) is
given by

E(x) =
4m'A

On integrating over u, it follows that E(K) =0 except
for values of q satisfying the condition

1)—(+0)/2 ) —1,
in which case

E(~)= —(2pm*~
I
uo

I
"'/~I') (1—P/2s)' (17)

E E.,+E „[PEs+~Esi~(1 G/Etii) 4j

From the above conditions on q and the requirement
that q~~0, the values of a and b are found to be 0 and
2' —P, respectively.

Two comments, may be made on Eq. (17). First,
E(x) is proportional to E'~' at high energy (i.e., It))P).
Comparing this to the E' dependence of E due to
electron-hole pair excitation, it follows that the latter
mechanism will dominate the thermalization process in
the early stages and will become less important as the
positron energy drops. The crucial question is: At what
energy does the phonon contribution become non-
negligible? An estimate of this energy for sodium is
given in Sec. V. Second, it can be seen that E(x) ~ 0
as 2x~ P. This reflects the impossibility of conserving
momentum and energy in the phonon creation process
when the positron energy becomes very small. On a
simple classical picture, E(x) tends to zero when the
positron velocity approaches the speed of sound.

Equation (17) gives the rate of energy loss of the
positron due to phonon excitation. In order to determine
whether this rate is large enough to materially change
the accepted thermalization times in the alkali metals,
it must be combined with the energy loss rate due to
electron-hole pair excitation and new thermalization
times calculated. Thus, expressing Eq. (17) in terms of
the positron energy E, the total rate of energy loss can
be written

(/
G=-,'P(h'/2m*) "',
H = (2s'e'nm*'ass

I
ue

I
'/O'It p'cV) (2m*/h') '".

where It has been restored. Defining the constant P by

P= 2m*o./k

and letting p be the cosine of the angle between x and The first term in Eq. (18) is the Carbotte-Arora7
result for the loss rate due to electron-hole pair excitation
as given by Woll and Carbotte'

I Eq. (82) of that paper).
The constants F, 6, and H can be evaluated for each
metal in the series.

I us I
' is taken to be 0.5 (see Appen-

dix A) for sodium. Equation (18) can then be integrated
earlier that numericaBy.

v+&
t7 dt's &fu gag goI p +-

2K

m*90.
A'(s) = ——

2m b'~

using the simplification discussed

where the constants are given by
&&& a~ —a q

— —(u+q)', (16)
2'~ F= 8 105)(7rm*/2mkEp),
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FxG. 3. Positron energy as a function of
time using logarithmic scales. The curve is
linear at high energy (i.e., early times) show-
ing that the electron component dominates.
As the phonon component becomes more
important. the energy drops below that pre-
dicted by considering only the electron com-
ponent of the total rate. Since the annihila-
tion time 7-~ falls on the axis in the region
where the deviation is appreciable, a signi6-
cantly different result is obtained from that
given by earlier theories for the minimum
positron energy on annihilation.

-25 -20
ln t {secs)

V. RESULTS

A rough measure of the relative importance of the
electron and phonon components of Eq. (18) can be
obtained by plotting the logarithms of the respective
contributions to the total rate of energy loss against the
logarithm of the positron energy (Fig. 2). The electron
component and the phonon component at high energy
are linear. At lower energy the phonon component
decreases more rapidly as the (1 G/E'")' fa—ctor
becomes important. The energy E„at the crossover
point in Fig. 2 gives us some idea of the thermalizing
capabilities of the electrons and phonons. This crossover
is a characteristic of the diferent energy dependence of
each of the two components of the total rate of energy
loss. For sodium, E, is about 190kB erg, taking m~ equal
to m. It can be found from the results presented in
Fig. 3 that the positron reaches this energy after a time
of 0.23&&10 "sec. This corresponds to roughly 1/14 of
the positron lifetime against annihilation 7-~ showing
that the positron would appear to have plenty of time
to couple electively to the phonon system before
annihilating. Figure 3 shows the positron energy as a
function of time. The curve is computed by numerical
integration of Eq. (18) subject to certain initial con-
ditions. It was mentioned earlier in Sec. II that
umklapp processes could be neglected in calculations
of thermalization times. This follows from Eq. (18)
since, neglecting the phonon contribution, the equation
can be easily integrated to give

t= 1/2FE'

where it has been assumed that the positron enters the
metal with infinite energy at time t= 0. For Na,
F 4.6&&10' erg ' sec ' and therefore for the positron

to fall to an energy of the order of 1 eV takes about
4&10 "sec. Since this time is very much less than 7.&

it follows that we can safely take the initial positron
energy to be about 4EI; in calculations of thermalization
times. Thus the initial positron wave vector is taken to
be about ~~ —,'qn —~qr~z, where ~p, q~, and gBz ale
characteristic dimensions of the Fermi sphere, the
Debye sphere, and FHZ, respectively. The neglect of
umklapp processes is therefore justified and Eq. (18)
may be integrated numerically subject to the above
condition.

It can be seen from Fig. 3 that the positron energy
falls well below the value expected on the basis of zero
positron-phonon coupling (straight line). Whether this
will affect the predicted energy on annihilation E&
depends on where g~ fa,lls on the time axis. For Na we
find that E~= lS'K XAB compared to 59'K)&kB for the
Carbotte-Arora' case where there is no coupling to
the phonons.

The figures given above are for no*=vs. On using
m*=2m, we obtain more pronounced phonon effects.
For example, E, is doubled to 380'K)&kB.

EXTENSION TO FINITE TEMPERATURES

At finite temperatures the net rate of energy loss by
the positron is reduced by collisions in which phonons
are absorbed and which therefore lead to an increase in
positron energy. A similar statement can be made in
the case of the interaction with the electron gas and
this feature has been included in the calculation of Woll
and Carbotte. ' In order to include "scattering in" terms
where phonons of wave vector q are absorbed by
the positron, Eq. (16) must be modified by introduc-
ing the appropriate distribution functions for the
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phonons. Thus,

Q
k'(x) =-

4m'A
d'q g,g qkaqLn(q)+1j

&&Le(q) jh~ A&v+Aoq — (x+q)'
~l 2m*

where n(q) is the Bose-Einstein function given by

n(q) = Lexp(boq/kiiT) —1) '.

Evaluating the integrals over the angles leads to the
result

(19)Z(«) = —(2pm*a.N 0'/m-k') «'E(«, T),
where

r 2K—p

E(«,T) =
i

q'dq—
4«'k o

On comparing Eqs. (19) and (20) with Eq. (17), it
can be seen that the first integral of R(«, T) gives the
zero-temperature result while the second integral can be
regarded as a finite temperature correction. R(«, T) can
be evaluated by numerical integration. It is then found
that E(«) decreases linearly with increasing sample
temperature T for sample temperatures above about
50'K. At lower sample temperatures E(«) is a, relatively
insensitive function of T.

It is also found that E(«) ~0 as E —+2kiiT and
therefore we would have to conclude that the positron
was "thermalized" (i.e., in equilibrium with the phonon

gas) at an energy of 2k&T and not ~3k&T. This surprising
result is a consequence of using the simple "5-function"
distribution for the positron instead of the more accu-
rate Maxwell-Boltzman distribution. This result can be
obtained directly from Eq. (19) by setting R(«,T) equal
to zero and evaluating the integrals approximately
since «))P, except for extremely low positron energies of
the order of a few degrees.

The temperature-dependent rate of energy loss can be
combined with the contribution from electron-hole pair
excitation as before to obtain E-versus-t curves for
various sample temperatures. Unfortunately, for the
reason mentioned above, we cannot regard these curves
as quantitatively reliable. However, we do 6nd that our

simple model predicts that the greater the effective
positron mass m", the shorter will be the thermalization
time. -In order to give reliable numerical estimates of
these times and of minimum positron energies on
annihilation, in samples at nonzero temperatures, a full
Qnite-temperature calculation of the Moll-Carbotte'
type will have to be done including both the effects of
electrons and phonons.

7II. DISCUSSION

Slime nieut, ion has already been made of the work (~f

Woll and Carbotte' on positron thermalization in an
electron gas at hnite temperatures. Their approach
takes proper account of the statistical nature of the
energy-loss process. The simple picture used by Carbotte
and Arora7 and by the present authors in which the
positron decays successively through a series of well-
defined states is replaced by one which allows the
positron to decay into a distribution of final states with
probability given by the Fermi Golden Rule. The
results obtained by Woll and Carbotte' agree quite well
with those of Carbotte and Arora' and give qualitative
agreement with the experimental results of Kim,
Stewart, and Carbotte. ' However the theory gives a
thermalization rate greater than that which is deduced
from experiment. That is, the predicted minimum
positron energy is somewhat lower than the experi-
mental value. The results presented here give an even
lower minimum positron energy in Xa at zero sample
temperature and hence lead to an even greater dis-
agreement with experiment. However, although the
present model predicts that positrons will thermalize at
much lower temperatures than those at which Kim,
Stewart, and Carbotte' have obtained evidence of non-
thermalization, it only permits a reliable estimate of the
minimum positron energy on annihilation in a sample
at zero temperature. Any attempt to obtain by com-
putation curves similar to those of Kim, Stewart, and
Carbotte' would involve a full Woll-Carbotte-type'
calculation.

Such a calculation would require considerable eÃort
and it is unlikely that the results would lead to closer
agreement with experiment that those given here. Also,
such an effort would not be justi6ed without refining
the present model used for the positron-ion interaction
as well as our use of the unperturbed propagator in the
lowest-order graph.

However, because of the strong energy dependence
of the coupling of the positrons to the phonons, it may
be that some structure would show up in the low-
temperature region. In any case further experimental
work of greater accuracy and detail would be very
useful at this point. It could provide the necessary
stimulus to remove some of the approximations we have
made and to obtain more accurate estimates of the role
of phonons in positron thermalization.
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u, (x) =go Vgexp(iG x). (A1)

Similarly, the ionic potential V(x) can be expanded
in a Fourier series:

APPENDIX A

The evaluation of the matrix element M„+q,„giveIl by
Eq. (4) is simplified by noting that the functions

(u„+,*(x)
(

and (u„(x) (
can be replaced to a goodapproxi-

mation by (uo(x)(. Since uo(x) has the periodicity of
the lattice, it can be expanded in terms of the reciprocal-
lattice vectors G. Hence,

by a factor of 2 due to the exclusion of the positron from
the regions close to the ions.

APPENDIX B

'K)G)

0 2m*
d gfcR —e

From Eq. (14) it follows that the real part of the
positron self-energy can be written

V(x) =P, V(q') exp(iq' x).

Substituting into Eq. (4) we obtain
Substituting from Eq. (11) and approximating AM by
h'z'/2m*,

1
M„+~ „=—Qg QG QG dx VGVo V(q')

0

Pm*u04

P~ (L,~') =-
2m'A'

g dgdp,

2~u+q+P

&&exp[i(G —G'+q' —q) x]
=QG QG' VgUg V(G' —G+q) . (A2)

The Fourier coeKcients Vg appearing in Eq. (A1)
have been calculated by Carbotte. ' In order to carry
out the summations in Eq. (A2) it is convenient to
relabel the coef6cients so that they indicate the position
of each site in the reciprocal lattice with respect to the
origin. Thus the matrix element can be expressed by

N—1 N—1 N—1

where V0 is the coeKcient referring to the origin and
the remaining Ã —1 values refer to each of the other
E—1 sites in the reciprocal lattice. For the metals
under consideration here, the reciprocal lattice is fcc.
There are therefore 12 nearest neighbors and six
next nearest neighbors. Since the Fourier com-
ponents of the potential are inversely proportional to
((G;—G,+q('+X') and the coeKcients V@ get very
small after the first (Vo= 0.98620), we can hope for some
convergence in the summations. By including only
nearest neighbors, for which

V, (i = 1, . . . , 12)= —0.04394,

it turns out that the long wavelength limit of the matrix
element is 0.71 V(q), where V(q) is the plane-wave
matrix element given by (4~e'/Qq'). Including also the
next nearest neighbors, for which

V; (i = 13, . . . , 18)= —0.01463,

the result is 0.69 V(q). This reduction of the interaction
between the positron and the ion cores is due to the
reduced probability (arising from Coulomb repulsion)
of 6nding the positron close to the ions. Since the rate
of energy loss depends on the square of the matrix
element, i.e., on (uo( ', it follows that the rate is reduced

M„+,, ,= Q V V(q)+ Q Q V;V, V(G, —G~+q),
i=0 j=0, jgi,

The limits on the q integration are properly 0 and ~,
since Pz(x, cu) is determined by virtual phonon processes
which therefore include umklapp processes. Hence the
integrand should be modified at the outset to take
account of the umklapp processes. However, it turns
out that the integral is insensitive to the upper limit
and to the accuracy of the present calculation it is
sufhcient to replace the upper limit by qD. The calcula-
tion of the integrals is straightforward and Pg(x, ~') is
a smooth function of K. The effective mass of the
positron due to phonon interactions m~q* is obtained
by solving the equation

~' —~—[ZB(u,x') —E~(0,0)j= o

for ~ and setting
(u = z2/m~g".

It is found that m„~* increases as ~ decreases, reaching
a maximum of about 1.03m* in Na before decreasing as
~ tends to zero.

Two checks have been made on the reliability of the
6rst-order approximation co=~'. First, the equation

x' —a) —[Qg (x,(v) —Pg (0,0))=0
was solved numerically to compute the real dispersion
relation for the positron. The result was not signifi-
cantly diferent from the 6rst order approximation.
Second, a power-series-expansion method was used at
small energies. Again, the effective mass was small.

However, the approximation ~= ~' is bound to be bad
near the region where the phonon and free-positron
dispersion curves interact. These dif6culties are well

known; analogous situations arise in several branches of
physics. Fortunately, the crossover point in this case
lies so low in energy (only 2 or 3 deg above absolute
zero) that the strong perturbations it produces in the
dispersion curve produces a negligible effect on positron
thermalization except, possibly, in samples at extremely
low temperatures ((3'K).


