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Optical Properties of Substitutional H- and Li-Atom Impurities
in Solid Argon and Neon*
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A tight-binding formalism is presented for the calculation of the excitation energies and oscillator strengths
for low-lying excitations, and of the ground-state polarizabilities, of substitutional impurities in rare-gas
solids. The formalism is applied to hydrogen- and lithium-atom impurities in solid neon and in solid argon
at O'K, and numerical results are presented.

I. INTRODUCTIOÃ

~ ARLY theoretical studies' ' of the optical spectra of
& nonmetallic solids concerned tightly bound ex-

cited states which were approximated by the use of
zero-order atomic wave functions, assumed not to over-
lap with the surrounding electronic charge clouds of
neighbors. This picture proved to be valuable in inter-
preting qualitative features of observed absorption
spectra of pure solids. Similarly, experience with the
absorption spectra and luminescence in impure solids
indicated that many luminescent centers could be quali-
tatively understood in terms of the atomic states of the
impurity' and an attempt was made, in the spirit of the
tight-binding approximation, to include some of the
impurity-neighbor interactions for the Tl+ impurity in
KC1.4'

During this period the technique of symmetric orthog-
onalization was developed' ' in connection with the
calculation of cohesive energies of ionic crystals. This
is a technique for introducing corrections to the zero-
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order (atomic or ionic) wave functions due to nonzero
overlaps with charge clouds on neighboring atoms; it
accounts in a systematic way for the changes in normali-
zation of the pseudoatomic functions. The corrections
are expressed in terms of overlap integrals 5 g between
wave functions q, and q ~ centered on neighboring atoms
(or ions). A suKcient condition for convergence is
ps~ S,s~ &~q&1 for all a. The method uses a series ex-
pansion in powers of S, and the series is convergent only
if the overlap integrals are small. "In most applications
to crystal theory, the overlap integrals are, unfortu-
nately, not small, and one has to include higher than
first-order (in S) terms in a realistic calculation (if indeed
the series is convergent at all) of properties of condensed
systems. An S' calculation (that is, a calculation in
which terms involving overlap up to second order are
retained) is feasible, but an S4 calculation seems beyond
human capabilities, simply because of the number of
such terms which must be developed algebraically.
Early studies concerning impurity absorption and
luminescence were at best semiquantitative. The tech-
nique of symmetric orthogonalization provided a
method for including interactions between neighbors in
a computation of properties of condensed systems start-
ing from 6rst principles. Early work" " along these
lines from this laboratory extended the technique to in-
clude excited states of pure solid argon and of substitu-
tional argon impurities in solid neon in the hope that
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lished).
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the tight-binding approximation might provide a quan-
titative description of these systems in both ground and
excited states. Excited-state overlaps were large, how-

ever, and the convergence was questionable. It was sug-
gested' that Schmidt orthogonalization would solve
difficulties with convergence, and the Ne:Ar problem
was reworked by this means with a considerably differ-
ent 3P' 'S 3Ps4s-'I' excitation energy of a substitutional
argon-atom impurity in solid neon, i.e., 16.89 eV rather
than the earlier value 12.11 eV.

These methods have also been applied to the calcula-
tion of ESR properties of the Ar:H system, ""the exci-
tation energies of substitutional hydrogen impurities in
solid argon, '~" of H~+ in solid helium, "and, with the
addition of charge-transfer states, in solid neon. '0 At
the same time, both pure crystalline rare gases and
solid-rare-gas impurity systems were studied for their
optical" " and magnetic' ' properties. For a light-
impurity atom, such as hydrogen, "agreement was ex-
cellent wherever the comparison could be ma, de. In all
these theoretical studies for impurity states, all host-
host overlaps were neglected a,t the outset. As a first
approximation, in some cases, the overlap of the im-

purity atom, in its ground state, with neighbors was
also regarded as negligible.

Transition matrix elements frequently are more sen-
sitive to details of wave functions than are energies. The
present work was undertaken to provide a quantitative
calculation of the ns —+ n'p transition matrix elements,
oscillator strengths, and ground-state polarizabilities
of impurity atoms in otherwise pure solids.

In these calculations we have included the overlap of
the ground-state wave function, as well as that of the
excited state, of the impurity atom with neighbors, cor-
rect to second order in S. For the calculation of excita-
tion energies, for example, inclusion of the overlap of the
ground state of the impurity atom does not lead to
significant corrections. In contrast, in a calculation of
the optical properties, the ground-state overlaps lead
to contributions comparable to those arising from the
excited-state overlaps, and must not be neglected.

In Sec. II we discuss the model, in Sec. III the for-
malism, and in Sec. IV the results and conclusions.
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II. PHYSICAL DESCRIPTION OF SYSTEM

Argon and neon crystallize in a fcc system with one
atom per lattice point. Recent excellent x-ray measure-
ments of lattice constants give the nearest-neighbor
separations (extrapolated to O'K) for pure solid argon"
and neon" as 7.0970as and 5.9646as, respectively. (Here
its ——h'/wee' is the Bohr radius. ) Atomic hydrogen is be-
lieved to enter solid argon both substitutionally and
interstitially" ", in the case of hydrogen in neon, only
one trapping site has been reported and a substitutiona, l

site was favored"; lithium also is believed to enter solid
argon substitutionally. " We shall concern ourselves
with the substitutional form only.

For a lighter (than host atoms) impurity atom at a
substitutional site, the nearest neighbors would be ex-

pected to relax inwards, and in an earlier calculation"
on the substitutional Ar:H system the twelve nearest-
neighbor argon atoms were assumed to reside at a sepa-
ration of 7.0uo. However, the inward relaxation of
nearest neighbors around a vacancy in solid argon is
computed" to be only 0.017 A, and since an impurity
atom would resist even this small inward relaxation,
the relaxa, tion magnitudes would presumably be even
smaller. Furthermore, overlap integrals and two-center
matrix elements are not expected to vary appreciably
for such small changes in atomic separations. (See Sec.
III.) Accordingly, we have carried out our calculations
for all neighbors at their normal positions. We ignore
thermal and zero-point vibrations, and presumably
some slight error is introduced thereby. That is, the
computed oscillator strength is not constant, nor does it
vary linearly with separation; but over the range of
thermal oscillation at O'K, the variation in excitation
energy in S and in two-center matrix elements is less
than 2% in a typical case, and errors implicit in the
Condon approximation should be negligible.

In constructing the crystal wave functions, all spin
effects are ignored and no excited states of the host
atoms are admixed. Thus, possible effects of resonance
between the is —+ 2p transition of hydrogen'" at 10.6
eV and the first discrete transition of the argon host" at

12.2 eV are neglected. A gap of 1.5 eV should make
the effects of configuration interaction small in compari-
son to the errors inherent in the 5' approximation.

We are not concerned here with the relaxation occur-
ring after the absorption of a photon. We would antici-
pate some Stokes' shift" accompanying the relaxation,

'8 O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phys.
Rev. 150, 703 (1966).
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(1967)."G. F. Nardelli and A. R. Chiarotti, Nuovo Cimento 18, 1053
(1960)."C. C. Klick and J.H. Schulman, in Solid State Physics, edited
by I". Seitz and D. Turnbull (Academic Press Inc. , New York,
1957), Vol. 5.



SUSTITUTIONAL IMPURITIES IN SOLID ARGON AND NEON

as well as Jahn-Teller effects, 3~ 'i but, presumably, not
nearly as pronounced as in ionic crystals. We would also
expect deviations" from the Einstein A-8 relation to be
small.

Finally, we stipulate that the concentration of im-
purity atoms is so low that impurity-impurity interac-
tions are negligible, and for convenience we treat a large
host crystal with a single substitutional impurity.

III. FORMALISM

1. Hamiltonian

Starting with a static lattice picture, we write the
Hamiltonian for a system of an impurity atom with
atomic number Z~ and host atoms with atomic number
ZA as

II=p II,„+2p p
B fRA —RBf A fRr —R„f

g2

A a B b I'g~ —rgb & iz & rg~ —11,

uncorrected wave functions for the impurity atom as
pr; and for the host atoms as &A„often abbreviated as

f
Ii) and

f
Aa), respectively, for convenience. From these

the orthogonalized wave functions fr; and pA, will be
constructed, and often written as fIi) and fAa) for
convenience. The total crystal wave function will be
constructed from these wave functions. "

For an impurity electron in a state described by i (i
stands for a set of quantum numbers n, l, mi, o), we
write the orthogonalized wave functions Pr, as

$1'i ~ iLPri g Q +ri, AaPAa] ~

A a

Here Sl;,~, is an overlap integral which determines the
amount of mixing of pA, into pr;, and is given by

~r, A = 4r, (r)QA (r)iver ~rA~' ~

E; is a normalization constant for the corrected wave
function and is given by

(4)

—LEE (&)

A&8

We have adopted a double subscript notation. Pair Aa
always refers to an electron on a host atom and the pair
li always refers to an impurity atom electron. Lower-
case indices label the electrons and the upper-case ones
label the nuclei. Au refers to an electron with position
vector r~„ localized around the Ath nuclear site at R~.
The first term is a sum over alt atoms for their atomic
Hamiltonians P,f,. The second and third terms are the
Coulomb interaction energies between all nuclei. The
fourth and fifth terms, the Coulomb interaction energies
between all pairs of electrons localized around diferent
atoms, will lead to two-center Coulomb and exchange
terms in the expression for the total energy of the crys-
tal. The sixth and the seventh terms represent the
electron —other-nucleus Coulomb interactions and con-
tribute to the Coulomb-overlap energies.

2. Crystal Wave Function

Starting from the one-electron atomic wave functions,
we construct orthogonalized one-electron wave func-
tions using the symmetric orthogonalization technique'
for the host atomic functions and the Schmidt-orthog-
onalization technique' for the impurity atom wave
functions. Under these transformations the properties
of the basis functions are invariant. "We shall write

"H. A. Jahn and E. Teller, Proc. Roy. Soc. (T.ondon) A161, 220
(1937l."R. S. Knox and A. Gold, SymmeAy in SOHd StuIe (W. A.
Benjamin, Inc. , New York, 1964), Chap. 17.

"' EV. B.Fowler and D. I.. Dexter, Phys. Rev. 128, 2154 (1962);
J. Chem. Phys. 43, 1768 (1965)."R. K. Bhargava, thesis, University of Rochester, 1969
(unpublished).

According to the symmetric orthogonalization tech-
nique, PA, is written as

PA. =Q P L(&+&) '"jA. Bbqh~b. ,

Here 1 and S are, respectively, the unit and overlap
matrices. The elements of the overlap matrix determine
the amount of mixing of other host-atomic functions
into @A„and are given by

+A, Bb O'A (r)4Bb(r)dr ~AB~ b ~ (6)

By definition we have that SA„,&b= b, b. This simply de-
scribes the orthonormality of atomic wave functions.
The right-hand side of Eq. (5) can now be expanded
into a power series in terms of overlap integrals. Since
all host atoms are in their ground states and do not over-
lap very strongly, the convergence condition' is easily
fulfilled for both argon and neon hosts.

Carrying out the expansion we obtain

QAa O'Aa g P Q +Aa, BbPBb
B b

+ 8 Q Q Q Q +Aa, Cc~CcBb4'Bb (7),

We stop at terms in second order in overlap integrals.
This is an approximation, and will be referred to as the
S approximation. Within this approximation, all terms

'"' In the present work the wave functions may be chosen to be
real, and considerable simplification is obtained by making no
formal distinction between the matrix element of any real operator
and its complex conjugate.



R. K. BHARGAVA AND D. L. DEXTER

and

Srj,Aa 4'rj(r)QAa(r)dr 4A~ja

E,= L1—P P (S,r, ~.) '] "' (10)

We shall now brieRy comment on the convergence
questions arising out of expanding the right-hand side
of Eq. (5). As has been assumed earlier, no excited
states of host atoms are admixed; the ground-state
overlaps being small, the convergence criterion is met
and the use of Eq. (7) is valid. If the symmetric orthog-
onalization technique were to be used for excited
states, then because of the diffuse nature of the excited
states, the overlap integrals would be so large that the
convergence criterion would usually not be met. "
Gold' suggested that this difficulty can be avoided by
the use of the Schmidt procedure for writing corrected
excited-state wave functions. The convergence diKcul-
ties are modified and alleviated by this approach, but
thev are not entirely eliminated. That is, in using Eq.
(8) for constructing the excited-state wave function, we
might find that the overlaps (of the excited. -state wave
function with neighboring charge clouds) are sufficiently
large that Qg P, (Sr;,~,)' approaches or even exceeds
unity. [For ns n's overlap, if S-were equal to (0.25/3)'"
=0.289, the lattice sum for an fcc lattice would equal
unity; for np n's overlap, -S would have to be 0.5 for the
lattice sum to be equal to unity. ] If overlaps were large
enough to create this problem (that is to make the nor-
malization constant approach infinity), one would not
be justified in assuming a tight-binding picture for that
state. However, overlap of this state with second neigh-
bors may be small. In such cases, a cluster comprising
the central (impurity) atom and all nearest neighbors
should be treated exactly, as one unit. The wave func-
tion of this pseudomolecule should then be Schmidt-
orthogonalized to the rest of the atoms of the crystal,
symmetrically orthonormalized as before. We do not
encounter this difhculty with systems treated here.

Using the orthogonalized wave functions (2), (7), and
(8), we now write the crystal wave functions in the ab-
sence of all external fields as

+= Bier;(rr;, r,)Q Q Pg„(rg„og ), Aa&Ii (11)
A a

involving overlap quantities of higher than second order
will be neglected. A two-center matrix element will be
treated as a quantity of order S and a two-center ex-
change integral will be treated as a term of order S'.

For an excited state of the impurity atom, we have
an expression similar to Eq. (2). An excited-state wave
function will be denoted by a bar; hence for an excited
state of the impurity atom denoted by a set of quantum
numbers j, we write

4'rj =+j/4ij P P SIj,AaPAa] ~

A a

with

and
0= Spr;(«;, er;)Q g p&.(u., ir&.), Aa/Ij (12)

A a

for the ground and excited states, respectively. Au/Ii
excludes the function for which A =I and @=i.Thus, in
Eqs. (11) and (12), Aa runs over all occupied host elec-
tronic states and over all impurity electronic states ex-
cept the one which is involved in the transition. Ol is
the usual antisymmetrization operator and r and e are
the usual space and spin coordinates.

In writing Eqs. (11) and (12) it has been implicitly
assumed that the "core" electronic wave functions for
the impurity atom are the same for both ground and
excited states. For the hydrogen atom, of course, there
are no core electrons; but for lithium there are two 1s
electrons. Core electrons are usually very tightly bound
and their wave functions are almost parallel (in func-
tion space) in the ground and excited states.

From Eqs. (6) and (7) we can immediately see that
all Pz, form an orthonormal set, to order S'. Similarly,
the impurity wave functions Pr; and Pr; are orthogonal
to each other and to the core electronic wave functions
to a certain approximation. That is, Pr; and iver; would be
exactly orthogonal to each other if the lattice sum

Sr;saSr;x,, wer, e to vanish. This sum does
vanish for a cubic lattice if the ground state is an S state
and the excited state is a I' state. This being the case in
this work, the ground- and excited-state wave functions
iver; and Pr; are exactly orthogonal; similar comments
apply to orthogonality of the core electronic states to
the excited states (and also to the ground state). Core
electrons are, however, quite tightly bound and do not
overlap with neighbors appreciably. The overlap inte-
grals are very small, leading to a negligibly small non-
orthogonality of the core electronic states to the valence
electronic states. We shall regard these states as exactly
orthogonal to each other.

3. Energy Parameters

The total energy of the crystal is given by the expec-
tation value of the Hamiltonian. For the ground state,
the crystal energy is given by

E= +*Ho+d7 . (13)

Here d~ denotes integration over all space and summa-
tion over all spin variables. The asterisk denotes com-
plex conjugation. Substituting from Eqs. (1) and (11),
we obtain

Z =Z~+P P (A. I III A.)+P (Ii [IIII')
A a 'b

+-: 2 Q Q Q P(A~»[g I
A~&&) (A ~»[g[»A—~)]

A u B b
Aa &Bb

+—,P Q P(IiIj[g[IiIj.) (IiIj [g[IjIi)]-
iwj

+P P P L(AaIi[ g[AaIi) (AaIi[ g[IiAa)]. —(14)
a i
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Here E& is the total nuclear repulsion energy, that is, terms of atomic wave functions. Using atomic Hartree-
the sum of the expectation values of the second and Fock equations, the ground-state crystal energy can be
third term in Eq. (1).II is deined to be written as

SACh' Zie2
II= — V' —Q

2m & fr —R~f fr —Rzf
15)

with

&=&o+&.o+&a+&,+&r+&s, (20)

and g is the operator e'/I rz —ro f. Here the matrix ele-
ments in parentheses are to be evaluated using the
orthogonalized wave functions f, that is,

&.b=&' [~z, PP—(Sz;,~.)'E~.j,
A a

Ec=Ã;oL(Ii
I

Cz
I
Ii)

(21a)

and

(A a
I
II

I
A a) = P~,*(r)II&~a(r) dr A

E, = —1V;og (IiAalglAaIi), (21c)

+r. r. (S'. ) (Aal C' "+C"IA )j, (2»)

(AaBbl gl AaBb) = Pg, *(rz)feb*(ro) Er = 2', "Q—P Sz;,~a(Ii I

C' "+Cz'I A a)

g2 1& p p g (Szb, g ) t'(IiIk
I glIiIk)

X fg.(rl)QBb(r2)dr&dr2 (16.)
1y

—I'2
k&i A a

A

A a B b

—x,'Q Q Q Q sgazzb(IiAaf glIiBb). (21e)

&o=&z+2 & (AaIIIIAa)+2 (IklIIIIk)
Here we have used the notation

—(IiIk fg IIkI')$, (21d)

We now wish to express the elements in Eq. (14) in terms ge —$7,2 Q p'b& Q Q (Szb „)o(IiA a
I g I

IiA a)
of the atomic wave functions. The details are presented
elsewhere. "Since no host excited states are allowed and
since core electronic states are the same for both ground

—2Ã;o iVb' Szb, g. I~Ik g IzAa

and excited states, some labor can be saved by writing
all such elements, which cancel out when a difference is +(V;o P P g g (Spa, eb)'(IiAa

I gl IiAa)
taken of the ground- and excited-state crystal energies,
collectively as Eo, that is,

+2 P g g g [(AQBb I g I
A aBb) (AaBb

I g I

—BbA a)g
A a B b

Aa &Bb

+-,' P g P(IkItl g I
IkIt) (IkIt

I g I ItIk)—g
k l

k, i&i

+g P P ((IkAafglIkAa) (IkAafglAaIk) j.—(17)
kgi A a

Hence the ground-state crystal energy can be written as

O'A8

c,=Z (AalglAa)—

Cz, z, ~ ~ ~

M+I, J ~ ~ ~

c,'=g (Ikf gfIk)
k4i fr —Rzl

(22a)

(22b)

(22c)

z =a,y(Ii
I
III Ii)

+Q L(Ii» fg IIi») —(IiIk fg IIkIi)g

+P Q I
(IiAa

I gfIiAa) —(IiAaf g IAaIi)g. (18)
A a

Similarly, for the excited state the crystal energy is

I=&o+(Ii
I
III Ij)

+g I (IjIkl gIIjIk) (IjIklgIIkIj )j—
+2 2 CPjAal glIj Aa) —(Ij AalglAaIj)j (19)

In Eqs. (21) and (22) the matrix elements are evaluated
using atomic wave functions p, that is,

(AafglAa)

ZAe
Pga*(r') — yg. (r')d—r' —, (23a)

Ir —R

(AaBb
I gl AaBb)

g2

QA a (rl)@zz b (r2)
1'y —12

X toga(rz)lfljjb(lo)drgdro . (23b)
A a

In Eq. (21a) Ez; and E~, are the atomic Hartree-Fock
The elements in Eqs. (18) and (19) can be expressed in energies for the respective electronic states. Cz is simply
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The excitation energy for the ground —+ excited-state
transition of the impurity atom is given by E—E plus
corrections arising out of the van der Waals energy
differences for the ground and excited states and other
higher-order corrections, and can be written as

hE= AE,b+ AEc+ AE,„+AEr+ AEs+ AEg g. (26)
I

The contributions to AE are seen to have simple physical
meaning. AE,t is the atomic excitation energy plus cor-
rections (due to overlap) involving the atomic Hartree-
Fock energies for the host atoms. AEq is the change in
Coulomb-overlap energy. AE,„is the contribution from
the exchange energy terms. AE& and AEz are correction
terms due to nonzero overlaps. ~E~ ~ is the contribu-
tion due to van der Waals energy differences between
the groun. d and excited states.

For the computation of AEq q we follow the approach
due to Buckingham, "where the small eBects of non-
zero overlaps are neglected. This contribution AEd ~ to
the total excitation energy AE is small, and hence the
over-all error in AE from neglect of overlap in AEd ~ is
insignificant. We use the formula

with

4 L(R~)g ] L(R )rr;]2@+E~«-=-E 2
9 aa ag (R2)~+(R~)~

(27)

(R')g;=(Ail r'I Ai& —g Q (Ail x„l A j)'. (28)
jQi p,=x,y, z

Here the summation over p, runs over the Cartesian
coordinates x, y, and s measured from the nucleus of
atom A. The sum over i and j run over all occupied
electronic states. The l and m refer to the "configura-
tion" of the atoms A and 8, respectively. The van der
Waals energy between the atoms A and 8 is given by
—Cb /R~ri'. This is summed over all neighbors in the
crystal. (L'i+Z' )/2 is a mean. excitation energy.

4. Oscillator Strength

The oscillator stren. gth tensor f; ™is defined as

2fPSOEij
(il pil j&(jlp-li&.

h'
(29)

38 R. A. Buckingham, Proc. Roy. Soc. {London) 4160, 94
{1937);A160, 113 {1937).

the classical Coulomb potential at the Ith atom due to
all other atoms in the solid.

The excited-state crystal energy can be similarly cal-
culated, The total energy is given by

E0+E t+@ +EC++T+ES (24)

All quantities in Eq. (24) are defined by equations simi-
lar to those for corresponding ground-state quantities
and can be obtained from Eqs. (21) and (22) by the
transcription

Ii —+I;
(25)

Here Ej is the excitation energy between states char-
acterized by quantum numbers i and j; (i

I pi I j) is the
transition matrix element of the l component of operator

p between the initial and final states; l, r&, and n are
unit vectors along the Cartesian axes; the vector opera-
tor lo is defined to be the sum of all electronic coordi-
nates. For an s ~ P transition in a, cubic lattice (or for
a, free atom), the tensor reduces to a scalar and we have

(30)

Overlap effects change the value of the oscillator
strength from the free-atom value, both in the excita-
tion energy E;, (treated above) and in the transition
matrix element:

kI = 0'p, % d~. (31)

+P P P &r, ,~ &rr, ~b(-4rblsl-4'&
A a b/a

+P g Sr~ga&r& gaR, rx co's, O~rg]. (32)

Here A~A is the distance of the Ath host atom from the
impurity atom, which will be taken as the origin of the
coordinate system. Or& is the angle between the Z axis

and the vector pointing toward the site of the Ath atom
from the origin, and

(33)

The first term within the square bracket in Eq. (32) is

the free-atom dipole matrix element between the initial
and final states. The second term involves the overlap
of the excited state of the impurity atom with the host
neighbors and the two-center dipole matrix element
connecting the ground state of the impurity atom with
the host neighbors. The third term describes the contri-
bution from the overlap of the ground state of the im-

purity atom with the medium and the two-center matrix
element connecting the excited state of the impurity
atom with the host neighbors. The fourth and fifth
terms describe the contributions from the dipole matrix
elements (and orthonormality) on the host neighbors,
coupled by an impurity atom ground-state and an
excited-state overlap. Contributions involving host-
host overlaps arise only in. third order (in S). Since we

Rewriting the crystal wave functions 4 and 0' in terms
of the atomic Hartree-Fock functions @ and simplifying
within the S' approximation, we obtain

,v;., =.v,x,L&IjlzIIi) —p p 8„,„,& &~I~IIi&.
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retain terms up to second order only, these do not ap-
pear in the expression for the transition matrix element.

Corrections to the dipole matrix element [second to
fifth terms in square bracket in Eq. (32)) tend to de-
crease their values. The normahzation factors X, and 5,
are always greater than unity and act to increase the
values of the dipole matrix elements.

It should be emphasized here that the third, fourth,
and fifth terms involve overlap of the ground state of
the impurity atom with the host atoms. These overlaps
may be small (so that the ground-state normalization
factor E; does not differ from unity appreciably), but
they lead to contributions which are comparable to or
larger (see below) than those coming from the second
term, which would be the only correction term if the
excited-state impurity atom function were orthogonal-
ized to the host atoms. Since both ground- and excited-
state wave functions of the impurity atom appear im-

plicitly in each term, it is essential to orthogonalize the
ground-state wave function of the impurity atom, as
well as that of the excited state, to the neighbors. In
contrast, note that for calculations of energy differences,
the ground-state overlaps might well be neglected with
no appreciable error. This is an important difterence,
and serves to emphasize the assertion that oscillator
strength calculations are more sensitive to wave func-
tions than are energies.

5. Polarizability

For convenience in this section, a host crystal of E—1.

host atoms at their normal sites and a single vacancy
will be called a vacancy crystal; one containing iV —1

host atoms and an impurity atom will be called an im-

purity crystal. We shall adopt a variational approach.
Crystal wave functions for the vacancy and the impur-

ity crystals in the presence of an external electric field
8 are constructed from the orthogonalized one-electron
wave functions. We shall use two variational param-
eters. One parameter describes the effect of the medium
and the other describes effects due to interactions be-
tween the impurity atom and the host solid. Ideally,
one should like to include as many variational param-
eters for the impurity atoms as the number of occupied
shells of the impurity atom, because all electronic states
of the impurity atom have different interactions (for
example, overlap) with the host atoms. However, such
an approach does not seem computationally feasible
when overlap effects are taken into account, and we use
only one parameter to describe the impurity-host inter-
actions. We should not expect the one-parameter for-
malism to yield an accurate value even for the polari-
zability of a free atom. However, the charge in the
value of polarizability of the impurity atom, from the
free-atom value, due to the host-impurity interactions
would be an important quantity. The formalism would
also give the polarizability of a host atom in the pure-
host solid and also that of a free-host atom. Again

these quantities are not expected to be accurate, and
only the change in the value of polarizability is expected
to be significant.

We dehne the crystal wave functions for the vacancy
and impurity crystals, respectively, as

(34)

A&I a

in the absence of an externally applied electric field
(indicated by the superscript 0). Here 0',„and Or are
the proper antisymmetrization operators. A&I dis-
allows the occupation of the vacant site at the origin by
a host atom; the impurity atom goes in substitutionally
at this site in the impurity crystal. We denote the
crystal Hamiltonians for the vacancy and the impurity
crystals by H, and B&, respectively, in the absence of
an external field. When an external electric field 8 is
applied along the Z direction of the crystal frame of
reference, there is an accompanying change in the
potential energy. The perturbation Hamiltonian for
the vacancy crystal is

(36)
AAI a

and that for the impurity crystal is

&1+&2 e@[Q (sr —Zr)+ P g (.a, —Zz)]. (37)
A&I a

v2 is the perturbation Hamiltonian for the impurity
atom only. Due to these perturbations, the crystal wave
functions are expected to change from their unper-
turbed (zero field) values. Following the variational
approach, we write the crystal wave functions as

(38)
and

(39)

for the vacancy and impurity crystals, respectively. X&

and ) 2 are the two variational parameters and must be
determined in a consistent manner. X~ describes the
changes in the vacancy crystal wave function due to the
external field (assumed uniform over the extent of the
crystal), and X& describes the changes in the impurity
crystal wave function due to changes at the impurity
site when the electric Geld is turned on. A. ~ and X2 are
determined by minimizing the expectation values of
H„+i' in state +„and of IJr+iii+ii, in state 4'r, re-
spectively. I et E, denote the energy of the vacancy
crystal

(40)

Here, we use the notation

(%„IH.+vi
I
4,&

= 4'„*(H.+vi)%'„dr. (41)
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Substituting for %„we obtain

(+y'I (1+Xivi)(H, +vi)(1+Xi») I +.'&
E.= (42)

&e„o
I (1+~.v.) (1P~,v,) I

~.')

Using the fact that v~ is an odd operator and H is an
even operator, some terms in Eq. (42) are seen to vanish,
and we obtain

the form

X2 I 2&+z I v2(vi+v2) I
+z')

+4(&+z I vzHzv~+v2Hzvi I
+z')

—2(% 'IH Ie '&&+ 'jv v, je '))j
X (2(ez'I v2Hzv2

I
+z'&

—2(ez IHzj ez )&ez jv2 I ez )) . (48)

(O', 'I H, +24vi2+Xi2viH„vi
I 4,'&

(e.'l1+X, v, je.o&

(43)

Again, the numerator and the denominator can be
simplified by using the fact that e& and v2 commute with
everything in HI except the kinetic energy operators,
and A, 2 can be written as

The parameter ) & is now determined by minimizing E„
with respect to X~. After dropping terms proportional to
h' (which lead to nonlinear polarizability), we obtain

2(+zoj v~(»+v2) I +zo&+&ia

(a/~)&e, olg (v„v,) le,o&yz,

(+ 'I »H.»
I
+ ') —(+ 'IH

I
+ ')(+ 'I »'I +.'&

(44)

with

d, i= (%z'
I viv2Hz

I
4z')
—(+"I" I+"&(+"IH I+") (»)

and
The denominator can be simpliGed by using the fact
that vi commutes with everything in H, except the ki- &~=&+zojHzv2'I@z )
netic energy terms, and we obtain

with

(45)
(6'/2m)&+ 'I Q g (V~.vi)'I%'„')+6

A&I a

As in the case of 6 above, h~ and A2 do not vanish, and
contribute to P2 formally. However, both A~ and 62
depend on four-electron operators, and we neglect them
as in the case of 6 above. The expression for A.2 can be
simplified by using Eq. (37), and X2 is found to be

2m(e. ojv,
I
e.'&

Iz'(!V—1)Zg e'P
(47)

The parameter X2 is determined in a similar manner.
%hen an impurity atom is introduced at the vacant site,
the crystal energy is changed. Since X2 describes the
effect of such changes, we determine P2 by requiring
that the total energy of the impurity crystal be a mini-
mum with respect to X2 (with 4 as determined earlier).
Hence, we set equal to zero the partial derivative with
respect to 4 of the expectation value of Hz+vi+v2 in
state +I. Again we neglect terms proportional to h4

since we are interested in the linear polarizability only.
After considerable simpliGcations we may write 02 in

-&~.'I 'l~. ')&~.'IH. I~.') (46)

The quantity 6 as defined by Eq. (46) would vanish if
+, were an exact eigenfunction of the Hamiltonian B,.
Since 0', is only an approximate eigenfunction of H„
because of electron-electron correlations, 6 is not iden-
tically zero, but is expected to be very small. In our cal-
culations we shall set 0 =0. More will be said about this
approximation in Sec. IV. The denominator of Eq. (45)
can be simplified by the use of Eq. (36), and Xz is found
to be

2m(ez'I v2(vi+vg)
I
ez'&

'Ag =—
O'ZIe'8'

We now calculate the crystal dipole moments for the
vacancy and impurity crystals. The total dipole moment
of the vacancy crystal is given by

P„=e&%„IP g (rg. —Rg)j+,&.
A&I a

(53)

z--(IPi —P I)/I &I (55)

From Eqs. (53) and (54) and the definitions of the
crystal wave functions in terms of the atomic functions.

When an impurity atom is residing at the previously
vacant site, its charges are displaced by the applied
electric Geld. The total dipole moment of the impurity
crystal is

Pz=e&+zj P (rz; Rz)+ P P (r~.—R~)
I

+—z). (54)
A&I a

The change in the total dipole moment of the crystal
due to introduction of the impurity atom is PI—P, and
points in the direction of 8, the applied electric Geld.
The ratio of P~—P, and 8, a scalar in this case, is the
polarizability of the impurity atom in the crystal,
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I'I and I', can be expressed in terms of simple one-
electron quantities and correction terms involving over-
lap integrals and multicenter matrix elements. After
considerable simplification, o.z is obtained in terms of
dimensionless quantities», zzz, and P:

zz2 —(+r'
l p (zr; z—r) $(&r z—r)

+2 2 (z~.—Z~)7I ~'r") (5»)
A&I e

P =(e,
I LF (.„—z,)+ 2 2 ( ..—z.)7 I

e, &

A&I a

with

4Luz /Zr (P'zI/Z&) (Itzz P)7ao (56) —&+,'l L 2 2 (z~.—Z~)7'l +.') (57c)
A&I a

(57a) Detailed expressions for», p2, and pz —P in terms of the
atomic functions p are presented below:

»=2 «alz'IAa& —2 2 (AaIZI»&' —2 2 2 S~.,»&»IZ'IAa& —2 2 2 (Aalzl»&'
a b a e B b a B b

beau

BgA.

yZ 2 2 P S,.»S»,„(A~
I

z
I
Aa)+4 g P g P S„,»(Aa

I
z

I A~&(A a
I
z

I aS)
a B b c a B b c

+Q Q Q S~, rrb(A, a
l
z

l
Bb&Rgrr cosOAg —2 Q Q Q Q Q Sg„sbssb, gg(A al z

l
Ad)(Aal z

l
Ac&

e B b c d

—g p p p p S~,,rr,s~b, &&&AalzlAd&(Ii~1 zl»&
e B b c d

2 2 2 2 S&arrbsrrb&, c(A& I,z I Aa&RAB cosHAB

zzz
——P Nfl (Iilz'l Ii) —P (Iil zlI j&'—2 P g Sr;,&.(Aalz'lIi&

—2 2 &IzlzlAa)'+2 2 2 S~.,r'S»r'&Aalz'IAf» —2 2 2 2 Sr' ~bSr' ~.(Aal zI Af»(Aal zl A~&
A a b A a b c

+2 P P Q Sr;,~b(Abl zlAa)(AalzlIz)+2 P P Sr;,~,(IzlzlAa&Rr~ cosOr~7, (58b)

and

I z P=Z N—"LZ 2 &IzlzlAa&'+2 2 2 & Sr', »Sr', ~ (AalzlAt»&AalzlA~&
A a A a b c

+P P (Sr;,~,)'Rr~z cos'Or~ —2 2 P P Sr;,~b(Abl zlAa)(IilzlAa)

—2 Q Q Sr,~,(Ii l zl Aa&Ru cosOu+2 p g p Sr; ~Sr;~b(Aal z[A, a)Rr~ cosOr~7. (58c)
A a b

The sums over i and j run over all occupied electronic
states of the impurity atom, E; is the normalization
constant Las defined by Eq. (4)7 for the state i; sums
over A and 8 run over all host atoms in the crystal, and
sums over a, b, c, and d run over all occupied electronic
states of the host atoms. RAB is the distance between two
host atoms A and 8; and O~~ is the angle between vec-
tors EA and RB.

The 6rst two terms in the expression for p~ are single-
center (atomic) terms and will be deined as»0, that is,

pure solid by

~~ = (4/Z~) (»)'ao'. (61)

Similarly, the first two terms in (58b) are atomic terms.
We define

~z'=Z L(Izlz'I»& —Z (IzlzlIj&'7. (62)

p20 can be used. to evaluate the polarizability of a free
impurity atom by using

»'=P [(Aalz'IAa) & (AalzlAf'&'7 (59) ~r'= (4/Zr) (z z')'ao' (63)

p, & is related to the polarizability of a free-host atom by
the relation

~~'= (4/Z~) (uz')'ao' ~ (60)

p, & is related to the polarizability of a host atom in the

Eqs. (60) and (62) can be easily derived for a free atom
by the use of the variational technique using only one
parameter. Similarly, Eq. (61) can be derived for the
polarizability of an atom in the pure solid. In our case,
they are obtained simply as limiting cases.
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I.O =

IO- I

IO-

TABx,z II. Contributions from successive terms in the infinite
series for two argon-hydrogen exchange integrals. All numbers are
given in units of 27.21 eV. Argon functions are at the origin and
the hydrogen 2p, function is centered at R=7,10@0 along the Z
axis.

0 1 2 3

(Ar3s H2Pg ( g t H2P& Ar3s) 0.014574 0.000490 0.000018 0.000001

(Ar3P& H2Pz t g t H2Pz Ar3Pz) 0.008966 0.001580 0.000098 0.000002

obtained by using (59) and (60), leading to better
agreement. However, such a calculation does not seem
computationally feasible for an atom in a solid.

IO-4

IO-5 I l l l I l

7.0 8.0 9.0 IO.O II.O I2 0"( o)

FIG. i. Variation of some Ar-H overlap integrals
with interatomic separation.

We shall now say a few words about the calculation
of the polarizability of a free atom. Above we have
presented a one-parameter formalism. This procedure
is not expected to give good results, because the inner-
shell electrons are not influenced by the external field
as much as the outer-shell electrons, as a result of the
eRective shielding. If one uses a different variational
parameter for each shell, one 6nds the polarizability of
the free atom to be given by"

TABLE I. Variation of hydrogen-argon overlap integrals with
the interatomic separation R. The interatomic axis is taken as the
Z axis. R is measured in units of ao. In (pq~qbs) for two-center
integrals the function p~ is at the origin and the function p2 is
centered at R.

(H1s
~
Ar3s)

(H1s
~
Ar3P, .)

(H2 p, ~
Ar3s)

«2f*l A 3P*)

7.05

0.0093
0.0233
0.1882
0.1202

7.07

0.0091
0.0230
0.1871
0.1198

7.10

0.0089
0.0224
0.1851
0.1192

7.15

0.0085
0.0216
0.1824
0.1181

It is generally true in applications of the variational
method with a given form for the perturbed wave func-
tion that, as more parameters are introduced, the cal-
culated energy approaches the exact value as a lower
limit. The energy of polarization being negative, we

should expect the magnitude of the calculated polariza-
bility to increase as the number of variational param-
eters is increased. Thus Eq. (64) is expected to give a
higher value for the free-atom polarizability than that

IV. NUMERICAL RESULTS AND DISCUSSION

I. General Remarks on Computations

Nearest-neighbor separations for solid argon and
neon were taken to be 7.10ao and 5.9680, respec-
tively. Accurate self-consistent Hartree-Fock wave
functions" " for argon, neon, and lithium were avail-
able in analytic form. All overlap integrals, two-center
matrix elements, and atomic matrix elements were
evaluated using a program written for the University
of Rochester Computing Center IBM 360-50 computer.
All Coulomb and exchange integrals were evaluated
numerically using two programs ALPHA and DrcE (double
integra, l Coulomb and exchange). All input functions
were in an analytical form. For numerical evaluation,
a uniform interval of 0.01ap was chosen and all integrals
were evaluated between r=0.0 and 20.080. This range
was large enough to include all nonzero contributions,
and the interval (0.01as) was small enough to keep all
errors arising from approximations inherent in the use
of Simpson's rule to a minimum. As a check. on accuracy,
we computed several integrals erst with one center at
the origin and the other at a distance E, and then by
exchanging the positions. For all overlap -integrals and

1st
nbrs

2nd
nbrs

3rd Distant
nbrs nbrs Total

Cumula-
tive
total

~Eat
QE~
~Eex

~E~-d
~Es
gp/

20.533—4.706—7.775
2.954—0,386
0.030—8.585 —0.554 —0.388 —0.048 9.575

—4.314 —0.237 —0.155—7.001 —0.458 —0.316
2.730 0.14i 0.083

15.827
8.052

11.006
10.620
10.650
10.602

"P. S. Bagus, Argonne National Laboratory Report No. ANL-
6959, 1964 (unpublished).

«P. S. Sagus, Phys. Rev. U9, A619 (1965)."A. W. Weiss, Astrophys. J. 138, 1262 (1963).

TABLE III. Contributions from various shells of neighbors to
the excitation energy in eV for the is —+ 2p transition of a substitu-
tional hydrogen-atom impurity in solid argon. The last column
shows the variation of the excitation energy as successive terms
are added. The last row shows contributions to AE'=AEg+AE,
+BET from successive shells. Free-atom excitation energy is
10.204 eV.
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1st
nbrs

2nd
nbrs

3rd Distant
nbrs nbrs

Cumula-
tive

Total total

h, l,t,

AL&'c

h, E~,„
AEz

~Es
dE'

—2.878 —0.247 —0.220—5.121 —0.496 —0.470
1.500 0.112 0.088

—6.499 —0.631 —0.602

18.862—3.345—6.087
1.700—0.150
0.020—0.112 —7.844

15.517
9.430

11.130
10.980
11.000
10.888

TABLE IV. Contributions from various shells of neighbors to
the excitation energy in eV for the is ~ 2P transition of a substitu-
tional hydrogen impurity in solid neon. The last column shows
the variation of the excitation energy as successive terms are
added. The last row shows contributions to AE'=AEc+AL&',
+ATE+ from successive shells. Free-atom excitation energy is
10.204 eV.

10 =

I I

I

I iAr H
I

Ar:L I

I

Ne:Li

QIO
I

two-center matrix elements, agreement was obtained to
at least the seventh significant figure. Thus no meaning-
ful errors were introduced in these computations. For
the Coulomb and exchange integrals, the agreement was
to the fourth significant figure for the larger (and domi-
nant) integrals and to the third place for the smaller
integrals.

As stated earlier, the atomic positions chosen here
are those of the pure host crystals. This is not expected
to lead to significant error, since the relaxation magni-
tudes for nearest-neighbor host atoms around vacancies
in solid argon were computed to be quite small, " and
further since overlap integrals do not vary appreciably
for such small changes in the interatomic separations.
This is shown in Table I and Fig. 1.

All two-center exchange integrals are given by infinite
series. Each term involves a given n function (n functions
are coeScients in the expansion of an atomic orbital,
localized at R, around the origin in terms of spherical
harmonics Fi ) for certain l and contributes to the ex-
change integral, at least formally. In actual practice it
was found that the first few terms (three or four begin-
ning with 3= 0) give all of the significant contributions.
For these computations the impurity functions were
localized at a distance E. from the origin and their e

1.0
1

l.5

I

I

I

R/a 2.5

functions computed using the program ALpHA. The host-
atomic functions were l~ept at the origin and the ex-
change integrals were evaluated using DlcE. This was
done because for this choice the convergence of the in-
6nite series was very good and the 6rst three or four
terms gave all the significant contributions. This is
shown in Table II for two typical exchange integrals.
When the centers were interchanged (that is, n functions
of the host-atomic function calculated and the exchange
integral evaluated with the impurity function localized
at the origin) the convergence was poor. This was to be
expected since the hydrogen (and lithium) 2p function
has a long tail.

FIG. 2. The contributions, per atom, to AE'= hE~, +AEz+AL~'c
from successive shells of neighbors. The ordinate shows AB' in eV.
Values of neon host have been multiplied by 0.10 before plotting.
The abscissa shows the radii of successive shells R in units of the
nearest-neighbor separation a. The successive radii in units of a,
are j.0, v2, v3, 2, and +5.

TABLE V. Contributions from various shells of neighbors to the
excitation energy for the 2s —+ 2P transition of a substitutional
lithium impurity in solid argon. The last column shows the varia-
tion of the excitation energy as successive terms are added. The
last row shows contributions to AE'= AEc+AE, +~Ez from suc-
cessive shells. Free-atom excitation energy is 1.848 eV.

TABI,E VI. Contributions from various shells of neighbors to the
excitation energy in eV for the 2s ~ 2P transition of a substitu-
tional lithium-atom impurity in solid neon. The last column shows
the variation of the excitation energy as successive terms are
added. The last row shows contributions to ~E'=~EQ++Eex
+bEz from successive shells. Free-atom excitation energy is
1.848 eV.

1st
nbrs

2nd
nbrs

3rd Distant
nbrs nbrs

Cumula-
tive

Total total
1st

nbrs
2nd
nbrs

3rd Distant
nbrs nbrs

Cumula-
tive

Total total

~En~
~Ec
~Ee~

~E~-a
~Es
aE'

—1.699 —0.150 —0.105—3.317 —0.306 —0.227
0.679 0.080 0.056

6.478—1.954—3.850
0.815
0.361
0.050—4.337 —0.376 —0.276 —0.037 —5.026

4.524
0.674
1.489
1.850
1.900
1.863

AEc
~Eex
AEz

2E8
HEI

—0.769 —0.141 —0.149—2.019 —0.310 —0.332
0.224 0.052 0.055

4 774—1.059 3.715—2.661 1.054
0.331 1.385
0.159 1.544
0.040 1.584—2.564 —0.399 —0.426 —0.074 —3.463 1.510
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TA:BI.E VII, Some typical Ar:H overlap integrals and two-
center matrix elements. The a is taken to be 7.10a0. The inter-
atomic axis is taken as the s axis.

the predicted excitation energy are estimated to be
within about 2%.

(Hls ( Ar3s)
(Hls ( Ar2p, )
(H ls

~
Ar3p. )

(H2p,
~
Ar3s)

(H2p,
~
Ar2p, )

(H2p, i Ar3p, )
&H2p. (A 2P.)
&H2p. ~A 3P.)
(HlstZ

~
Ar3s)

(Hls[Z(Ar2p, )
(Hls i Z i Ar3p, )
(Hls[x(Ar3p )
(H2P, i

Z ) Ar3s)
(H2p, ]ZIA 2p, )
&H2P*I Z

I Ar3P*&

(H2p, fZiAr3s)
&H2p, [~[Ar3p, &

0.0089
—0.0003

0.0224
0.1853

—0.0043
0.1192
0.0017

—0.0569
0.0447

—0.0018
0.0736

—0.0154
1.2032

—0.0183
0.4031
0.0516
0.0686

0.0005
—0.0000

0.0019
0.0659

—0.0016
0.0551
0.0004

—0.0151
0.0042

—0.0002
0.0099

—0.0013
0.6119

—0.0119
0.3537
0.0132
0.0213

0.0001
—0.0000

0.0002
0.0271

—0.0007
0.0252
0.0001

—0.0052
0.0006

—0.0000
0.0017

—0.0002
0.3117

—0.0065
0.2183
0.0045
0.0079

2. Energy Par&meters

All energy parameters E,t,, Eg, E, , Ez, E~, and E~ d

for both the ground and excited states were evaluated
following standard techniques for performing lattice
sums. All lattice sums were generally carried through to
third neighbors and through all occupied states on each
atom. This is necessary since contributions from the
second and third shells of neighbors are not negligible,
and separately they are comparable because there are
four times as many (24) third neighbors as second neigh-
bors. The fourth and the 6fth shells have 12 atoms each
and, since the contribution per atom (obtained by di-

viding the total contribution from a shell by the number
of atoms in the shell) falls off nearly exponentially, these
contributions are expected to be small. The per-atom
contributions to AE'(=AEo+hE +BEr) from the
first three shells of neighbors were plotted against the
radius of the shell. The variation is almost exponential
as shown in Fig. 2. (The numbers for Ne: impurity sys-
tems have been multiplied by 0.1 before plotting. ) This
variation is used to estimate the contributions from the
fourth and the fifth shells of neighbors.

Tables III—VI summarize the results of computations
for the excitation energies. The columns labeled nth
nbrs show contributions from entire shells of nth neigh-
bors. The columns labeled distant nbrs show the esti-
mated contribution from the fourth and fifth neighbors.
It is seen that these contributions are small. The fact
that the contributions fall off in an almost exponential
manner may be an indication of the validity of the tight-
binding model for the systems treated here. The column
labeled total shows total contribution to each term. The
last column shows the variation of excitation energy as
the successive terms are added. The last entry in this
column gives the computed excitation energy. Errors in

3. Oscillator Strength

The transition matrix element for an i —+ j transition
is given by Eq. (32). All lattice sums were evaluated
using standard methods. The results con6rmed the ex-
pectation that the ground state of the impurity atom
must be orthogonalized to the host-atomic functions.
The contributions involving overlap of the ground state
of the impurity atom are comparable to those involving
overlap of the excited state. We list some typical over-
lap integrals and two-center matrix elements for Ar:H
in Table VII.4' In Table VIII we list the contributions
from the individual terms in Eq. (32); they are labeled
the 1st, 2nd, 3rd, 4th, and 5th terms as they appear in
Eq. (32). We also list the respective normalization con-
stants. In Table IX we list the excitation energies and
oscillator strengths for free atoms and for impurity
absorption in solids.

The effect of the medium on the hydrogen impurity
is to increase the oscillator strength for the 1s —+2p
transition by about 17%for the argon host solid and by
11%for neon as host solid. On the other hand, the oscil-
lator strengths for the 2s~2p transition of lithium
atom impurity are lowered by about 10% in argon and
by about 23%%uo in neon. The increase in oscillator
strength of the 1s-+2p transition of the hydrogen
impurity is caused by a blue-shifted excitation energy
and an increased matrix element. The Ar:Li system
shows a very small ( 0.02 eV) blue-shift for the excita-
tion energy, and the decrease in oscillator strength
arises from a decreased transition matrix element. For
the Ne:Li system we predict a red-shifted excitation en-

ergy and a decreased matrix element leading to a de-
creased oscillator strength.

4. Polanzabxhty

The lattice sums for px, ps, and ps —P were evaluated
using standard methods. The results are surrmiarized
in Table X. The polarizability of a hydrogen atom at a
substitutional site nr is lowered in argon by about 1%
and in neon by about 4%%uo from the variational value of
nr', 4.0ao', for the free hydrogen atom. (The exact
value is 4.5ao'. ) Using the one-variational-parameter
formalism, we obtain the polarizability of a free lithium
atom as nl'=51.4ap'. The ground-state polarizability
of a lithium atom at a substitutional site in solid argon
and in solid neon is computed to be 44.2cp' and 18.0ap',
respectively. Thus the polarizability of a lithium atom
impurity at a substitutional site is lowered by 13%%uo in
argon and by 65% in neon. Application of the many-
parameter-variational formalism (one variational pa-
rameter for each shell of electrons in an atom) to the

~ All overlap integrals, two-center matrix elements, and
Coulomb and exchange integrals are presented in Ref. 36 in detail.
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TAnzz VIII. Contributions from various terms to the transition matrix element. Numbers in column 3 (1st term) are the free-atom
matrix elements, those in columns 4-7 give additional contributions. Columns 1 and 2 give the ground- and excited-state normalization
constants. Numbers in the last column give the corrected transition matrix element. All numbers (except lid; and N~) are in units of
ap. The sign preceding the term in Kq. (32) is not included here.

System

Ar:H
Ar L»
Ne:H
Ne:Li

1.0035
1.0941
1.0029
1.0603

Eg

1.1560
1.1439
1.0875
1.0826

1st term

0.744936—2.377659
0.744936—2.377659

2nd term

0.098408—0.649882
0.060797—0.386/18

3rd term

0.078151—0.636050
0.057698—0.393841

4th term

—0.014982
0.058878—0.006205
0.018199

5th term

0.126965—0.764395
0.074969—0.430388

Matrix
element

0.789301—2.249386
0.758286—2.306366

calculation of the polarizability of the free lithium atom
nro()i;) gave 140.0ao'. This should be compared with the
experimenta14' value I48.5ao'. This confirms the ex-
pectation that the polarizability would increase, and
approach the exact value, as the number of variational
parameters is increased.

Two approximations were made for these calculations.
First was the neglect of terms in quadratic and higher
powers of X» and X2. This is reasonable since such terms
would necessitate inclusion of terms involving 84 and
hence would lead to nonlinear polarizability. The second
approximation concerned the terms 6, 6», and 62. These
were neglected completely. Each of these terms involves
two types of terms: the intra-atomic terms and the inter-
atomic terms. The intra-atomic terms will change the
value of polarizability which the theory yields for a free
atom. The interatomic terms contain four-electron
operator terms (two coming from 1/r~s in the Hamil-
tonian and two coming from v' terms). Since these terms
lead to only small additive corrections to the variational
parameters X» and X2 in a good tight-binding system,
and since we are interested only in the magnitude of
the change of polarizability of the impurity atom from
the free-atom value, we feel that the neglect of 6, 6»,
and A2 is a sound approximation within the S approxi-
mation. Keil44 has discussed the implications regarding
such terms in his calculation of the polarizability of an
argon atom in solid argon. He concludes that such terms
lead to the eGective field parameters.

This formalism also gives the polarizability of a free

host atom, n~p, (e.g. , a free argon atom) and that of an
atom in a pure solid ng (e.g., an argon atom in solid
argon). The polarizability of an argon atom is slightly
lowered by the medium (solid argon) from the free-
atom value. The computed decrease is about 0.3%.
This is smaller than the 1.5% lowering predicted by
Smith and Pings" and the predicted" decrease of about
1.3% for the Lorentz-Lorenz function. For a neon atom
in solid neon we compute a very slight decrease (about
0.2%) from the free-atom value. Thus we predict a very
small dispersion in the Lorentz-Lorenz function of neon.

V. INTEGRATED ABSORPTION
CROSS SECTIONS

So far we have treated a static lattice near O'K. This
allowed us to neglect the parameteric dependence of
the electronic wave functions on the nuclear coordinates,
and effects of line broadening were completely ignored.
In real systems, however, one observes substantial line
broadening. Here we are not concerned with the details
of the impurity absorption bands; we shall compute
only the zeroth moment (total absorption cross section)
associated with the absorption line caused by the transi-
tion from the ground state to a low-lying excited state
of the impurity atom.

The total (integrated) absorption cross section is
given by4'

2s'e'fr 1 (h.g)'
&o '= o'o j(~)d&= (65)

mpc sp(Zp~') 5 8 I

System

Ar H
Ar:Li
Ne:H
Ne:Li

Free atom
Osc

Energy strength

10.204 0.4160
1.848 0.7680

10.204 0.4160
1.848 0.7680

Impurity atom
Osc

Energy strength

10.602 0.4855
1.863 0.6928

10.888 0.4602
1.510 0.5904

0.5322
0./594
0.5045
0.6472

TABLE IX, Excitation energies, oscillator strengths, and total
absorption cross sections. The quantities in columns 1 and 2 refer
to a free atom and those in columns 3 and 4 refer to an impurity
atom. Atomic excitation energy and oscillator strength for the
2s —+ 2p transition of a free lithium atom are taken from Ref.
41. Energies are in eV and Z is in units of 10 "eV cm .

Ar:H
Ne:H
Ar L»
Ne:Li

CLI Qfg
1

4.00 3.96 6.65
4.00 3.84 1.641

51.40 44.18 6.65
51.40 17.98 1.641

uz nr p(ZXr) nrp(expt)

6.63 4.0 4.5
1.639 4.0 4.5
6.63 140.0 148.5
1.639 143.0 148.5

TABLE X. The ground-state polarizabilities of free impurity
atoms O.q', of free host atoms O.g', of impurity atoms al, and of
atoms in pure solids ng. All numbers except in the taro columns on
the right are derived using the one-parameter formalism. The
numbers in column labeled nr (ZX;) give the polarizability of a
free atom using one parameter for each occupied shell /see Eq.
(64)j.The last column shows the experimental values for hydrogen
and lithium atoms. All numbers are in units of ao'. The experi-
mental value for lithium is taken from Ref. 43.

4~ G. C. Chamberlain and Z. C. Zorn, Phys. Rev. 129, 677
{1963).

«T. H. Keil, J. Chem. Phys. 46, 4404 (1967).

"3.L. Smith and C. J. Pings, J. Chem. Phys. 48, 238/ (1968)."R. M. Mazo, J. Am. Chem. Soc. 86, 3470 (1964)."D. L. Dexter, Phys. Rev. 101, 48 (1956).
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Here n(EO;) is the real part of the refractive index of the
host solid at the energy of the transition, h, «/8 is the
effective Geld ratio, and fo„is .the oscillator strength for
the ground —+jth excited-state transition. 00 „(E)is the
differential cross section at energy E.This result was de-
rived by assuming that the dominant interactions of the
center with the host can be represented by an effective
Geld and that overlap and exchange effects can be neg-
lected. In this case, if the interactions are simply dipole-
dipole interactions, the effective Geld ratio b,«/8 is
given by 3I n'(Eo, )+25

For prediction of the total cross section, the refractive
index n(EO, ) must be known at the transition energy.
Also the effective Geld ratio, if indeed it can be properly
deGned, must be accurately known. However, no ex-
perimental data could be found for the refractive indices
of argon and neon solids at the computed transition en-
ergies of hydrogen, nor for lithium in neon. Hence for
purposes of listing a theoretical value for the integrated
absorption cross section Z in Table IX, we omit the
factors n(EO;) and (b,«/h)', replacing them by unity.

In principle, Eq. (65) provides a method for deter-
mining the effective field ratio. Zo; can be determined
experimentally, as can the refractive index at the tran-
sition energy Eo„. The computed oscillator strength for
the 0 —+ j transition then allows a solution for 8,«/h.

lithium atom impurity is decreased. The computed
polarizability of the impurity atom in each case is
lowered by the medium. Since the oscillator strengths
and polarizabilities are related quantities, this suggests
a possible breakdown of the f-sum rule in condensed
systems. 4'

Our predicted excitation energies agree well with the
experimentaP" values for the Ar:H and Ne:H systems
and also with the earlier'~ calculation on the Ar:H sys-
tem. In the case of Ar:Li, our predicted excitation energy
agrees well with the position of the peak. labeled c by
Andrews and Pimental, "who identify this peak with
absorption by a substitutional lithium atom impurity.
The Ne:Li system has not been studied experimentally.
We predict a red shift of 0.34 eV from the atomic
2s ~ 2p excitation energy.

In a one-electron approximation, the atomic radius
of a lithium atom is somewhat larger than that of a
neon atom. This may mean that our neglect of relaxation
effects in Ne:Li is unjustiGed. A substitutional lithium
atom impurity may push the nearest-neighbor neon
atoms out, leading to somewhat larger nearest-neighbor
separations, and hence to smaller overlaps, two-center
integrals, etc. Thus, relatively large predicted shifts for
the Ne:Li system may be partly due to our neglect of
the relaxation effects.

VI. DISCUSSION

Numerical results confirmed the expectation that the
ground-state overlaps play an important role in a com-
putation of matrix elements; they are less important in
a calculation of the excitation energies. The computed
oscillator strength for the 1s —+ 2p transition of a sub-
stitutional hydrogen-atom impurity is increased by the
medium, while that for the 2s-+ 2p transition of the
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