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Decoherence remains a major challenge in quantum computing hardware, and a variety of physical-layer
controls provide opportunities to mitigate the impact of this phenomenon through feedback and feed-
forward control. In this work, we compare a variety of machine-learning algorithms derived from diverse
fields for the task of state estimation (retrodiction) and forward prediction of future qubit-state evolution for
a single qubit subject to classical, non-Markovian dephasing. Our approaches involve the construction of a
dynamical model capturing qubit dynamics via autoregressive or Fourier-type protocols using only a
historical record of projective measurements. A detailed comparison of achievable prediction horizons,
model robustness, and measurement-noise-filtering capabilities for Kalman filters (KFs) and Gaussian
process regression (GPR) algorithms is provided. We demonstrate superior performance from the
autoregressive KF relative to Fourier-based KF approaches and focus on the role of filter optimization
in achieving suitable performance. Finally, we examine several realizations of GPR using different kernels
and discover that these approaches are generally not suitable for forward prediction. We highlight the
linkages between predictive performance and kernel structure, and we identify ways in which forward
predictions are susceptible to numerical artifacts.

DOI: 10.1103/PhysRevApplied.9.064042

I. INTRODUCTION

In predictive estimation, a dynamically evolving system
is observed and any temporal correlations encoded in the
observations are used to predict the future state of the
system. This generic problem is well studied in diverse
fields such as engineering, econometrics, meteorology, and
seismology [1–5], and it is addressed in the control-
theoretic literature as a form of filtering. Applying these
standard classical approaches to state estimation on qubits
is complicated by a variety of factors; dominant among
these is the violation of the assumption of linearity inherent
in most filtering applications, as qubit states are formally
bilinear. The case of an idling, or freely evolving, qubit
subject to dephasing is more complicated still, as an a priori
model of system evolution suitable for implementation
within standard filtering algorithms is not, in general,
available.
Fortunately, there are many lessons to learn from

classical control, even in the presence of such complica-
tions. For classical systems, machine-learning techniques
have enabled state tracking, control, and forecasting for
highly nonlinear and noisy dynamical trajectories or com-
plex measurement protocols (e.g., Refs. [6–10]). These
demonstrations move far beyond the simplified assump-
tions underlying many basic filtering tasks, such as linear

dynamics and white (uncorrelated) noise processes. For
instance, so-called particle-based Bayesian frameworks
(e.g., particle, unscented or σ-point filtering) allow state
estimation and tracking in the presence of nonlinearities in
system dynamics or measurement protocols [11]. Further
extensions approach the needs of a stochastically evolving
system; recently, an ensemble of so-called unscented
Kalman filters, named after the underlying mathematical
procedure, demonstrated state estimation and forward
predictions for chaotic, nonlinear systems in the absence
of a prescribed model [10]. For nonchaotic, multi-
component stationary random signals, other algorithmic
approaches have been particularly useful for tracking
instantaneous frequency and phase information [12,13],
enabling short-run forecasting.
In the field of quantum control, work has begun to

incorporate the additional challenges faced when consid-
ering state estimation on qubits, notably quantum-state
collapse under projective measurement. Under such cir-
cumstances, in which the measurement backaction strongly
influences the quantum state (in contrast with the classical
case), it is not straightforward to extend machine-learning
predictive estimation techniques. Work to date has
approached the analysis of projective measurement records
on qubits as pattern recognition or image reconstruction
problems, for example, in characterizing the initial or
final state of a quantum system (e.g., Refs. [14–16]) or
reconstructing the historical evolution of a quantum system*rgup9526@uni.sydney.edu.au
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based on large measurement records (e.g., Refs. [17–22]).
In adaptive or sequential Bayesian learning applications, a
projective measurement protocol may be designed or
adaptively manipulated to efficiently yield noise-filtered
information about a quantum system (e.g., Refs. [23–26]).
The demonstrations above typically assume that the

object of interest either is static or stochastically evolves
in a manner which is dynamically uncorrelated in time
(white) as measurement protocols are repeated. This
simplifying assumption falls well short of typical labora-
tory-based experiments, where noise processes are fre-
quently correlated in time, and evolution may also occur
rapidly relative to a measurement protocol. In such a
circumstance, further complexity is introduced, as the
Markov condition commonly assumed in Bayesian learn-
ing frameworks [11] is immediately violated. Even in the
classical case, the problem of designing an appropriate
representation of non-Markovian dynamics in Bayesian
learning frameworks is an active area of research (e.g.,
Ref. [27]). Hence, the canonical real-time tracking and
prediction problem—where a nonlinear, stochastic trajec-
tory of a system is tracked using noisy measurements and
short-run forecasts are made—is underexplored for quan-
tum systems with projective measurements.
In this paper, we develop and explore a broad class of

predictive estimation algorithms allowing us to track a
qubit state undergoing stochastic but temporally correlated
evolution using a record of projective measurements, and
we forecast its future evolution. Our approaches employ
machine-learning algorithms to extract temporal correla-
tions from the measurement record and use this information
to build an effective dynamical model of the system’s
evolution. We design a deterministic protocol to correlate
Markovian processes such that a certain general class of
non-Markovian dynamics can be approximately tracked
without violating the assumptions of a machine-learning
protocol, based on the theoretically accessible and compu-
tationally efficient frameworks of Kalman filtering (KF)
and Gaussian process regression (GPR). Both frameworks
provide a mechanism by which temporal correlations
(equally, dynamics) are encoded into an algorithm’s struc-
ture such that projection of data sets onto this structure
enables meaningful learning, white-noise filtering, and
effective forward prediction. We perform numerical sim-
ulations to test the effectiveness of these algorithms in
maximizing the prediction horizon under various condi-
tions, and we quantify the role of the measurement
sampling rate relative to the noise dynamics in defining
the prediction horizon. Simulations incorporate a variety of
measurement models, including preprocessed data yielding
a continuous measurement outcome and discretized out-
comes commonly associated with single-shot projective
qubit measurements. We find that, in most circumstances,
an autoregressive Kalman framework yields the best
performance, providing model-robust forward prediction

horizons and effective filtering of measurement noise.
Finally, we demonstrate that standard GPR-based protocols
employing a variety of kernels, while effective for the
problem of filtering (fitting) a measurement record, are not
suitable for real-time forecasting beyond the measurement
record.
In what follows, we describe in detail the physical setting

for our problem in Sec. II and explain how this setting leads
to a specific choice of algorithm which may be deployed for
the task of tracking non-Markovian state dynamics in the
absence of a dynamical model for system evolution. We
provide an overview of the central GPR and KF frame-
works in Sec. III, and we specify a series of algorithms
under consideration in this paper tailored to different
measurement processes. For preprocessed measurement
records, we consider four algorithmic approaches: a
least-squares filter (LSF) from Ref. [28], an autoregressive
Kalman filter (AKF), a so-called Liska Kalman filter from
Ref. [29] adapted for a fixed oscillator basis (LKFFB), and
a suitably designed GPR learning protocol. For binary
measurement outcomes, we extend the AKF to a quantized
Kalman filter (QKF). In Sec. IVA, we present optimization
procedures for tuning all algorithms. Numerical investiga-
tions of algorithmic performance are presented in Sec. IV,
and a comparative analysis of all algorithms is provided
in Sec. V.

II. PHYSICAL SETTING

Our physical setting considers a sequence of projective
measurements performed on a qubit. Each projective
measurement yields a 0 or 1 outcome representing the
state of the qubit. The qubit is then reset, and the exact
procedure is repeated. By considering a qubit state initial-
ized in a superposition of the measurement basis (for us,
Pauli σ̂z eigenstates), we gain access to a direct probe of
qubit phase evolution. If, for instance, no dephasing is
present, then the probability of obtaining a binary outcome
remains static in time as sequential qubit measurements are
performed. If slowly drifting environmental dephasing is
present, then the probability of obtaining a given binary
outcome also drifts stochastically. In essence, the qubit
probes dephasing noise and our procedure encodes a
continuous-time non-Markovian dephasing process into
time-stamped, discrete binary samples through the non-
linear projective measurement, carrying the underlying
correlations in the noise. It is this series of measurements
which we seek to process in our algorithmic approaches to
qubit-state tracking and prediction.
Formally, an arbitrary environmental dephasing process

manifests as time-dependent stochastic detuning, δωðtÞ,
between the qubit frequency and the system master clock.
This detuning is an experimentally measurable quantity in a
Ramsey protocol, as shown schematically in Fig. 1(a).
A nonzero detuning over the measurement period τ
(starting from t ¼ 0) induces a stochastic relative phase
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accumulation (in the rotating frame) for a qubit super-
position as j0i þ e−ifð0;τÞj1i between qubit basis states. The
accumulated fð0; τÞ at the end of a single Ramsey experi-
ment is mapped to a probability of obtaining a particular
outcome in the measurement basis via the form of the
Ramsey sequence.
In a sequence of nRamsey measurements spacedΔt apart

with a fixed duration, τ, the change in the statistics of
measured outcomes over this measurement record depends
solely on the dephasing δωðtÞ. We assume that the meas-
urement action over τ is much faster than the temporal

dynamics of the dephasing process, and that Δt≳ τ. The
resulting measurement record is a set of binary outcomes,
fdng, determined probabilistically from n true stochastic
qubit phases, f ≔ ffng. Here the accumulated phase in each
Ramsey experiment fðnΔt;nΔtþτÞ≡R nΔtþτ

nΔt δωðt0Þdt0, and
we use the shorthand fðnΔt; nΔtþ τÞ≡ fn. We define the
statistical likelihood for observing a single shot, dn, using
Born’s rule [30]:

Prðdn ¼ djfn; τ; nΔtÞ ¼
8<
:

cos2
�
fn
2

�
for d ¼ 1

sin2
�
fn
2

�
for d ¼ 0

: ð1Þ

The notation Prðdnjfn; τ; nΔtÞ refers to the conditional
probability of obtaining measurement outcome dn given a
true stochastic phase, fn, accumulated over τ, beginning at
time t ¼ nΔt. As an example, in the noiseless case,
Prðdn¼1jfn;τ;nΔtÞ¼1, ∀ n, such that a qubit exhibits no
additional phase accumulation due to environmental dephas-
ing. In general, after a measurement at n, the qubit state is
reset, but the dephasing noise correlations manifest again via
Born’s rule for another random value of the bias at the time
step nþ 1. A detailed discussion of Eq. (1) can be found in
Appendix A.
The action of measurement, expressed as hðfnÞ, is given

by Prðdn ¼ djfn; τ; nΔtÞ≡ 1
2
− ð−1ÞdhðfnÞ and is depicted

in Fig. 1(b) as a probability of seeing the qubit in the d ¼ 1
state. We begin by describing here a “raw” nonlinear
measurement record, fdng where each dn (indicated by
a black dot) corresponds to a binary outcome derived from
a single projective measurement on a qubit. The sequence
fdng can be treated as a sequence of biased coin flips,
where the underlying bias of the coin is a non-Markovian,
discrete-time process and the value of the bias is given by
Eq. (1) at each n. The nonlinearity of the measurement,
hðfnÞ, is defined with respect to fn, where Eq. (1) is
interpreted as a nonlinear measurement action for Bayesian
learning frameworks.
This data series is contrasted with a linear measurement

record, fyng, depicted in Fig. 1(c). Each value yn is derived
from the sum of a true qubit phase, fn, and Gaussian white
measurement noise, vn. The sequence fyng is generated by
preprocessing raw binary measurements, fdng, via a range
of experimental techniques subject to a separation of
timescales about τ, such that τ is much faster than the
drift of δωðtÞ. In the most common case, one performs M
runs of the experiment over which δωðtÞ is approximately
constant, giving an estimate of fn at t ¼ nΔt using
averaging, a Bayesian scheme, or Fourier analysis. A more
complex linearization protocol involves the use of low-pass
or decimation filtering on a sequence fdng to yield
P̂r ðdnjfn; τ; nΔtÞ, from which the accumulated phase
corrupted by measurement noise, fyng, can be obtained
from Eq. (1). Since any low-pass or decimation filter has an

(a)

(c) Linear measurement record

FuturePast
(b) Nonlinear measurement record

(a
rb

. u
ni

ts
)

Time steps (number)

True state

Msmts.
Prediction

Est. risk
Pred. risk

FIG. 1. (a) A Ramsey experiment at t ¼ nΔt with fixed wait
time τ and time steps n, spaced Δt > τ apart. A π=2 pulse rotates
the qubit state to a superposition of jdi states, d ∈ f0; 1g; the
qubit evolves via ĤNðtÞ, accumulating relative stochastic fn for
nonzero environmental dephasing δωðtÞ. Jittering arrows depict
the potential qubit-state vectors permitted for an (unknown)
random fn. The qubit state is measured as dn ¼ d in the σ̂z
basis after a second π=2 rotation. (b) Black dots depict fdng
against time steps n; data collection stops at n ¼ 0, separating
past state estimation from future prediction (the blue region). The
black solid line shows the true qubit-state likelihood ∝ hðfnÞ, and
the red solid line shows the state estimate (prediction) for n < 0
(n > 0). A prediction horizon is for all n < n� ∈ ½0; NP�, for
which the dark-gray region between the red and black lines is
minimized (the Bayes prediction risk) relative to predicting the
mean of dephasing noise; algorithmic tuning occurs by minimiz-
ing the light-gray region (the Bayes state estimation risk). Q
quantizes the black line into noisy qubit measurements, dn, under
the Gaussian uncertainty vn. (c) Single-shot outcomes in (b) are
preprocessed to yield noisy measurements fyng (black dots); yn is
linear in fn, and vn represents additive white Gaussian meas-
urement noise. Msmts. denotes measurements.
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averaging effect on a signal, decimation filtering a sequence
fdng provides an alternative, software-based approach to
physically averaging single-shot qubit measurements.
Hence, the linear measurement record in Fig. 1(c) arises
either from software preprocessing (filtering) data from a
single qubit or from experimental averaging over an
ensemble of qubits.
We impose properties on environmental dephasing such

that our theoretical designs can enable meaningful pre-
dictions. We assume that dephasing is non-Markovian,
covariance stationary, and mean-square ergodic. That is, a
single realization of the process f is drawn from a power
spectral density of arbitrary, but non-Markovian, form. We
further assume that f is a Gaussian process and that the
separation of timescales between measurement protocols
and dephasing dynamics articulated above are met.
Given these conditions, our task is to build a dynamical

model to approximately track f over past measurements
(n < 0) and enable qubit-state predictions in future
times (n > 0). This prediction is represented by the red
lines in Figs. 1(b) and 1(c), and it differs from the truth by
the so-called estimation (prediction) risk for past (future)
times as indicated by the shading. We represent our
estimate of f for all times using a hat in both the linear
and nonlinear measurement models. The major challenge
we face in developing this estimate, f̂ [equivalently,
P̂r ðdnjfn; τ; nΔtÞ], is that, for a qubit evolving under
stochastic dephasing [the true state given by the black
solid lines in Figs. 1(b) and 1(c)], we have no a priori
dynamical model for the underlying evolution of f. In the
next section, we define the theoretical structures of KF and
GPR algorithms which allow us to build that dynamical
model directly from the historical measurement record.

III. OVERVIEW OF PREDICTIVE
METHODOLOGIES

Our objective is to implement an algorithm permitting
learning of the underlying qubit dynamics in such a way as
to maximize the forward prediction horizon for a given
qubit data record. We first quantify the quality of our state
estimation procedure. The fidelity of any underlying
algorithm during state estimation and prediction, relative
to the true state, is expressed by the mathematical quantity
known as the Bayes risk, where zero risk corresponds to a
perfect estimation. At each time step n, the Bayes risk is a
mean-square distance between the truth, f, and the pre-
diction, f̂, calculated over an ensemble of M different
realizations of true f and noisy data sets D:

LBRðnjIÞ≡ hðfn − f̂nÞ2if;D: ð2Þ

The notation LBRðnjIÞ expresses that the Bayes risk value
at n is conditional on I, a placeholder for free parameters in
the design of the predictor, f̂n. State estimation risk is the

Bayes risk incurred during n ∈ ½−NT; 0�; prediction risk is
the Bayes risk incurred during n ∈ ½0; NP�. The state
estimation and prediction risk regions for one realization
of dephasing noise are shaded in Figs. 1–3. We therefore
define the forward prediction horizon as the number of time
steps for n� ∈ ½0; NP� during which a predictive algorithm
incurs a lower Bayes prediction risk than naively predicting
f̂n ≡ μf ¼ 0∀ n, the mean qubit behavior under zero-mean
dephasing noise.
With this concept in mind, we introduce two general

approaches for algorithmic learning relevant to the stric-
tures of the problem we have introduced. Our general
approach is shared between all algorithms employed and is
represented schematically for the KF and GPR in Fig. 2.
Stochastic qubit evolution is depicted for one realization of
f (the black solid line) given noisy linear measurements
(the black dots) corrupted by the Gaussian white meas-
urement noise vn. Our overall task is to produce an
estimate, given by the red line, which minimizes risk for
the prediction period. Ideally, both estimation risk and
prediction risk are minimized simultaneously for well-
performing implementations.
Examining the insets in both panels of Fig. 2, both

frameworks start with a prior Gaussian distribution over
qubit states (purple) that is constrained by the measurement
record to yield a posterior Gaussian distribution of the qubit
state (red). The prior captures assumptions about the qubit
state before any data are seen and the posterior expresses
our best knowledge of the qubit state under a Bayesian
framework. The posterior distribution in bothKF andGPR is
used to generate qubit-state estimates (n < 0) and predic-
tions (n > 0) (the red solid line).However, the computational
process by which this posterior is inferred differs signifi-
cantly between the two methods; we provide an overview of
the central features of these algorithms below.
The key feature of a Kalman filter is the recursive

learning procedure shown in the inset to Fig. 2(a). Our
knowledge of the qubit state is summarized by the prior and
posterior Gaussian probability distributions, and they are
created and collapsed recursively at each time step. The
mean of these distributions is the true Kalman state, xn, and
the covariance of these distributions, Pn, captures the
uncertainty in our knowledge of xn; together, both define
the Gaussian distribution. The Kalman filter produces an
estimate of the state, x̂n, at each step through this recursive
procedure, taking into account two factors. First, the
Kalman gain, γn, updates our knowledge of ðxn; PnÞ within
each time step n and serves as a weighting factor for the
difference between incoming data, and our best estimate for
an observation based on x̂n, suitably transformed via the
measurement action, hðx̂nÞ. Next, the dynamical model Φn
propagates the state and covariance, ðxn; PnÞ, to the next
time step, such that the posterior moments at n define the
prior at nþ 1. This process occurs for each time step, and
an estimate of a true xn state is built up recursively based on
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all of our existing knowledge—namely, a linear combina-
tion of all past measurements—and all previously gener-
ated state estimates. Beyond n ¼ 0, we perform predictions
in the absence of further measurement data by simply
propagating the dynamic model with the Kalman gain set to
zero. Full details of the KF algorithm appear in Sec. III A.
In our application, we define the Kalman state, xn, the

dynamical model Φn, and a measurement action hðxnÞ
such that the Kalman filtering framework can track a
non-Markovian qubit-state trajectory due to an arbitrary
realization of f. In standard KF implementations, the
discrete-time sequence fxng defines a “hidden” signal that
cannot be observed, and the dynamic model Φn is known.
We deviate from this standard construction such that our
true Kalman state and its uncertainty, ðxn; PnÞ, do not have
a direct physical interpretation. The Kalman xn has no
deterministic component and corresponds to arbitrary
power spectral densities describing f. Hence, the role of
the Kalman xn is to represent an abstract correlated process
that, upon measurement, yields physically relevant quan-
tities governing qubit dynamics. Moreover, a key challenge
described in detail below is to construct an effective Φn
from the measurement record.
In contrast to the recursive approach taken in the KF, a

GPR learning protocol illustrated schematically in Fig. 2(b)
selects a random process to best describe the overall
dynamical behavior of the qubit state under one realization
of f. The key point is that sampling the prior or posterior
distribution in GPR yields random realizations of discrete
time sequences, rather than individual random variables,

and GPR considers the entire measurement record at once.
In a sense, it corresponds to a form of fitting over the entire
data set. The output of a GPR protocol is a predictive
distribution which we can evaluate at an arbitrarily chosen
sequence of test points, where the test points can exist for
n < 0 (n > 0), such that we extract state estimates (forward
predictions) from the predictive distribution. Owing to the
nature of this procedure, we wish to distinguish the set of
test points (in units of time steps) by using a double dagger,
namely, that we are evaluating the predictive posterior
distribution of a GPR protocol at the desired time labels. In
this notation, fn‡g, n‡ ∈ ½−NT;NP� are the test points and
N‡ is the total length of an array of test points, where a state
estimation occurs if n‡ ≤ 0 and predictions occur if n‡ > 0.
The process of building the posterior distribution is

implemented using a kernel, or basis, from which to
construct the effective fit. In standard GPR implementa-
tions, the correlation between any two observations
depends only on the separation distance of the index of
these observations, and correlations are captured in the
covariance matrix, Σf. Each element Σn1;n2

f describes this
correlation for observations at arbitrary time steps indexed
by n1 and n2: this quantity is given in a form set by the
selected kernel.
In our application, the non-Markovian dynamics of f are

not specified explicitly but are encoded in a general way
through the choice of kernel, prescribing how Σn1;n2

f should
be calculated. The Fourier transform of the kernel represents
a power spectral density in Fourier space. A general design of

Time steps (number)

(a
rb

. u
ni

ts
)

(a) Kalman filtering (KF)

Dynamic
update

Kalman
gain update

Zero-gain 
dynamics

(b) Gaussian process regression (GPR)

RBF RQ Periodic

or or

Data constraints

True state Msmts.Prediction Est. risk Pred. risk

FIG. 2. Comparison of the algorithmic structure between KF and GPR by superposing the lower panels of Fig. 1 with KF and GPR
predictive frameworks. (a) KF: Purple distribution represents a prior, with mean xn and covariance Pn, propagated in time steps n, using
Kalman dynamics Φn, and updated within each n by the Kalman gain γn to yield a posterior distribution (red) at n. The posterior at n is
the prior at nþ 1. The mean of a posterior distribution at each n is used to derive predictions given by the red line using hðxnÞ. In the
blue region, the red posterior predictive distribution is propagated using Φn, but γn ≡ 0. Gaussian white Kalman “process” noise, wn, is
colored by Φn to yield the dynamics for xn. (b) Purple prior distribution defined over sequences f, with mean μf, and variance Σf is
constrained by the entire measurement record. The resulting posterior predictive distribution (red) is evaluated at test points in time,
n‡ ∈ ½−NT;NP�; state estimates (predictions) are for the mean, μf‡ at n

‡ < 0 (n‡ > 0). A choice of kernel defines each element in Σf,
Σf† . In both (a) and (b), the purple shadow represents posterior state variance (the diagonal Pn or Σf‡ elements) constrained by data and
filtered measurement noise vn.
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Σn1;n2
f allows one to probe arbitrary stochastic dynamics and,

equivalently, explore arbitrary regions in the Fourier domain.
For example, Gaussian kernels (RBFs) and mixtures of
Gaussian kernels (RQs) capture the continuity assumption
that correlations die out as the separation in time increases.
We choose to employ an infinite basis of oscillators imple-
mented by the so-called periodic kernel to enable us to
represent arbitrary power spectral densities for f. A pre-
diction occurs simply by extending the GPR fit by choosing
test points n‡ > 0.
In the following subsections, we provide details of the

specific classes of the learning algorithm employed here,
with an eye towards evaluating their predictive performance
on qubit-measurement records. We introduce a series of KF
algorithms capable of handling both linear and nonlinear
measurement records, and we restrict our analysis of GPR
to linear measurement records.

A. Kalman framework

In order for a Kalman filter to track a stochastically
evolving qubit state in our application, the hidden true
Kalman state at time step n, xn, must mimic stochastic
dynamics of a qubit under environmental dephasing. We
propagate the hidden state xn according to a dynamical
model Φn corrupted by Gaussian white process noise, wn:

xn ¼ Φnxn−1 þ Γnwn; ð3Þ

wn ∼N ð0; σ2Þ ∀ n: ð4Þ

Process noise has no physical meaning in our application
—wn is shaped by Γn and deterministically colored by the
dynamical model Φn to yield a non-Markovian xn repre-
senting qubit dynamics under generalized environmental
dephasing. In addition to coloring via the dynamical model,
one can shape input white noise by designing Γn.
We measure xn using an ideal measurement protocol,

hðxnÞ, and incur additional Gaussian white measurement
noise vn with scalar covariance strength R, yielding scalar
noisy observations yn:

yn ¼ zn þ vn; ð5Þ

zn ≡ hðxnÞ; ð6Þ

vn ∼N ð0; RÞ ∀ n: ð7Þ

The measurement procedure, hðxnÞ, can be linear or non-
linear, allowing us to explore both regimes in our physical
application.
With appropriate definitions, the Kalman equations

below specify all Kalman algorithms in this paper. At each
time step n, we denote estimates of the moments of the prior
and posterior distributions (equivalently, estimates of the true

Kalman state) with (x̂nð−Þ; P̂nð−Þ) and (x̂nðþÞ;P̂nðþÞ)
respectively. The Kalman update equations take a generic
form (e.g., see Ref. [31]):

x̂nð−Þ ¼ Φn−1x̂n−1ðþÞ; ð8Þ

Qn−1 ¼ σ2Γn−1ΓT
n−1; ð9Þ

P̂nð−Þ ¼ Φn−1P̂n−1ðþÞΦT
n−1 þQn−1; ð10Þ

γn ¼ P̂nð−ÞHT
n ½HnP̂nð−ÞHT

n þ Rn�−1; ð11Þ

ŷnð−Þ ¼ h(x̂nð−Þ); ð12Þ

x̂nðþÞ ¼ x̂nð−Þ þ γn(yn − ŷnð−Þ); ð13Þ

P̂nðþÞ ¼ ½1 − γnHn�P̂nð−Þ: ð14Þ

To reiterate, Eqs. (8) and (10) bring the best state of
knowledge from the previous time step into the current time
step n, as a prior distribution. Dynamical evolution is
modified by features of the process noise, as encoded in
Eq. (9) and propagated in Eq. (10). The propagation of the
moments of the prior distribution, as outlined thus far, does
not depend on the incoming measurement, yn, but is
determined entirely by the dynamical model—in our case,
Φ≡Φn, ∀ n.
The Kalman gain in Eq. (11) depends on the uncertainty

in the true state, P̂nð−Þ and is modified by features of the
measurement model, Hn, and measurement noise, Rn ≡ R,
∀ n. It serves as an effective weighting function for each
incoming observation. Before seeing any newmeasurement
data, the filter predicts an observation ŷnð−Þ corresponding
to the best available knowledge at n in Eq. (12). This value
is compared to the actual noisy measurement yn received at
n, and the difference is used to update our knowledge of the
true state via Eq. (13). If measurement data are noisy and
unreliable (a high R value), then γ has a small value, and the
algorithm propagates Kalman state estimates according to
the dynamical model and effectively ignores the data. In
particular, only the second terms in both Eq. (13) and
Eq. (14) represent the Bayesian update of the moments of a
prior distribution [the (−) terms] to the posterior distribu-
tion [the (þ) terms] at n. If γn ≡ 0, then the prior and
posterior moments at any time step are exactly identical by
Eqs. (13) and (14), and only dynamical evolution occurs
using Eqs. (8)–(10). This is the condition we employ when
we seek to make forward predictions beyond a single time
step, and hence we set γ ≡ 0 during future prediction.
Since we do not have a known dynamical model Φ for

describing stochastic qubit dynamics under f, we need to
make design choices for fx;Φ; hðxÞ;Γg such that f can be
approximately tracked. These design choices completely
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specify the algorithms introduced below and represent key
findings with respect to our work in this paper. For a linear
measurement record, hðxÞ ↦ Hx, and we compare the
predictive performance for Φ modeling stochastic dynam-
ics either via so-called autoregressive processes in the AKF
or via projection onto a collection of oscillators in the
LKFFB. In addition, we use the dynamics of an AKF to
define a QKF with a nonlinear, quantized measurement
model such that the filter can act directly on binary qubit
outcomes. We provide the relevant details in the subsec-
tions below.

1. AKF

Recursive autoregressive methods are well studied in
classical control applications (cf. Ref. [32]) presenting
opportunities to leverage existing engineering knowledge
in developing quantum control strategies. In our applica-
tion, we use an autoregressive Kalman filter to probe
arbitrary, covariance-stationary qubit dynamics such that
the dynamic model is constructed as a weighted sum of q
past values driven by white noise, i.e., an autoregressive
process of order q, ARðqÞ. Using Wold’s decomposition, it
can be shown that any zero-mean covariance-stationary
process representing qubit dynamics has a representation in
the mean-square limit by an autoregressive process of finite
order, as in Appendix B.
The study of ARðqÞ processes falls under a general class

of techniques based on autoregressive moving average
(ARMA) models in adaptive control engineering and
econometrics (see, e.g., Refs. [33,34], respectively). For
high-q models in a typical time-series analysis, it is
possible to decompose an ARðqÞ into an ARMA model
with a small number of parameters [35,36]. However, we
retain a high-q model to probe arbitrary power spectral
densities. Furthermore, the literature suggests that employ-
ing a high-q model is relatively easier than a full ARMA
estimation problem and enables lower prediction error
[35,37].
To construct the Kalman dynamical operator Φ for

the AKF, we introduce a set of q coefficients fϕq0≤qg,
q0 ¼ 1;…; q to specify the dynamical model:

fn ¼ ϕ1fn−1 þ ϕ2fn−2 þ � � � þ ϕqfn−q þ wn: ð15Þ

We thus see that the dynamical model is constructed as a
weighted sum of time-retarded samples of f, with weight-
ing factors given by the autoregressive coefficients up to
order (and hence time lag) q. For small values of q < 3, it is
possible to extract simple conditions on the coefficients,
fϕq0≤qg, that guarantee properties of f: for example, that f
is covariance stationary and mean-square ergodic. In our
application, we freely employ arbitrary-q models via
machine learning in order to improve our approximation
of an arbitrary f. Any ARðqÞ process can be recast
(nonuniquely) into state space form [4], and we define

the AKF by the following substitutions into Kalman
equations:

xn ≡ ½ fn;…; fn−qþ1 �T; ð16Þ

Γnwn ≡ ½wn; 0;…; 0 �T; ð17Þ

ΦAKF ≡

2
6666666664

ϕ1 ϕ2 � � � ϕq−1 ϕq

1 0 � � � 0 0

0 1 . .
. ..

. ..
.

0 0 . .
.

0 0

0 0 � � � 1 0

3
7777777775

∀n; ð18Þ

H ≡
h
1 0 0 0 … 0

i
∀n: ð19Þ

The matrix ΦAKF is the dynamical model used to recur-
sively propagate the unknown state during state estimation
in the AKF, as represented schematically in the upper half
of Fig. 3. In general, the fϕq0≤qg employed inΦAKF must be
learned through an optimization procedure using the
measurement record, where the set of parameters to be
optimized is fϕ1;…;ϕq; σ2; Rg. This procedure yields the

LKFFB:        oscillators

AKF or QKF order q

Past

Time steps (number)

(a
rb

. u
ni

ts
)

True state Msmts.
Prediction

FIG. 3. Approaches to construction of the KF dynamical model.
Figure 2(a) is superimposed with Kalman dynamical models,
Φ≡Φn,∀ n. (a) AKForQKF.A set of autoregressive coefficients,
fϕq0≤qg, define Φ to yield fn as a weight sum of q past

measurements. (b) LKFFB. Red arrows with heights kxjnk depict
a set of basis oscillators for j ¼ 1;…; JðBÞ, probe the true purple
spectrum of fn, and yield time-domain dynamics of fn as a stacked
system of resonators, Θj. Black L-shaped arrows depict a single
instance of fn atn ¼ 0 based on historical ffn−1; fn−2; � � �g values.
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optimal configuration of the autoregressive Kalman filter,
but at the computational cost of a (qþ 2)-dimensional
Bayesian learning problem for an arbitrarily large q.
The LSF in Ref. [28] considers a weighted sum of past

measurements to predict the ith-step-ahead measurement
outcome, i ∈ ½0; NP�. A gradient descent algorithm learns
the weights fϕq0≤qg for the previous q past measurements,
and a constant offset value for nonzero mean processes is
used to calculate the ith-step-ahead prediction. The set of
NP LSF models, taken collectively, define the set of
predicted qubit states under a LSF acting on a measurement
record. For i ¼ 1, equivalent to the single-step update
employed in the Kalman filter, we assert that the learned
fϕq0≤qg in the LSF effectively implements an ARðqÞ
process (which we validate numerically in Sec. IV).
Under this condition, and for zero-mean wn, the LSF in
Ref. [28], by definition, searches for coefficients for the
weighted linear sum of past q measurements, as described
in Eq. (15).
Weuse the parametersfϕq0≤qg learned in theLSF todefine

Φ inEq. (18), therefore reducing the computational complex-
ity of the remaining optimization from [ðqþ 2Þ → 2] dimen-
sional for anAKFof order q. SinceKalman noise parameters
(σ2, R) are subsequently autotuned using a Bayes-risk
optimization procedure (see Sec. IVA), we optimize over
the potential remainingmodel errors andmeasurement noise.
In general, LSF performance improves as q increases,

and a full characterization of the model-selection decisions
for the LSF is given in Ref. [28]. Defining an absolute value
for the optimal q is somewhat arbitrary, as it is defined
relative to the extent to which a true f is oversampled in the
measurement routine and the finite size of the data. For all
analyses presented here, we fix the ratio at qΔt ¼ 0.1 (arb.
units) and q=NT ¼ 0.05 (arb. units), where the experimen-
tal sampling rate is 1=Δt, and NT and fϕq0≤qg are identical
in the AKF and the LSF. In practice, these ratios ensure
numerical convergence of the LSF during training.

2. LKFFB

In LKFFB, we effectively perform a Fourier decom-
position of the underlying f in order to build
the dynamic model, Φ, for the Kalman filter. Here, we
project our measurement record on JðBÞ oscillators with a

fixed frequency ωj ≡ jωðBÞ
0 , with j an integer,

j ¼ 1;…; JðBÞ. The temporal resolution of the state-
tracking procedure is set by the maximum frequency in
the selected basis and the properties of the spacing between
adjacent basis frequencies. The superscript ðBÞ indicates
Fourier-domain information about an algorithmic basis, as
opposed to information about the true (unknown) dephas-
ing process. The LKFFB allows instantaneous amplitude
and phase tracking for each basis oscillator, directly
enabling forward prediction from the learned dynamics.
The structure of this Kalman filter, referred to as the LKF,

was developed in Ref. [29]; adding a fixed basis in this
application yields the LKFFB.
For our application, the true hidden Kalman state, x, is

encoded as a collection of substates, xj, for the jth
oscillator. For clarity, we remind the reader that the
superscript is used as an index rather than a power. Each
substate is labeled by a real and imaginary component
which we represent in vector notation:

xn ≡ ½x1n;…; xjn;…; xJ
ðBÞ

n �; ð20Þ

Aj
n ≡ ReðxjnÞ; ð21Þ

Bj
n ≡ ImðxjnÞ; ð22Þ

xjn ≡
�
Aj
n

Bj
n

�
: ð23Þ

The algorithm tracks the real and imaginary parts of the
Kalman substate simultaneously in order calculate the
instantaneous amplitudes (kxjnk) and phases (θjn) for each
Fourier component:

kxjnk≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAj

nÞ2 þ ðBj
nÞ2

q
; ð24Þ

θjn ≡ tan
Bj
n

Aj
n
: ð25Þ

The dynamical model for the LKFFB is now constructed
as a stacked collection of these independent oscillators. The
substate dynamics match the formalism of a Markovian
stochastic process defined on a circle for each basis
frequency, ωj, as in Ref. [38]. We stack ΘðjωðBÞ

0 ΔtÞ for
all ωj values along the diagonal to obtain the full dynamical
matrix for Φn:

Φn ≡

2
6664

ΘðωðBÞ
0 ΔtÞ � � � 0

� � �ΘðjωðBÞ
0 ΔtÞ � � �

0 � � �ΘðJðBÞωðBÞ
0 ΔtÞ

3
7775; ð26Þ

ΘðjωðBÞ
0 ΔtÞ≡

"
cosðjωðBÞ

0 ΔtÞ − sinðjωðBÞ
0 ΔtÞ

sinðjωðBÞ
0 ΔtÞ cosðjωðBÞ

0 ΔtÞ

#
: ð27Þ

We obtain a single estimate of the true hidden state by
defining the measurement model, H, by concatenating JðBÞ
copies of the row vector [10]:

H ≡ ½ 10 � � � 10 � � � 10 �: ð28Þ

Here, the unity values of H pick out and sum the Kalman
estimate for the real components of f while ignoring the
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imaginary components; namely, we sum Aj
n for all JðBÞ

basis oscillators.
In Ref. [29], a state-dependent process-noise-shaping

matrix is introduced to enable potentially nonstationary
instantaneous amplitude tracking in the LKFFB for each
individual oscillator:

Γn−1 ≡Φn−1
xn−1
kxn−1k

: ð29Þ

For the scope of this paper, we retain the form of Γn in our
application even if true qubit dynamics are covariance
stationary. As such, Γn depends on the state estimates x. For
this choice of Γn, we deviate from classical Kalman filters
because recursive equations for P cannot be propagated in
the absence of measurement data. Consequently, Kalman
gains cannot be precomputed prior to experimental data
collection. Details of gain precomputation in classical
Kalman filtering can be found in standard textbooks
(see, e.g., Ref. [31]).
There are two ways to conduct forward prediction for a

LKFFB and both are numerically equivalent for an appro-
priate choice of basis: (i) we set the Kalman gain to zero
and recursively propagate using Φ, and (ii) we define a
harmonic sum using the basis frequencies and the learned
fkxjnk; θjng. This harmonic sum can be evaluated for all
future times to yield forward predictions in a single
calculation. The choice of basis for a LKFFB and its
implications for optimal predictive performance are dis-
cussed in Appendix C 2.

3. QKF

In a QKF, we implement a Kalman filter that acts directly
on discretized measurement outcomes, d ∈ f0; 1g. To
reiterate the discussion of Fig. 1(a), this means that the
measurement action in a QKF must be nonlinear and take
as input quantized measurement data. In our application,
we set the dynamical model to be identical to that employed
in the AKF, allowing isolation of the effect of the nonlinear,
quantized measurement action.
With unified notation across the AKF and QKF, we

define a nonlinear measurement model hðxÞ and its
Jacobian, H, as

zn ≡ hðxn½0�Þ≡ 1

2
cosðfnÞ; ð30Þ

⇒ Hn ≡ dhðfnÞ
dfn

¼ −
1

2
sinðfnÞ: ð31Þ

During filtering, zn ¼ hðxn½0�Þ is used to compute meas-
urement residuals when updating the true Kalman state, xn,
whereas the state variance estimate, Pn, is propagated using
the Jacobian, Hn. Furthermore, the Jacobian is used to
compute the Kalman gain. Hence, the filter can quickly

destabilize if the linearization of hð·Þ by Hn does not hold
during dynamical propagation, resulting in a rapid buildup
of errors.
In this construction, the entity zn is associated with an

abstract “signal”: a sequence formed by repeated applica-
tions of the likelihood function for the single-qubit mea-
surements in Eq. (1). The true stochastic qubit phase, fn, is
our Kalman hidden state, xn. Subsequently, we extract an
estimate of the true bias, zn, as an unnatural association of
the Kalman measurement model with Born’s rule. The
sequence fzng is not observable but can be inferred only
over a large number of experimental runs.
To complete the measurement action, we implement a

biased coin flip within the QKF filter given ỹn. While the
qubit provides measurement outcomes which are naturally
quantized, we require a theoretical model, Q, to generate
quantized measurement outcomes with statistics that are
consistent with Born’s rule in order to propagate the
dynamic Kalman filtering equations appropriately. In order
to build this machinery, we modify the procedure in
Ref. [39] to quantize zn using biased coin flips. In our
notation, we represent a black-box quantizer, Q, that gives
only a 0 or a 1 outcome based on ỹn:

dn ¼ QðỹnÞ ð32Þ

¼ Q(hðfnÞ þ vn): ð33Þ

The use of the notation ỹn is meant to indicate a corre-
spondence with yn introduced earlier, while the physical
meaning differs due to the discretized nature of the QKF.
Therefore, the stochastic changes in fỹng are represented in
the bias of a coin flip, subject to proper normalization
constraints, which maintains jỹnj ≤ 0.5:

Prðdnjỹn; fn; τÞ≡ BðnB ¼ 1;pB ¼ ỹn þ 0.5Þ: ð34Þ

QKF uses Eq. (34) to define a biased coin flip during
filtering, where nB represents a single coin flip, and pB
represents the stochastically drifting bias on the coin.
Kalman filtering with the coin-flip quantization defined
by Eq. (34) presents a departure from the classical
amplitude quantization procedures in Refs. [39,40].
From a computational perspective, we modify the

process-noise-feature definition from an AKF to a QKF.
We set Q≡ σ2ΓΓT → σ2I ∀ n, and I is a q × q identity
matrix from the AKF to the QKF. The rationale for this
modification is that it smears out the effect of white process
noise in a way that stabilizes inversions in the gain
calculation in the Kalman filter, but it does not correlate
any two Kalman states in time (a diagonal matrix). In
practice, this modification yields only mild improvements
over the original AKF process-noise-feature matrix.
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The definitions of fQ; hðxnÞ; Hn;Qg in this subsection
and dynamics fxn;Φg from the AKF now completely
specify the QKF algorithm for application to a discrete,
single-shot measurement record, as depicted in Fig. 1(a).

B. GPR

In GPR, correlations in the measurement record can be
learned if one projects data on a distribution of Gaussian
processes, PrðfÞ, with an appropriate encoding of their
covariance relations via a kernel, Σn1;n2

f . We return to the
linear measurement record and the definition of scalar
noisy observations yn corrupted by Gaussian measurement
noise, vn, as considered previously for the AKF, LSF, and
LKFFB. Under linear operations, the distribution of mea-
sured outcomes, yn, is also a Gaussian. The mean and
variance of PrðyÞ depends on the mean μf and variance Σf

of the prior PrðfÞ, and the mean μv ≡ 0 and variance R of
the measurement noise:

f ∼ Prfðμf;ΣfÞ; ð35Þ

y ∼ Pryðμf;Σf þ RÞ: ð36Þ

For covariance stationary f, correlation relationships
depend solely on the time lag ν≡ Δtjn1 − n2j between
any two time points n1, n2 ∈ ½−NT;NP�. An element of the
covariance matrix, Σn1;n2

f , corresponds to one value of lag,
ν, and the correlation for any given ν is specified by the
covariance function, RðνÞ:

Σn1;n2
f ≡ RðνÞ: ð37Þ

Any unknown parameters in the encoding of correlation
relations via RðνÞ are learned by solving the optimization
problem outlined in Sec. IVA. The optimized GPR model
is then applied to data sets corresponding to different
realizations of f. Let the indices n ∈ NT ≡ ½−NT; 0� denote
training points, and let a length N‡ vector contain the
arbitrary testing points n‡ ∈ ½−NT;NP�. These testing
points in machine-learning language encompass both state
estimation and prediction points in our notation. We now
define the joint distribution Prðy; f‡Þ, where f‡ represents
the true process evaluated by GPR at the desired test points:

�
f‡

y

�
∼N

��
μf‡

μy

�
;
�
KðN‡; N‡Þ KðNT;N‡Þ
KðN‡; NTÞ KðNT;NTÞ þ R

��
:

ð38Þ

The additional “kernel” notation Σf ≡ KðNT;NTÞ is ubi-
tiquous in GPR. Time-domain correlations specified by
RðνÞ populate each element of a matrix Kð·; ·Þ, where the
dimensions of the matrix depend on the vector length of
each argument. For example, for KðNT;NTÞ, the notation

defines a square matrix where diagonals correspond to
ν ¼ 0, and off-diagonal elements correspond to the sepa-
ration of two arbitrary points in time, i.e., ν ≠ 0.
Following Ref. [41], the moments of the conditional

predictive distribution Prðf‡jyÞ can be derived from the
joint distribution Prðy; f‡Þ via standard Gaussian identities:

μf‡jy ¼ μf þ KðN‡; NTÞ½KðNT;NTÞ þ R�−1ðy − μyÞ; ð39Þ

Σf‡jy ¼ KðN‡; N‡Þ
− KðN‡; NTÞ½KðNT;NTÞ þ R�−1KðNT;N‡Þ: ð40Þ

The prediction procedure outlined above holds true for any
choice of kernel RðνÞ. In any GPR implementation, the data
set, y, constrains the prior model, yielding an posterior
predictive distribution. The mean values of this predictive
distribution, μf‡jy, are the state predictions for the qubit
under dephasing at test points in N‡.
In our work, we focus on a “periodic kernel” (PER) to

encode a covariance function which is theoretically guar-
anteed to approximate any zero-mean covariance-stationary
process, f, in the mean-square limit, by having the same
structure as a covariance function for trigonometric poly-
nomials with infinite harmonic terms [38,42]. The sine-
squared-exponential kernel represents an infinite basis of
oscillators and is defined as

RðνÞ≡ σ2 exp

 
−
2 sin2

�
ωðBÞ
0

ν
2

�
l2

!
: ð41Þ

This kernel is described using just two key hyperpara-
meters: the frequency-comb spacing for our infinite basis of
oscillators, ω0, and a dimensionless length scale, l. We use
physical sampling considerations to approximate their
initial conditions prior to an optimization procedure,
namely, that the longest correlation length encoded in
the data sets the frequency resolution of the comb, and
the scale at which changes in f are resolved is limited
physically by the minimum time taken between sequential
Ramsey measurements:

ωðBÞ
0

2π
∼

1

ΔtN
; ð42Þ

l ∼ Δt: ð43Þ

Because the periodic kernel can be shown to be formally
equivalent to the basis of oscillators employed in the
LKFFB algorithm in a limiting case (see Appendix C
for a discussion using the results in Ref. [42]), the inclusion
of GPR using this kernel permits a comparison of the
underlying algorithmic structures for the task of predictive
estimation using spectral methods.
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For the analysis of covariance-stationary time series
under a GPR framework, we deemphasize popular kernel
choices such as a RBF, a RQ, and Matern kernels (e.g.,
MAT32) [41,43]. An arbitrary-scale mixture of zero-mean
Gaussian kernels probes an arbitrary area around zero in the
Fourier domain, as schematically depicted in Fig. 2(a).
While such kernels capture the continuity assumption that
is ubiquitous in machine learning, they are structurally
inappropriate for probing a process characterized by an
arbitrary power spectral density (e.g., Ohmic noise).
Another common kernel for time-series analysis is
a quasiperiodic kernel (QPER) defined by a product of a
RBF with a periodic kernel [44]. This product corresponds
to a convolution in the Fourier domain giving rise to a comb
of Gaussians at the expense of an increase in the number of
parameters required for kernel tuning. One can also
consider specific types of ARðqÞ processes using Matern
kernels of order qþ 1=2, but with increased restrictions on
the form of the coefficients [41,45]. A simple consideration
of autoregressive approaches suggests that a Matern kernel
for q ¼ 1 (MAT32) can be briefly trialed under GPR,
whereas high-q autoregressive processes are naturally and
generally treated under a KF framework. Further discussion
of kernel choice appears in Sec. V.

IV. ALGORITHM PERFORMANCE
CHARACTERIZATION

In the results to follow, our metric for characterizing
performance of optimally tuned algorithms is the normal-
ized Bayes prediction risk:

L̃BR ≡ LBRðnjIÞ
hðfn − μfÞ2if;D

; μf ≡ 0: ð44Þ

A desirable forward prediction horizon corresponds to
maximal n� ∈ ½0; NP� for which the normalized Bayes
prediction risk at all time steps n ≤ n� is less than unity.
We compare the difference in maximal forward prediction
horizons between algorithms in the context of realistic
operating scenarios. We begin here by introducing the
numerical methods employed for generating data sets on
which predictive estimation is performed.
We simulate environmental dephasing through a Fourier-

domain procedure described in Appendix A 2 [46] in order
to simulate an f which is mean-square ergodic and
covariance stationary. For the results in this paper, we
choose a flattop spectrum with a sharp high-frequency
cutoff for simplicity, as this choice of power spectral
density theoretically favors no particular choice of algo-
rithm but violates the Markov property.
In our simulations, we also must mimic a measurement

process which samples the underlying “true” dephasing
process. The algorithmic parameters fNT;Δtg represent a
sampling rate and Fourier resolution set by the simulated
measurement protocol; we choose regimes where the

Nyquist rate r ≫ 2. In generating noisy simulated measure-
ment records, we corrupt a noiseless measurement by
additive Gaussian white noise. Since f is Gaussian, the
measurement noise level, NL, is defined as the ratio between
the standard deviation of additive Gaussian measurement
noise,

ffiffiffiffi
R

p
, and the maximal spread of random variables in

any realizationf.We approximate themaximal spread off as
three sample standard deviations of one realization of a true f

value, NL ¼ ffiffiffiffi
R

p
=3

ffiffiffiffiffiffiffiffi
Σ̂n;n
f

q
. The use of a hat in this notation

denotes sample statistics. This computational procedure
enables a consistent application of measurement noise for
f from arbitrary, non-Markovian power spectral densities.
For the case where binary outcomes are required, we apply a
biased coin flip using Eq. (34).

A. Algorithmic optimization

All algorithms in this paper employ machine-learning
principles to tune unknown design parameters based on
training data sets. The physical intuition associated with
optimizing our filters is that we are cycling through a large
class of general models for environmental dephasing
and seeking the model(s) which best fit the data, subject
to various constraints. Optimizing over a general class of
models allows each filter to track stochastic qubit dynamics
under arbitrary covariance-stationary, non-Markovian
dephasing. We elect to deploy an optimization routine
with minimal computational complexity to enable nimble
deployment of KF and GPR algorithms in realistic labo-
ratory settings, particularly since LSF optimization is
extremely rapid for our application [28].
Kalman filtering in our setting poses a significant chal-

lenge for general optimizers, as the lack of theoretical bounds
on the values of (σ, R) results in large, flat regions of the
Bayes-risk function. Furthermore, the recursive structure of
the Kalman filter means that no analytical gradients are
accessible for optimizing a choice of cost function, and a
large computational burden is incurred for any optimization
procedure. We randomly distribute ðσk; RkÞ pairs for k ¼
1;…; K over 10 orders of magnitude in two dimensions in
order to sample the optimization space.
We then generate a sequence of loss values Lðσk; RkÞ for

each k value by considering a small region around n ¼ 0,
where the size of the region is an nL number of time steps
and we look forward or backward from n ¼ 0:

Lðσk; RkÞ≡
XnL
n¼1

LBRðnjI ¼ fσk; RkgÞ: ð45Þ

Here, LBRðnjI ¼ fσk; RkgÞ is given by Eq. (2), and it is
summed over 0 ≤ nL ≤ jNT j (0 ≤ nL ≤ jNPj) backward
(forward) time steps for state estimation (prediction). In the
notation for I above, we omit Kalman dynamical model
design parameters for an ease of reading. Typically, I would
include, for instance, the set of autoregressive coefficients
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in AKF and the set of fixed basis frequencies in LKFFB.
Values of nL are chosen such that the sequence fLðσk; RkÞg
defines sensible shapes of the total loss function over
parameter space and the numerical experiments in this
paper. A choice of small nL in state estimation ensures that
data near the prediction horizon are employed—a region
where the Kalman filter is most likely to converge.
Similarly, in state prediction, large nL will flatten the true
prediction loss function, as long-term prediction errors
dominate smaller loss values occurring during the short-
term prediction period. In addition, one can weight state
estimation and state prediction loss functions differently by
choosing different values of nL for state estimation and
prediction, though we set nL to be the same in both regions.
While simple and by no means optimal, our tuning
approach is computationally tractable and efficient com-
pared to the application of standard optimization routines,
where each loss value calculation requires a recursive filter
to act on a long measurement record. Furthermore, our
approach ensures that tuning procedures are performed off-
line such that a tuned algorithm is simple in its recursive
structure and performs rapid calculations at each time step.
An ideal parameter pair (σ�, R�) minimizes the Bayes

risk over K trials for both state estimation and prediction.
We define acceptable low-loss regions for state estimation
and prediction as being the set which returns a loss that is
less than 10% of the median risk over K trials. In the event
that low-risk regions do not exist for both state estimation
and prediction for a given parameter pair, we deem the
optimization to have failed, as the state estimation perfor-
mance is uncorrelated with the forward prediction [for an
illustration, see panel Fig. 7(h)].
In GPR, the set of parameters I ¼ fσ; R;ωðBÞ

0 ; lg requires
optimization. However, in contrast to the KF, no recursion
exists and analytic gradients are accessible to simplify the
overall optimization problem. Instead of minimizing Bayes
state estimation risk, we follow a popular practice of
maximizing the Bayesian likelihood. Initial conditions
and optimization constraints are derived from physical
arguments as described in Sec. III.

B. Performance of the KF using linear measurement

The general performance of the various KF algorithms
discussed above is illustrated in Fig. 4, which compares the
AKF and LKFFB algorithms using a linear measurement
record. Here, the solid black line represents the underlying
true f, and solid markers indicate noisy simulated linear
measurement data. Future predictions using the various KF
formalisms and the (nonrecursive) LSF filter [28] are
shown as colored open markers, based on these data.
The selected single realization of the prediction process
demonstrated in Fig. 4(a) is representative of a broad
ensemble of simulated data sets and demonstrates the
ability of all algorithms to perform a future prediction
with varying degrees of success.

In general, our objective is to maximize the forward
prediction horizon, n�, in any algorithmic setting. In
Figs. 4(b)–4(d), we explore the key determining factors,
setting the value of the prediction horizon under the three
main Kalman filtering algorithms treated here. We plot the
ensemble-averaged L̃BR as a function of forward prediction
time when adjusting the ratio of the cutoff frequency in the
noise, Jω0, to the sample rate in the measurement routine
(ωðSÞ ¼ 2π=Δt) without physical aliasing, such that the

Nyquist r ≫ 2 and ωðSÞ ≈ ωðBÞ=r, where ωðBÞ incorporates
a (potentially incorrect) bandwidth assumption about
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FIG. 4. (a) Solid dots depict yn against time steps n, and data
collection ceases at n ¼ 0. Optimized LSF, AKF, and LKFFB
yield predictions n > 0 in the blue region plotted as open, colored
markers. A black solid line shows one realization of a true fn,
drawn from a flattop spectrum with J true Fourier components
spaced ω0 apart and uniformly randomized phases. Other

parameters are ω0=ω
ðBÞ
0 ∉ Z (natural numbers); J ¼ 45 000;

ω0=2π ¼ 8
9
× 10−3 Hz, such that > 500 true components fall

between adjacent LKFFB oscillators; and NL ¼ 10%. (b)–(d)
The procedure in (a) is repeated for ensemble M different
realizations of f and noisy data sets to compute L̃BR for a
LSF, an AKF, and a LKFFB. L̃BR vs n ∈ ½0; NP� is plotted; the
dark-gray horizontal line marks L̃BR ≡ 1 for predicting the mean
μf ≡ 0 value. Vertical dashed lines mark the forward prediction
horizon, n�, where L̃BR ≲ 0.8 < 1 for all prediction time steps
0 < n ≤ n� in outperforming the prediction of the noise mean.
Marker color (dark indigo to pink) depicts the true f cutoff, Jω0,

varied relative to ωðBÞ ≡ ωðBÞ
0 JðBÞ ≈ rωðSÞ, with a fixed Nyquist

r ≫ 2, ω0=2π ¼ 0.497 Hz, J ¼ 20, 40, 60, 80, and 200;
NL ¼ 1%. In (a)–(d), a trained LKFFB is implemented with

ωðBÞ
0 =2π ¼ 0.5 Hz and JðBÞ ¼ 100 oscillators; trained AKF and

LSF models are q ¼ 100, with NT ¼ 2000, NP ¼ 50 steps,
Δt ¼ 0.001 s, M ¼ 50 runs, and K ¼ 75 optimization trials.
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dephasing noise for the LKFFB. Here again, we have a
forward prediction horizon for time steps 0 < n < n� if
L̃BR ≲ 1 for all time steps in this region, and an algorithm
seeks to maximize n�. In this region, each algorithm
predicts future dynamics better than naively predicting
the mean behavior of f (μf ≡ 0), indicated by a dark-gray
horizontal line.
The prediction horizon, indicated approximately by

dashed vertical lines, for all algorithms increases as the
measurement becomes sufficiently fast to sample the
highest frequency dynamics of f. We confirm numerically
that the absolute prediction horizons for any algorithm are
arbitrary and adjustable through the sample rate, allowing
us to restrict our analysis to comparative statements
between algorithms for future results. While differences
between protocols appear to be reasonably small, we note
that, in most cases examined, the AKF demonstrates
superior performance to the LKFFB, subject to the realistic
constraint that the true dynamics of f cannot be perfectly
projected onto the basis used in the LKFFB (the latter
situation corresponds to substantial prior knowledge of the
dynamics of f). The role of undersampling in the LKFFB
becomes pronounced as predictive estimates lead to unsta-
ble behavior relative to the naive prediction of
μf ¼ 0 in the case Jω0=ωðBÞ ¼ 2 in Fig. 4(d). The AKF
and the LSF share autoregressive coefficients, and therefore
both algorithms demonstrate comparable L̃BR prediction
risk in the ensemble average.
A key implied benefit of the use of Kalman filtering vs

the LSF with high-order autoregressive dynamics alone is
the addition of robustness against measurement noise. In
order to probe measurement noise filtering capability
numerically, we perform direct comparisons of filter
performance under varying measurement-noise strength
for both the AKF and the LSF. Since autoregressive
coefficients learned in (noisy) environments are recast in
Kalman form, we test measurement-noise filtering in
Kalman frameworks enabled by the design parameter R.
In Fig. 5(a), we plot the L̃BR prediction risk for the AKF
and the LSF as a ratio such that a value greater than unity
implies that the LSF outperforms the AKF. In cases (i)–(iv),
we increase the applied noise level to our data sets fyng
representing simulated measurements on f. For the applied
measurement NL > 1% in (ii)–(iv), we find that the AKF or
LSF < 1 and the AKF outperforms the LSF for the
conditions studied here, with a general trend towards
increasing benefits as noise increases, until the noise
becomes so large (iv) that the benefits fluctuate as a
function of n. Calculations of the ensemble-averaged
L̃BR in Fig. 5(b) demonstrate that all ratios reported in
Fig. 5(a) correspond to a useful forward prediction horizon.
In machine-learning or optimal control settings, the

robustness of the learning procedure to small changes in
the underlying system is an essential characteristic of the
algorithm. In our case, we have already seen that the quality

of projection of the true dynamics of f onto the LKFFB
basis can have a significant impact on the quality of
learning and the predictive estimation. We now explore
this initial finding in more detail.
In Fig. 6, we simulate various learning conditions, includ-

ing (a) perfect learning in the LKFFB, (b) imperfect projec-
tion relative to the LKFFB basis, (c) imperfect projection
combined with finite algorithm resolution, and (d) imperfect
learning and undersampling relative to the true noise band-
width. The ordering of the figure presentation highlights the
degree of impact of the introduced pathologies on the
LKFFB. By contrast, we find reasonable model robustness
in the AKF and the LSF at the expense of performance in the
somewhat unrealistic perfect learning case.
We expose the underlying optimization results for choos-

ing an optimal ðσ�; R�Þ for the LKFFB in Figs. 6(e)–6(h) and
for the AKF in Figs. 6(i)–6(l). Individual sample points are
highlighted as solid dots, while low-loss pairs in this 2D
space are highlighted for giving low state estimation (purple)
or prediction (crimson) risk via the shaded circles. As
the model pathologies indicated above increase, these
data demonstrate a divergence between regions of the
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FIG. 5. Measurement noise filtering in AKF vs LSF. (a) Dashed
lines with markers depict the ratio of L̃BR for AKF to LSF against
time steps n > 0, for cases (i)–(iv) with NL ¼ 0.1%, 1.0%, 10.0%,
and 25.0%. The green trajectory shows that the LSF outperforms
theAKFwith a ratio> 1 for n ≤ n�; crimson trajectories show that
the AKF outperforms the LSF with a ratio< 1 for n ≤ n�. (b) L̃BR
againstn is plotted for cases (i)–(iv),which confirms that amaximal
forward prediction horizon marked by n� exists for all ratios in
(a) for both the LSF and the AKF. In (a) and (b), the AKF and the
LSF share identical fϕqg. True f is drawn from a flattop spectrum
with ω0=2π ¼ 8

9
× 10−3 Hz, J ¼ 45 000, NT ¼ 2000, NP ¼ 100

steps,Δt ¼ 0.001 s, and r ¼ 20, such that Fig. 6(c) corresponds to
case (ii). The AKF is optimized with q ¼ 100, M ¼ 50 runs, and
K ¼ 75 trials.
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optimization space which permit low-loss state estimation
and forward prediction for the LKFFB. By contrast, the
overlap in low-loss Bayes-risk regions does not change for
the AKF across Figs. 6(i)–6(l).
The Kalman filtering algorithms employed here combine

recursive state estimation with the establishment of a
dynamical model in the Fourier domain. Therefore, one
way to explore algorithmic performance is to look directly
at the efficacy of spectral estimation relative to the true
(here, numerically engineered) hidden dynamics of f. For
both the LKFFB and the AKF, we plot the extracted power

spectral density, SðωÞ, as a function of the angular
frequency, ω, for different measurement sampling condi-
tions in Fig. 7 against the true spectrum used to define f.
These simulated experimental conditions match those
introduced in Fig. 4(b).
In the case of the LKFFB, we plot the learned instanta-

neous amplitudes from a single run (blue markers), and for
the AKF, we extract the optimized algorithm parameters as
described above (red markers). Under the assertion that the
LSF implements an ARðqÞ process, the set of trained
parameters, ffϕq0≤qg; σ2g, from the AKF allows us to
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FIG. 6. Comparison of KF performance under various imperfect learning scenarios. (a)–(d) True noise properties are varied to
introduce pathological learning with respect to a fixed algorithmic configuration: ω0=2π ¼ 0.5, 0.499, 8

9
× 10−3, 8

9
× 10−3 Hz, and

J ¼ 80, 80, 45 000, and 80 000 respectively. The relationship between the LKFFB basis and the true noise spectrum is shown
schematically above the columns. (a) Perfect learning. (b) Imperfect projection on the LKFFB basis. (c) Finite computational Fourier
resolution. (d) Relaxed basis bandwidth assumption. (a)–(d) L̃BR against time steps n > 0 is shown for the LKFFB, the AKF, and the
LSF. (e)–(l) Optimization results for (top row) the LKFFB and (bottom row) the AKF in each of the four regimes in (a)–(d). The gray
dots depict K random (σ2, R) pairs, where M realizations of f, D are used to calculate L̃BR for each pair. Purple (crimson) circles
represent low-loss regions where the risk value in Eq. (45) for (σ2, R) is < 10% of the median risk value during state estimation
(prediction) for −nL < n < 0 (nL > n > 0), with nL ¼ 50. The black star, (σ�, R�), minimizes risk values over the purple circles during
state estimation. A KF filter is “tuned” if an optimal (σ�, R�) value lies in the overlap of low-loss regions for state estimation (purple) and
prediction (crimson); disjoint regions in (h) show LKFFB tuning failure. KF algorithms set up with q ¼ 100 for the AKF; JðBÞ ¼ 100

and ωðBÞ
0 =2π ¼ 0.5 Hz for the LKFFB, with NT ¼ 2000, NP ¼ 100 steps, Δt ¼ 0.001 s, and r ¼ 20; and NL ¼ 1%.
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derive experimentally measurable quantities, including
the power spectral density of the dephasing process:
SðωÞ ¼ σ2ð2πj1 −Pq

q0¼1
ϕq0e−iωq

0 j2Þ−1 [35].
The critical feature in these data sets is the existence of a

flattop spectrum possessing a sharp high-frequency cutoff.
Both classes of Kalman filtering algorithm successfully
identify this structure and locate this high-frequency cutoff.
In general, however, the LKFFB provides superior spectral
estimation relative to the AKF and enables a better
estimation of the signal strength in the Fourier domain,
even in the presence of an imperfect projection of f onto the
basis used in the LKFFB. The only case in which the
LKFFB fails is in Fig. 7(d), where the LKFFB basis is ill
specified relative to the true noise bandwidth. The observed
behavior is somewhat surprising given the generally supe-
rior performance of the AKF in a predictive estimation, but
it does highlight the practical difference between a Fourier-
domain spectral estimation and a time-domain prediction.

C. Performance of the quantized Kalman filter

The discrete nature of projective measurement outcomes
in quantum systems poses a potential challenge for Kalman
filters in the event that measurement preprocessing as in

Fig. 1(b) is not performed. We test filter performance for a
predictive estimation when only binary measurement out-
comes are available via the QKF. To reiterate, the QKF
estimates and tracks hidden information, fn, using the
Kalman true state xn. In our construction, the associated
probability for a projective qubit measurement outcome,
∝ zn, is not inferred or measured directly but given
deterministically by Born’s rule encoded in the nonlinear
measurement model, zn ¼ hðfnÞ. The measurement action
is completed by performing a biased coin flip, where zn
determines the bias of the coin.
For the QKF, the normalized ensemble-averaged pre-

diction risk, hðzn − ẑnÞ2if;D=hðzn − μzÞ2if;D, is calculated
with respect to z as the relevant quantity parametrizing the
qubit-state evolution, instead of the stochastic underlying f.
This quantity is labeled “Norm. risk” in Fig. 8 and we test
whether hðzn− ẑnÞ2if;D=hðzn−μzÞ2if;D < 1 for 0 < n < n�

can be achieved for numerical experiments considered
previously in the linear regime. In particular, we generate

(a) (b)

(c) (d)

AKFLKFFB True

FIG. 7. (a)–(d) Blue (red) open markers plot the LKFFB (AKF)
spectrum estimates, and the true spectrum (flattop) of f is plotted
as a black solid line. The dashed black vertical line marks the true
noise cutoff, Jω0, and this cutoff is varied relative to a

measurement sampling rate, ωðSÞ, and ωðBÞ ≡ ωðBÞ
0 JðBÞ ≈ ωðSÞ=r

in the LKFFB, such that ω0=2π ¼ 0.497 Hz, J ¼ 20, 40, 80, and
200. For the LKFFB, the blue open markers are ∝ kx̂jnk2 in a

single run with ωðBÞ
0 =2π ¼ 0.5 Hz for j ∈ JðBÞ ¼ 100 oscillators;

the dashed blue vertical line marks the edge of the LKFFB basis.
For the AKF, red markers are ŜðωÞ computed using the learned
fϕq0≤qg and optimized σ� values, with order q ¼ 100. In all plots,
the zeroth Fourier component is omitted on the log scale.
NT ¼ 2000, NP ¼ 50 steps, Δt ¼ 0.001 s, and r ¼ 20, with
M ¼ 50 runs and K ¼ 75 trials. NL ¼ 1%.
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FIG. 8. Normalized risk against n > 0 plotted for a QKF in
open markers; the dark-gray line at μf ≡ 0 depicts performance
underpredicting the noise mean. QKF outperforms predicting the
mean if open markers lie in the green regions. Marker color (dark
indigo to pink) depicts true noise cutoff varied by
Jω0=ωðBÞ ¼ 0.2, 0.4, 0.6, and 0.8 for f defined identically to
Fig. 7 with ω0=2π ¼ 0.497 Hz, J ¼ 20, 40, 60, and 80;
NL ¼ 1%. (a) We obtain fϕq0≤qg, q ¼ 100 coefficients from
AKF or LSF acting on a linear measurement record generated
from true f. A new truth, f0, is generated from an ARðqÞ process
using fϕq0≤qg, q ¼ 100 as true coefficients and by defining a
known, true σ. Quantized measurements from f0 are obtained;
data are corrupted by measurement noise of a true, known
strength R. (b) We use fϕq0≤qg, q ¼ 100 coefficients from (a),
but we generate quantized measurements from the original, true
f. QKF noise design parameters are optimized for (σ�AKF ≤ σQKF,
R�
AKF ≤ RQKF) with M ¼ 50 runs and K ¼ 75 trials. For (a) and

(b), NT ¼ 2000, NP ¼ 50 steps, and Δt ¼ 0.001 s, r ≫ 2.
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true f defined in numerical experiments in Fig. 4(b) (and
Fig. 7) for q ¼ 100 and varying sample rates.
We isolate the role of the measurement action by first

inputting into the QKF a true dynamical model rather than a
dynamical model learned as in the standard AKF. To
specify true dynamics, we begin with a set of fϕq0≤qg
and exactly derive a new f0. As a result, the full set of
parameters relevant to the filter, ffϕq0≤qg; σ; Rg, are
perfectly defined and known, and the filter simply acts
on single-shot qubit measurements. These simulations
reveal that, subject to the generic measurement oversam-
pling conditions introduced above, the QKF is able to
successfully enable predictive estimation. As in the linear
case, the absolute forward prediction horizon is arbitrary
relative to ω0J=ωðBÞ and, implicitly, an optimization over
the choice of q for a finite data size, NT , in our application.
Our simulations reveal that the QKF is considerably

more sensitive to measurement noise, model errors, and the
degree of undersampling than the linear model, as shown in
Fig. 8(b). Here, the QKF incorporates a learned dynamical
model from an AKF in the linear regime, and we tune
ðσ; RÞ for use in the QKF. In particular, we explore σ ≥
σ�AKF to incorporate model errors as fϕq0≤qg are learned in
the linear regime. We also incorporate increased measure-
ment noise via R ≥ R�

AKF, as QKF receives raw data that
have not been preprocessed or low-pass filtered. The
underlying optimization problems are well behaved for
all cases in Fig. 8(b) (not shown). As the sampling rate is
reduced, the QKF forward prediction horizon collapses
rapidly; i.e., there is a hðzn − ẑnÞ2if;D=hðzn − μzÞ2if;D > 1

prediction risk for all n > 0.

D. Failure of GPR in predictive estimation

Under a GPR framework, we test whether predictive
performance can be improved by considering the entire
measurement record (at once) and projecting this record on
an infinite basis of oscillators summarized by a periodic
kernel. We investigate several different types of GPR
models for M ¼ 50 realizations of f in the top panel of
Fig. 9. For the results shown, we use a popular choice of a
maximum-likelihood optimization procedure implemented
via the L-BFGS algorithm in GPy [47].
We find that the underlying optimization procedure for

training on our measurement records remains difficult
despite our having access to an analytical calculation for
the cost function. For all results in Figs. 9(a) and 9(b), we
use significant manual tuning prior to deploying the
automated procedures in GPy. Hence, we focus on using
numerical results under GPR to illuminate structural
implications of the choice of kernels in our application,
rather than making comparative statements about kernel
performance.
The results we assemble demonstrate that the imple-

mentation of GPR with a periodic kernel critically depends
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FIG. 9. (a) L̃BR vs n‡ (in units of number of time steps) are
plotted for GPR with a periodic kernel. The dark-gray horizontal
line at unity for μf ≡ 0 marks L̃BR underpredicting the mean;
GPR outperforms predicting the mean if data fall below this line.
The gray-black markers correspond to optimization within
physical bounds for κ ≤ 0 (kernel resolution at or above Fourier
resolution); crimson markers and lines depict optimization within
unphysical regimes, κ > 0, with solid lines in the regime with
high values of κ ≫ 0. The remaining fR; σ; lg values are
optimized for non-negative values. (Inset) L̃BR vs n‡ of a periodic
kernel (PER) with κ ≈ 103 is plotted against results from naively
trained Gaussian kernels (RBF, RQ); a Matern kernel (MAT32)
and a quasiperiodic kernel (QPER). (b)–(d) True state fn vs n (the
black solid line) and GPR predictions μ̂f‡ vs n‡ (the open
markers) plotted for a periodic kernel for tracking a sinusoid
with frequency ω0; the noisy data record (not shown) ceases at
n ¼ 0. We fix κ ¼ 0 and 70; triangles plot predictions for
manually tuned fR; σ; lg values; circles plot predictions for the
optimized fR; σ; lg values. Vertical dashed lines mark n ¼ κ,
where we overlay true f at the beginning of the data record as a

red dashed line. (b) Perfection projection is possible: ω0=ω
ðBÞ
0 ∈

Z (natural numbers) and ω0=2π ¼ 3 Hz. (c) Imperfect projec-

tion, with ω0=ω
ðBÞ
0 ∉ Z, ω0=2π ¼ 3 1

3
Hz, and κ ¼ 0. (d) We

moderately raise κ > 0, such that ω0=ω
ðBÞ
0 ≫ 0 ∉ Z for the

original ω0=2π ¼ 3 Hz. (e) We test (c) and (d) for κ > 0,

ω0=ω
ðBÞ
0 ∉ Z, and ω0=2π ¼ 3 1

3
Hz. For (b)–(e), NT ¼ 2000,

NP ¼ 150 steps, and Δt ¼ 0.001 s; NL ¼ 1%.
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on the frequency basis comb spacing, ωðBÞ
0 , or, equivalently,

a deterministic quantity, κ:

κ ≡ 2π

ΔtωðBÞ
0

− NT: ð46Þ

The term 2π=ΔtωðBÞ
0 is the theoretical number of measure-

ments that, in principle, are required to physically achieve
the Fourier resolution set by the kernel hyperparameter,

ωðBÞ
0 , and the fundamentally discrete nature of a sequential

Ramsey measurement record, expressed by Δt. Hence, if
κ ¼ 0, the physical Fourier resolution determined by the
data set matches the comb spacing in the periodic kernel.
For κ > 0, the comb spacing in the periodic kernel is less
than the Fourier spacing defined by the experimental data-
collection protocol, with total measurements NT .
In Fig. 9(a), we see that GPR predictive performance for

the periodic kernel improves as the kernel’s comb spacing
is reduced. For each value of κ, we plot L̃BR against time
steps forward, n‡, where the double dagger corresponds to
the evaluation of a predictive GPR distribution on arbi-
trarily chosen test points, n‡ ¼ −NT;…;−1; 0; 1;…; NP.

Here, the optimizer is constrained to a region in 2π=ωðBÞ
0

parameter space that corresponds to the order of magnitude
for κ. The gray markers correspond to κ ≤ 0, where the
algorithm operates above (or at) the Fourier resolution. In
this physically motivated parameter regime, the prediction
fully fails. It is not until we set κ ∼ 103—a nominally
unphysical operating regime where the algorithm’s fre-
quency-comb spacing is smaller than the Fourier resolution
—that the prediction succeeds (red traces). The latter case is
physically difficult to interpret given that, in this regime, we
find the best ensemble-averaged predictive performance
only by providing unphysical freedom to the algorithm. We
note that the optimized length scale for the periodic kernel
remains on the order of Δt ∼ 10Δt, such that, for all of the
red trajectories in Fig. 9(a), we are operating in a high-

(2π=ωðBÞ
0 ), low-l limit.

We contextualize the predictive performance of the GPR
PER (the red solid line) in the high-κ, low-l limit by
comparing it to predictions derived using other standard
kernels (dotted lines) in the inset of Fig. 9(a). In such
circumstances, the predictive performance of the periodic
kernel prediction is on par with an application of a RBF and
a scale mixture of zero-mean RQs. A Matern kernel
(MAT32) and a QPER yield lower-than-anticipated per-
formance. Further discussion of the choice of kernel
appears in Sec. V. For each individual time trace contrib-
uting to the ensemble averages appearing here, we observe
that all kernels (PERs, RBFs, RQs, MAT32s, and QPERs)
yield good state estimations, and the state estimate at
n‡ ¼ −1 agrees well with the truth. For GPR with
PERs, RBFs, and RQs, the state estimate at n‡ ¼ −1
smoothly decays to the mean value (zero) for n‡ ≥ 0,

and this effect yields a favorable normalized Bayes pre-
diction risk immediately after n‡ > 0, depicted by the solid
lines in the inset of Fig. 9(a).
In order to illustrate the operating mechanism for the

periodic kernel, we dramatically simplify the model used
for f in Fig. 9(a) and replace it with a single-frequency sine
curve. Figures 9(b)–9(e) demonstrate the prediction routine
for GPR using a periodic kernel on a simplified version of
f, and, as before, the predictions are always conducted
from time step zero. For this simple example, the periodic
kernel learns Fourier information in the measurement
record enabling interpolation using test points n‡ ∈
½−NT; 0� for the cases in all panels of Figs. 9(b)–9(e),
and atypical features are seen only for test points in the
prediction region. We consider predictions from a manually
tuned model (the triangles) and an optimized GPR model
where the remaining free fσ; R; lg parameters are tuned
using GPy (the circles).
An examination of different cases for imperfect learning

reveal that this discontinuity exhibits deterministic behav-
ior linked to the underlying structure of the algorithm,
namely, to the value of κ. In our numerical experiments, we
find that, in all cases, of imperfect learning under GPR with
a periodic kernel, a discontinuity in the prediction sequence
arises at n‡ ¼ κ. These discontinuities are marked by the
vertical dashed lines in all panels of Figs. 9(b)–9(e).
However, another feature appears which we identify as
being linked to oversampling of the underlying process
determining f. In such cases, the algorithm simply predicts
zero out to n‡ ¼ κ before discontinuously predicting future
evolution, which does not appear to be similar to the true
value of f. By contrast, an optimized model gives smoothly
varying predictions which still adhere to the underlying
behavior set by κ for n‡ > 0.
In Figs. 9(b)–9(e), we also plot the value of f given from

n ¼ −NT , the start of the data set, on top of the prediction
from n‡ ¼ κ. Here, we see that the prediction provided by
GPR matches the earliest stages of the underlying data set
well. Through various numeric experiments, we find that
the action of GPR in such parameter regimes (moderately
positive values of κ > 0) appears to be to simply repeat the
learned values of f from n ¼ −NT beginning at n‡ ¼ κ.
Accordingly, these predictions rarely describe the under-
lying forward dynamics of f well.
As we enter the high-κ regime, κ ≫ 0, the features in

Figs. 9(b)–9(e) disappear, andGPRpredictions begin to track
the (slow moving) “truth” when n‡ ≫ 0. Analogous to the
inset in Fig. 9(a), we see the performance of PERs approach
that of standard Gaussian kernels in this simplified case.

V. DISCUSSION

The numeric simulations we perform in this work probe
a wide variety of operating conditions in order to explore
the algorithmic pathologies of leading forecasting tech-
niques drawn from engineering, econometrics, and
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machine-learning communities when applied to the pre-
dictive estimation of qubit evolution. A qualitative sum-
mary of our observations and key algorithmic differences is
given in Table I for ease of reference.
Our central finding is that, overall, the autoregressive

Kalman filter provides an effective path to perform both
state estimation and forward prediction for non-Markovian
qubit dynamics. Recasting dynamics into an AKF filter,
importantly, provides model robustness against details of
the underlying dynamics as well as a filtering of noise that
allows it to outperform the simpler LSF in Ref. [28].
Measurement noise filtering is enabled in the Kalman
framework through the optimization procedure for R and
has a regularizing (smoothing) effect. Additionally, opti-
mization of the imperfectly learned dynamical model is
provided through the tuning of σ. The joint optimization
procedure over ðσ; RÞ ensures that the relative strength of
the noise parameters is also optimized.
The AKF is also demonstrated to work well with

discretized projective measurement models via what we
refer to as the QKF. In the QKF, we employ single-shot,
discretized qubit data while enabling model-robust qubit-
state tracking and increased measurement-noise filtering
via the underlying AKF algorithm. However, we find that
the QKF is vulnerable to the buildup of errors for arbitrary
applications, and we provide three explanatory remarks
from a theoretical perspective. First, the Kalman gains are
recursively calculated using a set of linear equations of
motion which incorporate the Jacobian Hn of hðxnÞ at
each n. All nonlinear Kalman filters perform well if errors
during filtering remain small such that the linearization

assumption holds at all time steps. Second, measurements
are quantized, and hence residuals must be f−1; 0; 1g rather
than continuously represented floating-point numbers. In
our case, the Kalman update to xn at n mediated by the
Kalman gain cannot benefit from a gradual reduction in
residuals. A third effect incorporates the consequences of
both quantized residuals and a nonlinear measurement
action. In linear Kalman filtering, Kalman gains can be
precalculated in advance of the acquisition of any meas-
urement data: the recursion of Kalman state variances Pn
can be decoupled from the recursion of Kalman state
means, xn [31]. In our application, quantized residuals
affect the Kalman update of xn and, furthermore, they affect
the recursion for the Kalman gain via the state-dependent
Jacobian, Hn.
In this context, we demonstrate numerically that the

QKF achieves a desirable forward prediction horizon when
the buildup of errors during filtering is minimized, for
example, by specifying Kalman state dynamics and noise
strengths perfectly, and/or by severely oversampling rela-
tive to the true dynamics of f. At present, we simply
interpret our results on the QKF as a demonstration that one
may, in principle, track stochastic qubit dynamics using
single-shot measurements under a Kalman framework. The
QKF also has the benefit, as constructed, of reverting to the
AKF if suitable preprocessing of data is performed prior to
execution of the iterative state estimation algorithm. In
common laboratory settings, the measurement protocol
may be effectively linearized through a simple averaging
of multiple single-shot measurements, the application of
Bayesian estimation protocols, or other preprocessing

TABLE I. Overview of performance results for all algorithms in this work across all frameworks. Column 2 lists mechanisms for data
input (recursive or batch) and the key structural comparisons being made between algorithms. Columns 3 and 4 qualitatively assess
performance during qubit-state estimation (n < 0) and prediction (n ≥ 0); we comment on the conditions in which algorithms are found
to perform strongly or to fail in columns 5 and 6.

Algorithm Structure State Estimation Prediction Advantages Weaknesses

Kalman,
AKF

Recursive; autoregressive
dynamical model

Good Best Robust to measurement
noise and variety
of operating regimes

Need to train AR model
prior to filtering and
prediction

Kalman,
LKFFB

Recursive; Fourier
synthesized
dynamical model

Good Moderate Robust to measurement
noise

Oscillator structure not
robust in all operating
regimes

Kalman,
QKF

Recursive;
single-qubit data,
autoregressive
dynamical model

Moderate Moderate Direct processing of
single-shot qubit data

Susceptible to rapid error
accumulation via model
nonlinearities and binary
data

Least squares,
LSF

Batch processing;
linear regression

Good Good Rapid extraction of
autoregressive dynamics
from large data sets

Not robust against
measurement noise

GPR (PER) Batch processing;
Bayesian data
constrained model
selection

Good Poor Good pattern interpolation
during state estimation

Susceptible to producing
numeric artifacts
in forward prediction
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identified above. So long as the preprocessing takes place
on timescales that are fast relative to the underlying qubit
dynamics, the measurement linearization has no impact
other than to change the effective sample rate of the
measurements. Thus, it is our view that full implementation
of the QKF is not essential if improved optimization
routines are not accessible.
It is possible that QKF forward prediction horizons in

realistic learning environments can be improved by solving
the full qþ 2 optimization problem for ffϕq0≤qg; σ; Rg,
rather than by employing the approach taken in this paper.
However, full optimization poses its own challenges given
the observations we make about the optimization land-
scape, even for the 2D optimization problem faced in the
AKF. More sophisticated, data-driven model-selection
schemes are described for both KF and kernel learning
machines (such as GPR) in the literature (see, e.g.,
Refs. [48,49]). Beyond standard local-gradient and simplex
optimizers, we consider coordinate ascent [50] and particle
swarm optimization techniques [51] to be promising,
nascent candidates, and their application remains an open
research question. One may also consider switching from a
high-order ARðqÞ to an ARMA model with a smaller
number of optimization parameters. Typically, this switch
is accomplished by incorporating greater prior information
about the underlying dynamic process in the design of the
ARMA model and/or using model-less particle-based or
unscented filtering techniques to overcome nonlinearities in
an ARMA representation (see, e.g., Ref. [2]). The latter set
of techniques are well adapted for nonlinear models but are
likely to require a modification to allow for non-Markovian
dynamics (e.g., by designing an appropriate transition
probability for otherwise Markov resampling procedures);
by contrast, a typical recursive ARMA formulation for our
application may track temporal correlations but be ill
equipped for nonlinear coin-flip measurements. One
expects a straightforward application of such procedures
to be complicated.
Our general results on the use of autoregressive models

for building Kalman dynamical models stand in contrast to
Fourier-domain approaches in the LKFFB and GPR using a
periodic kernel; both show significant performance degra-
dation in cases when the learning of state dynamics is
imperfect. In investigating the loss of performance for the
LKFFB, we find that the efficacy of this approach depends
on a careful choice of a probe (i.e., a fixed computational
basis) for the dynamics of f capturing the effect of
dephasing noise on the qubit. In the imperfect learning
regime of Fig. 4 and, identically, Fig. 7, the LKFFB
reconstructs Fourier-domain information to high fidelity
across a range of sampling regimes but is outperformed by
the AKF in the time domain (Fig. 4). Since the LKFFB
tracks instantaneous amplitude and phase information
explicitly for each basis frequency, the loss of the
LKFFB time-domain predictive performance must accrue

from a difficulty in tracking the instantaneous phase—
rather than the amplitude—information.
While the difficulty of an instantaneous phase estimation

is likely to be a disadvantage for the time-domain predictive
performance of LKFFB, our results show that a Fourier-
domain approach yields high-fidelity reconstructions of a
power spectral density describing f. These reconstructions
appear to be robust against imperfect projection on the
LKFFB oscillator basis even as oversampling is reduced.
These results suggest that an application of the LKFFB
outside of predictive estimation could be tested against
standard spectral estimation techniques in future work.
The challenge in adapting GPR for the task of a time-

domain predictive estimation proves to be more striking. In
our numerical simulations, under conditions comparable to
those tested in the AKF, the values of a normalized Bayes
prediction risk for all GPR models are at least an order of
magnitude greater than the comparable performance of the
AKF or LKFFB [refer to Fig. 5(b)(ii) and, equivalently,
Fig. 6(c)]. This difference is somewhat surprising because,
in the limit in which Γn is set to the identity in the LKFFB
and an infinite basis of oscillators in the periodic kernel is
truncated at the finite value, JðBÞ, both the LKFFB and the
GPR PER are formally equivalent to classical Kalman
filtering for a collection of JðBÞ independent state-space
resonators [42]. In this limit, the true f is described by
theoretically identical covariance functions in both the KF
and GPR frameworks. While we do not operate in this
regime, one would expect the predictive capabilities of
these two algorithms to be comparable.
In contrast to our observations for the various flavors of

KF tested here, we observe that GPR predictions with a
periodic kernel are useful for filtering or retrodiction but
appear to have limited meaning for forward predictions for
time steps n ¼ n‡ > 0. In our application, predictive
performance of GPR with a periodic kernel for κ ¼ 0 is
shown to yield poor predictive performance over the
ensemble average [Fig. 9(a)]. For the unexpected regime
of κ ≫ 0 and relatively small fixed l values, predictive
performance improves and the periodic kernel performs
similarly to RBFs and RQs. In this, a high-κ and a low-l
regime, the sin term of the periodic kernel is slowly moving
[sinðxÞ ≈ x], and hence the argument of the exponential in
the periodic kernel approximates a Gaussian, reducing to a
RBF kernel. Our numerical investigations show that an
optimized RQ kernel consistently chooses parameter
regimes where a RQ also converges to a RBF. For the
operating regimes pertinent to our application, it appears
that the choice of the periodic, RBF, and RQ kernels
produce theoretically equivalent results for forward pre-
dictions of the qubit state. In our analysis, these “forward
predictions” simply arise from a smoothed decay of state
estimates starting from test point n‡ ¼ −1 to the noise
mean for test points n‡ > 0, and they are difficult to
interpret compared to their Kalman counterparts.
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Our numerical characterization of the periodic kernel
for a simple, noiseless f demonstrates that this kernel
learns Fourier-domain amplitude information in a way
that is better suited for pattern fitting than forward
prediction. The predictive time-domain sequence of state
estimates is repetitive at n ¼ n‡ ¼ κ and can be inter-
preted as successful qubit-state predictions only when f is
perfectly learned (no discontinuities appear). When learn-
ing is imperfect, however, GPR with a periodic kernel is
able to learn Fourier amplitudes to provide good retro-
dictive state estimates for n‡ < 0, but forward predictions
for n‡ > 0 typically fail. Unlike the LKFFB, we believe
the periodic kernel does not permit actively extracting and
updating phase information for each individual basis
oscillators at n‡ ¼ κ. Since phase information can be
recast as amplitude information for any fixed-frequency
oscillator, one would naively expect that forward predic-
tions can be improved by increasing κ moderately, such
that the higher-order terms in a series expansion of the sin
term are nontrivial and sinðxÞ ≈ x cannot apply. However,
any positive value of κ means that we are probing
dynamics at frequencies lower than those appearing in
the data set. As such, a GPR-PER model predicts zero for
n‡ ∈ ½0; κ�, κ > 0 before reviving at κ. The use of a
procedure optimizing kernel noise parameters fσ; Rg does
not change the behavior as n‡ → κ but does smooth the
discontinuities, as illustrated in Fig. 9(f). In letting κ ≫ 0
(extremely large), we lose the uniqueness of the periodic
kernel in summarizing an infinite basis of oscillators, and
standard Gaussian kernels (e.g., RBF and RQ) are likely
to apply.
It is possible that the choice of more-complex kernels

could enhance forward time-series predictions via GPR,
but they bring additional complications which currently
remain unresolved in relation to the current application.
As one example, our ability to use numerical investiga-
tions to inform kernel design is further distorted by the
need for a robust optimization procedure, as illustrated by
lower-than-anticipated predictive performance observed
for QPERs. Another class of GPR methods—namely,
spectral mixture kernels and sparse spectrum approxima-
tion using GPR—was explored in Refs. [52,53]. However,
these techniques also require efficient optimization pro-
cedures to learn many unknown kernel parameters,
whereas the sine-squared exponential in the periodic
kernel is parametrized only by two hyperparameters. In
addition to spectral methods, the generalization of MAT32
to higher qþ 1=2 models probes only a subset of all
possible ARðqÞ processes, as the restrictions on autore-
gressive coefficients in Matern kernels are greater than the
general case considered under an AKF in this paper. A
detailed investigation of the application of such methods
for forward prediction beyond pattern recognition, and
with limited computational resources, remains an area for
future investigation.

VI. CONCLUSION

In this paper, we provide a detailed survey of machine-
learning and filtering techniques applied to the problem of
tracking the state of a qubit undergoing non-Markovian
dephasing via a record of projective measurements. We
specifically consider the task of performing predictive
estimation: learning dynamics of the system from the
measurement record and then predicting evolution forward
in time. To accommodate stochastic dynamics under
arbitrary dephasing, and without an a priori dynamical
model, we choose two Bayesian learning protocols—GPR
and KF. All Kalman algorithms predict the qubit state
forward in time better than predicting mean qubit behavior,
indicating successful prediction, though an autoregressive
approach to building the Kalman dynamical model dem-
onstrated enhanced robustness relative to Fourier-domain
approaches. Forward prediction horizons could be arbi-
trarily increased for all Kalman algorithms by oversam-
pling the underlying dephasing noise. Our investigations
include studies of both linear and nonlinear measurement
routines and validate the utility of the Kalman filtering
framework for both. By contrast, under GPR, we find
numerical evidence that this approach enables retrodiction
but not forward predictions beyond the measurement
record.
There are exciting opportunities for machine-learning

algorithms to increase our understanding of dynamically
evolving quantum systems in real time using projective
measurements. Quantum systems coupled to classical
spatially or temporally varying fields may benefit from
classical algorithms to analyze correlation information and
enable predictive control of qubits for applications in
quantum information, sensing, and the like. Moving
beyond a single qubit, we anticipate that measurement
records will grow in complexity, allowing us to exploit the
natural scalability offered by machine learning for mining
large data sets. In realistic laboratory environments, the
success of algorithmic approaches will be contingent on
robust and computationally efficient algorithmic optimiza-
tion procedures, as well as the extensions beyond
Markovian dynamics studied here. The pursuit of these
opportunities is the subject of ongoing research.
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APPENDIX A: PHYSICAL SETTING

In this appendix, we derive Eq. (1). We consider a qubit
under environmental dephasing. For any two-level system,
a quantum-mechanical description of physical quantities of
interest can be provided in terms of the Pauli spin operators
fσ̂x; σ̂y; σ̂zg. If ℏωA corresponds to an energy difference
separating these two qubit states, then the Hamiltonian
for a single qubit in free evolution can be written in the
Pauli representation. We consider a qubit state in the
σ̂z basis, j0i or j1i, with energies E0 and E1 in our
notation, corresponding to a 0 or 1 outcome upon meas-
urement. This physical setting yields a Hamiltonian for a
single qubit as

σ̂z ≡ j1ih1j − j0ih0j; ðA1Þ

E0;1≡ ∓ 1

2
ℏωA; ðA2Þ

Ĥ0 ¼
1

2
ℏωAσ̂z. ðA3Þ

In this representation, the effect of dephasing noise on a
free qubit system is that any initially prepared qubit
superposition of j0i and j1i states will decohere over time
in the presence of dephasing noise. This physical effect is
modeled as a stochastically fluctuating process δωðtÞ that
couples with the σ̂z operator. The noise Hamiltonian is
described as

ĤNðtÞ≡ ℏ
2
δωðtÞσ̂z: ðA4Þ

In the formula above, δωðtÞ is a classical, stochastically
fluctuating parameter that models environmental
dephasing, and ℏ=2 appears as a convenient scaling
factor. The total Hamiltonian for a single qubit under
dephasing is

ĤðtÞ≡ Ĥ0 þ ĤNðtÞ: ðA5Þ

Since ĤNðtÞ commutes with Ĥ0, we can transform away
Ĥ0 by moving to a rotating frame with respect to H0. Let
jψðtÞi be a state in the lab frame, let Û define a trans-
formation to a rotating frame, and let jψ̃ðtÞi be the state in
the rotating frame. The tilde indicates operators and states
in the transformed frame. In this simple case, the trans-
formed Hamiltonian governing the evolution of jψ̃ðtÞi is
just ĤNðtÞ:

Û ≡ e−iĤ0t=ℏ; ðA6Þ

jψ̃ðtÞi≡ Û†jψðtÞi; ðA7Þ

iℏ
d
dt

jψ̃ðtÞi≡ iℏ
d
dt

Û†jψðtÞi ðA8Þ

¼−Ĥ0Û
†jψðtÞiþ iℏÛ† d

dt
jψðtÞi ðA9Þ

¼ ðÛ†HðtÞÛ − Ĥ0Þjψ̃ðtÞi; ðA10Þ

⇒ ˆ̃H≡ Û†HðtÞÛ − Ĥ0 ðA11Þ

¼ Û†Ĥ0Û þ Û†ĤNðtÞÛ − Ĥ0 ðA12Þ

¼ĤNðtÞ; ½Û;Ĥ0�¼½Û;ĤNðtÞ�¼0:

ðA13Þ

In the semiclassical approximation, ĤNðtÞ commutes with
itself at different t, and hence we can write a unitary time-
evolution operator in the rotating frame as

ˆ̃Uðt; tþ τÞ≡ e−ði=ℏÞ
R

tþτ

t
ĤNðt0Þdt0 ¼ e−ði=2Þfðt;tþτÞσ̂z ; ðA14Þ

fðt; tþ τÞ≡
Z

tþτ

t
δωðt0Þdt0: ðA15Þ

In the rotating frame, we prepare an initial state that is a
superposition of j0i and j1i states. This state evolves under
ĤNðtÞ during a Ramsey experiment for duration τ.
Subsequently, the qubit state is rotated before a projective
measurement is performed with respect to the σ̂z axis; i.e.,
the measurement action resets the qubit.
Without loss of generality, define the initial state as

jψ̃ð0Þi≡ ð1= ffiffiffi
2

p Þj0i þ ð1= ffiffiffi
2

p Þj1i in the rotating frame.
Then give the probability of measuring the same state after
time τ in a single-shot measurement, dn, as

Pr (dn ¼ 1jfð0; τÞ; τ) ¼ jhψ̃ð0Þj ˆ̃Uð0; τÞjψ̃ð0Þij2; ðA16Þ

Pr(dn¼0jfð0;τÞ;τ)≡1−Pr(dn¼1jfð0;τÞ;τ): ðA17Þ

The second π=2 control pulse rotates the state vector such
that a measurement in the σ̂z basis is possible, and the
probabilities correspond to observing the qubit in the j1i
state. Hence, Eq. (A16) defines the likelihood for a single-
shot qubit measurement. Furthermore, Eq. (A16) defines
the nonlinear measurement action on phase noise jitter,
fð0; τÞ. We impose a condition that fð0; τÞ=2 ≤ π, such
that the accumulated phase over τ can be inferred from a
projective measurement on the σ̂z axis.
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1. Experimentally controlled discretization of
dephasing noise

In this section, we consider a sequence of Ramsey
measurements. At time t, Eq. (A16) describes the qubit
measurement likelihood at one instant under dephasing
noise. We assume that the dephasing noise is slowly
drifting with respect to a fast measurement action on
timescales of order τ. In this regime, Eq. (A15) discretizes
the continuous-time process δωðtÞ, at time t, for a number
n ¼ 0; 1;…; N equally spaced measurements, with
t ¼ nΔt. Performing the integral for τ ≪ Δt, we slowly
drift the noise such that we substitute the following terms
into Eq. (A15):

δω̄n ≡ δωðt0Þjt0¼nΔt; ðA18Þ

fn ≡ fðnΔt; nΔtþ τÞ ðA19Þ

¼ ℏ
2

Z
nΔtþτ

nΔt
δω̄ndt0 ¼

ℏ
2
σ̂zδω̄nτ: ðA20Þ

In this notation, δω̄n is a random variable realized at time
t ¼ nΔt, and it remains constant over a short duration of
the measurement action, τ. We use the shorthand fn ≡
fðnΔt; nΔtþ τÞ to label a sequence of stochastic, tempo-
rally correlated qubit phases f ≡ ffng.
Since the qubit is reset by each projective measurement

at n, the unitary operator governing qubit evolution is also

reset such that f ˆ̃Un ≡ ˆ̃UðnΔt; nΔtþ τÞg represents a
collection of N unitary operators describing qubit evolution
for each new Ramsey experiment. They are not to be
interpreted, for example, as describing qubit free evolution
without reinitializing the system. Hence, for each stochastic
qubit phase fn, the true probability for observing the j1i in
a single shot is given by substituting fn for fð0; 1Þ in
Eq. (A16):

Prðdn ¼ djfn; τ; nΔtÞ ¼
8<
:

cos
�
fn
2

�
2

for d ¼ 1

sin
�
fn
2

�
2

for d ¼ 0
: ðA21Þ

The last line follows from the fact that total probability of
the qubit occupying either state must add to unity, yield-
ing Eq. (1).

2. True dephasing noise engineering

In the absence of an a priori model for describing qubit
dynamics under dephasing noise, we impose the following
properties on a sequence of stochastic phases, f ≡ ffng,
such that we can design meaningful predictors of qubit-
state dynamics. We assert that a stochastic process, fn,
indexed by a set of values n ¼ 0; 1;…; N satisfies

E½fn� ¼ μf ∀n; ðA22Þ

E½f2n� < ∞ ∀n; ðA23Þ

E½ðfn1−μfÞðfn2−μfÞ�¼RðνÞ; ν¼jn1−n2j; ∀n1;n2∈N;

ðA24Þ
RðνÞ ≠ σ2δðνÞ: ðA25Þ

Covariance stationarity of f is established by satisfying
Eqs. (A22)–(A24), namely, that the mean is independent of
n, the second moments are finite, and the covariance of any
two stochastic phases at arbitrary time steps n1, n2, depend
not on time steps but only on the separation distance, ν. The
δðνÞ in the last condition, Eq. (A25), is the Dirac-δ function
and establishes that f is not δ correlated (white). This
condition captures the slowly drifting assumption for
environmental dephasing noise.
We also require that correlations in f eventually die off as

ν → ∞; otherwise, any sample statistics inferred from noise-
corrupted measurements are not theoretically guaranteed to
converge to the true moments. Let M be the number of runs
for an experiment with M different realizations of the
random process f, μf be the true mean, μ̂f be its estimate,
DM denote the data set of M experiments, and RðνÞ define
the correlation function for the true process, f. Then mean-
square ergodicity states that estimators approach true
moments only if the correlations die off over long temporal
separations:

lim
M→∞

1

M

XM−1

ν¼0

RðνÞ ¼ 0 ⇔ lim
M→∞

E½ðμ̂f − μfÞ2�DM
¼ 0

for ν ¼ jnm1
− nm2

j;
∀m1; m2 ∈ M; nm1

; nm2
∈ N;

with μ̂f ¼ 1

M

XM
m¼0

fnm: ðA26Þ

The statement above means that a true RðνÞ value associated
with f is bandlimited for sufficiently large (but unknown)
values of M. If correlations never “die out,” then any
designed predictors for one realization of dephasing noise
will fail for a different realization of the same true dephasing.
For the purposes of experimental noise engineering, we
satisfy the assumptions above by engineering discretized
process, f, as

fn ¼ αω0

XJ
j¼1

jFðjÞ cosðωjnΔtþ ψ jÞ; ðA27Þ

FðjÞ ¼ jðη=2Þ−1: ðA28Þ
As described in Ref. [46], α is an arbitrary scaling factor,

ω0 is the fundamental spacing between true adjacent
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discrete frequencies, such that ωj ¼ 2πf0j ¼ ω0j,
j ¼ 1; 2;…; J. For each frequency component, there exists
a uniformly distributed random phase, ψ j ∈ ½0; π�. The free
parameter η allows one to specify an arbitrary shape of the
true power spectral density of f. In particular, the free
parameters α, J, ω0, and η are true dephasing noise
parameters which any prediction algorithm cannot know
beforehand.
It is straightforward to show that f is covariance sta-

tionary. To show mean-square ergodicity of f, one requires
phases that are randomly uniformly distributed over
one cycle for each harmonic component of f [54].
Subsequently, one shows that an ensemble average and a
longtime average of a multicomponent engineered f are
equal. For the evaluation of the longtime average, we use
product-to-sum formulas and observe that the case j ≠ j0
has a zero contribution, as any finite contributions from
cosine terms over a symmetric integral are reduced to zero
as N → ∞. For j ¼ j0, only a single cosine term survives.
The surviving term depends on ν and N cancels to yield a
finite, nonzero contribution that matches the ensemble
average.
We briefly comment that f is Gaussian by the central

limit theorem in the regimes considered in this paper. The
probability density function of a sum of random variables is
a convolution of the individual probability density func-
tions. The central limit theorem grants that each element of
fn at n appears Gaussian distributed for large values of J,
irrespective of the underlying properties of the constituent
terms or the distribution of the phases ψ . A numerical
analysis shows that J > 15 results in each fn appearing to
be approximately Gaussian distributed.
There is an important difference between fn defined in

this appendix and fn defined in Appendixes B and C. In
Appendixes B and C, the term fn defines the “true model”
for an algorithmic representation of an arbitrary covariance-
stationary process—by invoking either Wold’s decompo-
sition theorem (the AKF and the QKF) or the spectral
representation theorem (the LKFFB and GPR with the
periodic kernel). This means that fn in the subsequent
appendixes approximates the true covariance-stationary
stochastic qubit phases, ffng, of this appendix in the limit
only where the total size of the available sample data
increases to infinity. Our notation fn fails to distinguish
between these two different interpretations, as such a
difference does not arise in typical applications—in our
case, we have no a priori true model of describing
stochastic qubit phases, and we must rely on mean-square
approximations. Henceforth, we retain fn to be the true
model for an algorithm with the understanding that this
notation refers to an approximate representation of an
arbitrary, covariance-stationary sequence of stochastic
qubit phases. We reserve the use of f̂n for the state
estimates and predictions that an algorithm makes having
considered a single noisy measurement record.

APPENDIX B: AUTOREGRESSIVE
REPRESENTATION OF f IN AN AKF

(AND A QKF)

Our objective in this appendix is to justify the repre-
sentation of fn assumed by the AKF. In particular, we
justify that any fn drawn from any arbitrary power spectral
density satisfying the properties in Appendix A 2 can be
approximated by a high-order autoregressive process.
Such results are well known, if dispersed among standard

engineering and econometrics textbooks [4,11,33–35,55].
We have struggled to find standard references that explicitly
link high-q AR models in approximating arbitrary covari-
ance-stationary time series of arbitrary power spectral den-
sities, though some general comments are made in Ref. [55].
In the discussion below, we summarize relevant background
material and link a high-q AR process to a theorem that
guarantees arbitrary representation of zero-mean covariance-
stationary processes, and we provide explicit references for
proofs that are beyond the scope of the introductory remarks
in this appendix. We consider AR processes of order q
[ARðqÞ], andmoving-average processes of orderp [MAðpÞ].
Amodel incorporating both types of processes is known as an
ARMAðq; pÞ model in our notation.
First, we define the lag operator, L. This operator defines

a map between time-series sequences and enables a
compact description of ARMA processes. For an infinite
time series ffng∞n¼−∞ and a constant scalar, c, the lag
operator is defined by the following properties:

Lfn ¼ fn−1; ðB1Þ

Lqfn ¼ fn−q; ðB2Þ

LðcfnÞ ¼ cLfn ¼ cfn−1; ðB3Þ

Lfn ¼ c; ∀n;⇒ Lqfn ¼ c: ðB4Þ

Next, we define a Gaussian white-noise sequence, ξ,
under a stronger condition than what is stated simply in
Eq. (B6), that ξn1 and ξn2 are independent for all values of
n1 and n2:

E½ξ�≡ 0; ðB5Þ

E½ξn1ξn2 �≡ σ2δðn1 − n2Þ: ðB6Þ

With these definitions, we can define an autoregressive
process and a moving-average process of unity order.
Equation (B7) defines an ARðq ¼ 1Þ process, and the
dynamics of f are given as lagged values of fn. The second
definition in Eq. (B8) depicts a MAðp ¼ 1Þ process where
the dynamics are given by lagged values of the Gaussian
white noise ξ:

MACHINE LEARNING FOR PREDICTIVE ESTIMATION OF … PHYS. REV. APPLIED 9, 064042 (2018)

064042-23



ð1 − ϕ1LÞfn ¼ cþ ξn; ðB7Þ

fn ¼ c0 þ ðΨ1Lþ 1Þξn: ðB8Þ

Here, Ψ1 and ϕ1 are known scalars defining the dynamics
of fn, wn is a white-noise Gaussian process, and c and c0
are fixed scalars. It is well known that a MAð∞Þ repre-
sentation is equivalently an AR(1) process, and the reverse
relationship also applies. For example, we can rewrite
Eq. (B7) as

fn ¼ cþ ξn þ ϕ1fn−1 ðB9Þ

¼ wn þ ϕ1fn−1 ðB10Þ

¼ wn þ ϕ1ðwn−1 þ ϕ1fn−2Þ ðB11Þ

..

. ðB12Þ

¼ ϕnþ1
1 F0 þ ϕn

1w0 þ ϕn−1
1 w1 þ � � �wn ðB13Þ

¼ ϕnþ1
1 F0 þ ϕn

1ðcþ ξ0Þ þ � � � þ ðcþ ξnÞ ðB14Þ

¼ ϕnþ1
1 F0 þ cðϕn

1 þ ϕn−1
1 þ � � � þ 1Þ þ

Xn
k¼0

ϕk
1ξn−k;

ðB15Þ

wn ≡ cþ ξn; ðB16Þ

F0 ≡ fn¼−1: ðB17Þ

In the last line (and for all subsequent analysis in this
appendix), k should only be interpreted as a index variable
for compactly rewriting terms in an equation as summa-
tions. We restrict jϕ1j to be less than 1, such that f is
covariance stationary [34]. Under these conditions, we take
the limit of f capturing an infinite past, namely, as n → ∞.
The initial state F0 is eventually forgotten: ϕnþ1

1 F0 ≈ 0 if n
is large and jϕ1j < 1. Similarly, the terms cðϕn

1 þ ϕn−1
1 þ

� � � þ 1Þ can be summarized as a geometric series in ϕ1.
The remaining terms satisfy the definition of a MAð∞Þ
process:

fn ¼ c
1

1 − jϕ1j
þ
X∞
k¼0

ϕk
1ξn−k; jϕ1j < 1 ðB18Þ

It is straightforward to show that the reverse is true, namely,
a MA(1) is equivalent to an ARð∞Þ representation [34].
The consideration of a MAð∞Þ process leads us directly

to Wold’s decomposition for arbitrary covariance-
stationary processes, namely, that any covariance-
stationary f can be represented as

fn ≡ c0 þ
X∞
k¼0

ΨkLkξn; ðB19Þ

c0 ≡ E½fnjfn−1; fn−2; � � ��; ðB20Þ

Ψ0 ≡ 1; ðB21Þ

X∞
k¼0

Ψ2
k < ∞: ðB22Þ

Equation (B19) defines the MAð∞Þ process derived
previously as an AR(1) process. This process is ergodic
for a Gaussian ξ. However, such a representation of f
requires fitting data to an infinite number of parameters
fΨ1;Ψ2; � � �g, and approximations must be made.
We approximate an arbitrary covariance stationary f

using finite but high-order ARðqÞ processes. Below, we
show that any finite-order ARðqÞ process has a MAð∞Þ
representation satisfying Wold’s theorem.
We define an arbitrary ARðqÞ process as

ξn ≡ ð1 − ϕ1L − ϕ2L2 − � � � − ϕqLqÞðfn − cÞ: ðB23Þ

In particular, we define λi, i ¼ 1;…; q as eiqenvalues of the
dynamical model, Φ:

Φ≡

2
66666666664

ϕ1 ϕ2 ϕ3 � � � ϕq−1 ϕq

1 0 0 � � � 0 0

0 1 0 � � � 0 0

0 0 1 � � � 0 0

..

. ..
. ..

. � � � ..
. ..

.

0 0 0 � � � 1 0

3
77777777775
; ðB24Þ

λ≡ ½ λ1 � � � λq �; such that jΦ − λIqj ¼ 0: ðB25Þ
We use the following result from Ref. [34] without proof
that the above implies

1 − ϕ1L − ϕ2L2 − � � � − ϕqLq ðB26Þ

≡ð1 − λ1LÞ;…; ð1 − λqLÞ: ðB27Þ

The equation above allows us factorize as

ξn ¼ ð1 − λ1LÞ;…; ð1 − λqLÞðfn − cÞ: ðB28Þ

For us to invert this problem and recover a MA process, we
need to show that the inverse for each ð1 − λq0LÞ term exists
for q0 ¼ 1;…; q. To do so, we start by defining the operator
ΛqðLÞ:
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ΛqðLÞ≡ lim
k→∞

ð1þ λqLþ � � � þ λkqLkÞ: ðB29Þ

We consider an arbitrary q0th eigenvalue term in process and we multiply it by Λq0 ðLÞ:

Λq0 ðLÞξn¼Λq0 ðLÞð1−λ0LÞ;…;ð1−λq0LÞ;…;ðfn−cÞ ðB30Þ

¼ lim
k→∞

ð1þ λq0Lþ � � � þ λkq0L
kÞð1 − λq0LÞð1 − λ0LÞ;…; ð1 − λq0−1LÞð1 − λq0þ1LÞ;…; ð1 − λqLÞðfn − cÞ

ðB31Þ

¼ lim
k→∞

ð1þ λq0Lþ � � � þ λkq0L
kÞð1 − λ0LÞ;…; ð1 − λq0−1LÞð1 − λq0þ1LÞ;…; ð1 − λqLÞðfn − cÞ ðB32Þ

− lim
k→∞

ðλq0Lþ � � � þ λkþ1
q0 Lkþ1Þð1 − λ0LÞ;…; ð1 − λq0−1LÞð1 − λq0þ1LÞ;…; ð1 − λqLÞðfn − cÞ ðB33Þ

¼ lim
k→∞

ð1þ λkþ1
q0 Lkþ1Þð1 − λ0LÞ;…; ð1 − λq0−1LÞð1 − λq0þ1LÞ;…; ð1 − λqLÞðfn − cÞ: ðB34Þ

Each of the residual terms λkþ1
q0 Lkþ1 → 0 if jλq0 j < 1 for

large values of k, and this case Λq0 ðLÞ defines the inverse
ð1 − λq0LÞ−1 value. This procedure is repeated for all q
eigenvalues to invert Eq. (B28) and, subsequently, perform
a partial fraction expansion as follows:

fn − c ¼ 1

ð1 − λ1LÞ…ð1 − λqLÞ
ξn ðB35Þ

¼
Xq
q0¼1

aq0

1 − λq0L
ξn; ðB36Þ

aq0 ≡
λq−1q0Qq

q00¼1;q00≠q0 ðλq0 − λq00 Þ
: ðB37Þ

The coefficients are aq0 , as obtained via the partial fraction
expansion method, during which L is treated as an ordinary
polynomial. At present, we have to represent f via a finite-
q weighted average of values of ξ. However, in substituting
the definition of Λq0 ≡ ð1 − λq0LÞ−1 from Eq. (B29) into
Eq. (B36) and regrouping the terms in powers of L, we
recover the form of a MA representation (setting
c≡ f̃n ¼ 0, ∀ n, for simplicity):

fn ¼
�Xq
q0¼1

aq0L0 þ lim
k→∞

Xk
k0¼1

�Xq
q0¼1

aq0λk
0
q0

�
Lk0
�
ξn ðB38Þ

¼ Ψ0 þ
X∞
k¼1

ΨkLkξn; ðB39Þ

Ψ0 ≡
Xq
q0¼1

aq0L0; ðB40Þ

Ψk ≡
Xq
q0¼1

aq0λk
0
q0 : ðB41Þ

By examining the properties of Φ raised to arbitrary
powers, it can be shown that

Pq
q0¼1

aq0 ≡ 1 and that Ψk

is the first element of Φ raised to the kth power [34],
yielding the absolute summability of Ψk if jϕq0<qj < 1.
These results ensure that Wold’s theorem is fully satisfied
and that an ARðpÞ process has a MAð∞Þ representation. In
moving to an arbitrarily high value of q, we enable the
approximation of any covariance stationary f.
For proofs that high-qAR approximations for covariance

stationary f improve with q, see, for example, Ref. [37].
The key correspondence is that the number of finite lag
terms q in an ARðqÞ model contribute to the first q values
of the covariance function. This approximation improves
with q even if f is not a true AR process [37,55].
Asymptotically efficient coefficient estimates for any
MAð∞Þ representation of f are obtained by letting the
order of a purely ARðqÞ process tend to infinity and
increasing the total data size, N [37].
When data is fixed at N, we expect a high-q model to

gradually saturate in a predictive estimation performance.
One can arbitrarily increase performance by increasing
both q and N [37]. In our application with finite data N, we
increase q to settle on a high-order ARmodel while training
the LSF to track arbitrary covariance-stationary power
spectral densities [35].
A high-q AR model is often the first step for developing

models with smaller number of parameters, for example,
considering a mixture of finite-order ARðqÞ and MAðpÞ
models and estimating a pþ q number of coefficients
using a range of standard protocols [35,55]. The design of
potential ARMA models for our application requires
further investigation that is beyond the scope of this paper.
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APPENDIX C: SPECTRAL REPRESENTATION
OF f IN GPR (PERIODIC KERNEL)

AND A LKFFB

The well-known spectral representation theorem guar-
antees that any covariance-stationary random process (real
or complex) can be represented in a generalized harmonic
basis. We defer a detailed treatment of spectral analysis of
covariance-stationary processes to standard textbooks—for
example, Refs. [34,38]—and present background and key
results to provide insights into the choice of a LKFFB and
GPR (periodic kernel).
The spectral representation theorem states that any

covariance-stationary random process has a representation
given by fn and, correspondingly, a probability distribu-
tion, FðωÞ, over ½−π; π� in the dual domain, such that

fn ¼ μf þ
Z

π

0

½aðωÞ cosðωnÞ þ bðωÞ sinðωnÞ�dω; ðC1Þ

RðνÞ ¼
Z

π

−π
e−iωνdFðωÞ: ðC2Þ

Here, μf is the true mean of the process f. The processes
aðωÞ and bðωÞ are zero mean and serially and mutually
uncorrelated; namely,

R
ω2
ω1

aðωÞdω is uncorrelated withR
ω4
ω3

aðωÞdω and
R ωj0
ωj bðωÞdω for any case where ω1 <

ω2 < ω3 < ω4 and any choice of j and j0 within the half
cycle ½0; π�.
The distribution FðωÞ exists as a limiting case consid-

ering cumulative probability density functions for fn at
each n and letting n → ∞, such that a sequence of these
density functions approaches FðωÞ [38]. If FðωÞ is differ-
entiable with respect to ω, then we see the power spectral
density SðωÞ, and RðνÞ represents the Fourier duals [38]:

RðνÞ ¼
Z

π

−π
e−iωνSðωÞdω; ðC3Þ

SðωÞ≡ dFðωÞ
dω

: ðC4Þ

The duality of the covariance function and the spectral
density is formally expressed in the literature by the
Wiener-Khinchin theorem.
We consider the finite sample analog of the spectral

representation theorem considered above by following
Ref. [34]. To proceed, we define mean-square convergence
as a distance metric for determining when a sequence of
random variables ff̂ng converges to a random variable, fn,
in the mean-square limit if

E½f̂2n� < ∞ ∀n; ðC5Þ

lim
n→∞

E½f̂n − fn� ¼ lim
n→∞

kf̂n − fnk ¼ 0: ðC6Þ

The statement kf̂n − fnk ¼ 0 measures the closeness
between random variables f̂n and fn, even though the
mean-square limit is defined for terms of a sequence of
random variables, ff̂ng, where convergence improves with
n → ∞. In context of this work, we define f̂n as a linear
predictor of fn belonging to a covariance-stationary f.
Hence, each f̂n for a large value of n is a linear combination
of the set of random variables belonging all past noisy
observations (and, in Kalman filtering, all past state
predictions). Mean-square convergence of kf̂n − fnk ¼ 0

in our context is a statement of the quality of a predictor, f̂n,
in predicting fn as the total measurement data grow.
Next, we account for finite data and define the finite

sample analog for the spectral representation theorem. We
suppose there exists a set of arbitrary, fixed frequencies
fωjg for j ¼ 1;…; J. We let n denote finite time steps
for observing fn at n ¼ 1;…; N. Furthermore, we define
a set of zero-mean, mutually and serially uncorrelated
random process fajg and fbjg as finite sample analog of
the true aðωÞ and bðωÞ values for the jth spectral
component. In particular, these processes are constant
over n by the covariance stationarity of f. Then, the finite
sample analog for the spectral representation theorem
becomes [34]

fn ¼ μf þ
XJ
j¼1

½aj cosðωjnÞ þ bj sinðωjnÞ�; ðC7Þ

E½aj� ¼ E½bj� ¼ 0; ðC8Þ

E½ajaj0 � ¼ E½bjbj0 � ¼ σ2jδðj − j0Þ; ðC9Þ

E½ajbj0 � ¼ 0 ∀j; j0; ðC10Þ

μf ≡ 0: ðC11Þ

The last line enforces a zero-mean stochastic process and
simplifies the analysis without loss of generality, and
δð� � �Þ is the Kronecker-δ function with arguments, j; j0.
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To illustrate, the first two moments are of the form

E½fn� ¼ 0;

ðC12Þ

RðνÞ ¼ σ2
XJ
j

pj cosðωjνÞ; ðC13Þ

pj ≡ σ2j
σ2

≡ σ2jP
jσ

2
j
: ðC14Þ

We introduce measurement noise into the formula
for true values of fn, and doing so establishes a common-
ality with Kalman filtering for a covariance-stationary
process.
An ordinary least-squares (OLS) regression can be

constructed by providing a collection of JðBÞ basis frequen-
cies fωðBÞ

j g, as in Ref. [34]. The OLS problem is
constructed by separating the set of coefficients fμ̂f; â1;
b̂1;…; âJ; b̂Jg and regressors f1;cos½ω1ðn−1Þ�;
sin½ω1ðn−1Þ�;…;cos½ωðBÞ

J ðn−1Þ�;sin½ωðBÞ
J ðn−1Þ�g. For

the specific choice of basis, JðBÞ ¼ ðN − 1Þ=2 (odd values

of N) and ωðBÞ
j ≡ 2πj=N, we state the key result from

Ref. [34], that the coefficient estimates are obtained as

f̂n ¼ μ̂f þ
XJðBÞ
j¼1

fâj cos½ωðBÞ
j ðn − 1Þ� þ b̂j sin½ωðBÞ

j ðn − 1Þ�g;

ðC15Þ

âj ≡ 2

N

XN
n0¼1

f̂n0 cos½ωðBÞ
j ðn0 − 1Þ�; ðC16Þ

b̂j ≡ 2

N

XN
n0¼1

f̂n0 sin½ωðBÞ
j ðn0 − 1Þ�: ðC17Þ

This choice of basis results in the number of regressors
being the same as the length of the measurement
record. Furthermore, the term ðâ2j þ b̂2jÞ is proportional
to the total contribution of the jth spectral component to
the total sample variance of f, or, in other words, the
amplitude estimate for the power spectral density of true
values of f.
Next, we depart from the OLS problem above in several

ways: first, by introducing process noise and, second, by
changing the basis oscillators considered in the problem

above. As in the main text, the linear measurement record is
defined as

yn ≡ fn þ vn; ðC18Þ

vn ∼N ð0; RÞ: ðC19Þ

The link in GPR (periodic kernel) is direct and the link with
the LKFFB is made by setting fn ≡Hnxn. In both frame-
works, we incorporate the effect of measurement noise
through the measurement-noise variance, R, which has the
effect of regularizing the least-squares estimation process
discussed above.

1. Infinite basis of oscillators in a
GPR periodic kernel

In GPR (periodic kernel) data are projected on an infinite
basis of oscillators, namely, JðBÞ → ∞.
To see this, we follow the sketch of a proof provided

in Ref. [42] to show that a sine-squared exponential
(periodic kernel) used in Gaussian process regression
satisfies the covariance function of trigonometric polyno-
mials. Here, the index j labels an infinite comb of
oscillators, and m represents the higher-order terms in
the power reduction formulas in the last line of the
definition below:

ωðBÞ
0 ≡ ωðBÞ

j

j
; j ∈ f0; 1;…; JðBÞg; ðC20Þ

RðνÞ≡ σ2 exp

�
−
2 sin2ðω

ðBÞ
0

ν
2
Þ

l2

�
ðC21Þ

¼ σ2 exp

�
−
1

l2

�
exp

�
cosðωðBÞ

0 νÞ
l2

�
ðC22Þ

¼ σ2 exp

�
−
1

l2

� XM→∞

m¼0

1

m!

cosmðωðBÞ
0 νÞ

l2m
: ðC23Þ

Next, we expand each cosine using power reduction
formulas for odd and even powers, respectively, and we
regroup the terms. For example, we expand the terms for
m ¼ 0; 1; 2; 3; 4; 5;… as
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RðνÞ ¼ σ2 exp

�
−
1

l2

�
cosðωðBÞ

0 νÞ
�

2

ð2l2Þ
�
1

0

�
þ 2

ð2l2Þ3
1

3!

�
3

1

�
þ 2

ð2l2Þ5
1

5!

�
5

2

�
� � �
�

ðC24Þ

þσ2 exp

�
−
1

l2

�
cosð2ωðBÞ

0 νÞ
�

2

ð2l2Þ2
1

2!

�
2

0

�
þ 2

ð2l2Þ4
1

4!

�
4

1

�
þ � � �

�
ðC25Þ

þ σ2 exp

�
−
1

l2

�
cosð3ωðBÞ

0 νÞ
�

2

ð2l2Þ3
1

3!

�
3

0

�
þ 2

ð2l2Þ5
1

5!

�
5

1

�
� � �
�

ðC26Þ

þ σ2 exp

�
−
1

l2

�
cosð4ωðBÞ

0 νÞ
�

2

ð2l2Þ4
1

4!

�
4

0

�
þ � � �

�
ðC27Þ

þ σ2 exp

�
−
1

l2

�
cosð5ωðBÞ

0 νÞ
�

2

ð2l2Þ5
1

5!

�
5

0

�
þ � � �

�
ðC28Þ

..

.

þ σ2 exp

�
−
1

l2

��
1

ð2l2Þ2
1

2!

�
2

1

�
þ 1

ð2lÞ4
1

4!

�
4

2

�
þ � � �

�
þ σ2 exp

�
−
1

l2

�
: ðC29Þ

In the expansion above, the vertical and horizontal dots
represent contributions from m > 5 terms. The key mes-
sage is that truncating m to a finite number of terms M
truncates j to represent a finite number of oscillators. For
the example above, if the power reduction expansion
indexed by m above is truncated to M ¼ 5 terms, then
the number of basis oscillators (the number of rows) is also
be truncated. We now summarize the amplitude equa-
tions (C24)–(C28) in the second term of RðνÞ, and
Eq. (C29) corresponds to the p0;M term below:

RðνÞ ¼ σ2
�
p0;M þ

X∞
j¼0

pj;M cosðjωðBÞ
0 νÞ

�
; ðC30Þ

pj;M≡σ2 exp

�
−
1

l2

� Xβ¼βmax
j;m

β¼0

2

ð2l2Þðjþ2βÞ
1

ðjþ2βÞ!
�
jþ2β

β

�
;

ðC31Þ

β≡ 0; 1;…; βmax
j;m ; ðC32Þ

p0;M ¼ exp

�
−
1

l2

� Xα¼αmax
m

α¼0

1

ð2l2Þð2αÞ
1

ð2αÞ!
�
2α

α

�
; ðC33Þ

α≡ 0; 1;…; αmax
m : ðC34Þ

By examining the cosine expansion, one sees that a
truncation at ðM; JðBÞÞ means our summarized formulas
require βmax

j;M ¼ bðM − jÞ=2c and αmax
M ¼ bðM=2Þc

where b� � �c denotes the ceiling floor. If we truncate
using M ≡ JðBÞ such that αmax

M ¼ bðJðBÞ=2Þc and βmax
j;M ¼

bðJðBÞ − jÞ=2c and readjust the kernel for the zeroth
frequency term, then we agree with the final result in
Ref. [42].
We compare the covariance function of the periodic

kernel in Eq. (C30) with the covariance function of the
trigonometric polynomials in Eq. (C13). Here, the pj;M
values for the periodic kernel are not identically specified,
in general, to those under the spectral representation
theorem, but they otherwise retain a structure as a cosine
basis where the correlations between two random variables
in a sequence depends only on the separation between
them. For a constant-mean Gaussian process, the form of
the periodic kernel allows the underlying process to satisfy
covariance stationarity and appears to permit an interpre-
tation via the spectral representation theorem.

2. Amplitude and phase extraction for the finite
oscillator basis in the LKFFB

In the LKFFB, we specify a fixed basis of oscillators at
the physical Fourier resolution established by the meas-
urement record. Using a specific state-space model, we can
track amplitudes and phases for each basis oscillator
individually to enable forward prediction at any time step
of our choosing. The design of a fixed basis necessarily
incorporates prior assumptions about the extent to which a
fast measurement action oversamples slowly drifting non-
Markovian noise, that is, a (potentially incorrect)
assumption about dephasing noise bandwidth.
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The efficacy of the LKFFB in our application assumes an
appropriate choice of the “Kalman basis” oscillators. The
choice of basis can effect the forward prediction of the state
estimates. To illustrate, consider the choice of bases A–C
defined below. Basis A depicts a constant spacing above the

Fourier resolution (e.g., ωðBÞ
0 ≥ ½ð2πÞ=ðNTΔtÞ�). Basis B

introduces a minimum Fourier resolution and effectively
creates an irregular spacing if one wishes to consider a basis
frequency comb coarser than the experimentally estab-
lished Fourier spacing over the course of the experiment.
Basis C is identical to basis B but allows a projection to a
zero frequency component,

basis A∶≡ f0;ωðBÞ
0 ; 2ωðBÞ

0 ;…; JðBÞωðBÞ
0 g; ðC35Þ

basis B∶≡
	

2π

NΔt
;
2π

NΔt
þ ωðBÞ

0 ;…;
2π

NΔt
þ JðBÞωðBÞ

0



;

ðC36Þ

basis C∶≡
	
0;

2π

NΔt
;
2π

NΔt
þ ωðBÞ

0 ;…;
2π

NΔt
þ JðBÞωðBÞ

0



:

ðC37Þ

While one can propagate the LKFFB with zero gain, it may
be advantageous for predictive control applications to
generate predictions in one calculation, rather than recur-
sively. This means that we sum contributions over all j ∈
JðBÞ oscillators, and we reconstruct the signal for all future
time values in one calculation, without having to propagate
the filter recursively with zero gain. The interpretation of
the predicted signal, f̂n, requires an additional (but time-
constant) phase correction term ψC that arises as a
byproduct of the computational basis (i.e., basis A, B,
or C). The phase correction term corrects for a gradual
misalignment between the Fourier and computational grids
which occurs if one specifies a nonregular spacing inherent
in basis B or C. Let nC denote the time step at which
instantaneous amplitudes kx̂jnCk and instantaneous phase
θx̂jnC

is extracted for the oscillator represented by the jth

state-space resonator, xjn, where the superscript j denotes an

oscillator of frequency ωðBÞ
j ≡ jωðBÞ

0 (not a power):

f̂ ¼
XJðBÞ
j¼0

kx̂jnCk cosðmΔtωðBÞ
j þ θx̂jnC

þ ψCÞ; ðC38Þ

nC ∈ NT; m ∈ NP;

ψC ≡
8<
:

0 ðbasis AÞ
2π
ωðBÞ
0

�
ωðBÞ
0 − 2π

NΔt

�
ðbasis B or CÞ : ðC39Þ

The output predictions from calculating a harmonic sum
using learned instantaneous amplitudes and phases and the
LKFFB bases A–C agree with zero-gain predictions if ψC is
specified as above. The calculation of ψC is determined
entirely by the choice of computational and experimental
sampling procedures, and it assumes no information about
true dephasing.
Next, we define an analytical ratio to define the optimal

training time, nC, at which LKFFB predictions should
commence, irrespective of whether the prediction pro-
cedure recursively propagates the Kalman filter with zero
gain, or by calculating a harmonic sum for all prediction
points in one go:

nC ≡ 2π

ΔtωðBÞ
0

¼ 2πfs

ωðBÞ
0

: ðC40Þ

Consider an arbitrarily chosen training period, NT ≠ nC.
For fixed values of fs, our choice ofNT > nC means we are
achieving a Fourier resolution which exceeds the resolution
of the LKFFB basis. Now consider that NT < nC. This
means that we have extracted information prematurely, and
we have not waited long enough to project on the smallest

basis frequency, namely,ωðBÞ
0 . In the case where the data are

perfectly projected on our basis, the choice of nC has no
impact. For imperfect learning, we see that instantaneous
amplitude and phase information slowly degrades for
NT > nC, and trajectories for the smallest basis frequency
are not stabilized for NT < nC.
Of these choices, basis A for ωðBÞ

0 ≡ ½ð2πÞ=ðNTΔtÞ� is
expected to yield the best performance, at the expense of
computational load, as confirmed in numerical experi-
ments. All results in this paper are reported for basis A
with NT ≡ nC.

3. Equivalent spectral representation of f
in the LKFFB and the GPR periodic kernel

In this section, we consider the structural similarities
between the LKFFB and GPR with a periodic kernel. We
show that the LKFFB has an structure analogous to a stack
of stochastic processes on a circle [38], and, in moving
from discrete to continuous time, we recover a covariance
function that has the same structure if the periodic kernel is
truncated to a finite basis of oscillators, JðBÞ. For zero-
mean, Gaussian random variables, covariance stationarity
is established, completing the link between the LKFFB and
the periodic kernel. For the case Γnwn → wn in the LKFFB,
stacked Kalman resonators as an approximation to infinite
oscillators in a periodic kernel is documented in Ref. [42].
At time step n, the posterior Kalman state at n − 1 acts as

the initial state at n, such that ν ¼ Δt for a small Δt such
that a linearized trajectory is approximately true for
each basis frequency. Using the following correlation
relations and a Gaussian assumption for process noise,
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where n;m ∈ N are indices for time steps and j ¼
0; 1;…; JðBÞ indexes the set of basis oscillators:

E½wn� ¼ 0 ∀j ∈ JðBÞ; n ∈ N; ðC41Þ

E½wn; wm� ¼ σ2δðn −mÞ; n; m ∈ N; ðC42Þ

E½Aj
0� ¼ E½Bj0

0 � ¼ 0 ∀j; j0 ∈ JðBÞ; ðC43Þ

E½Aj
nB

j0
m� ¼ 0 ∀j; j0 ∈ JðBÞ; n; m ∈ N; ðC44Þ

E½Aj
nA

j0
m� ¼ E½Bj

nB
j0
m� ¼ σ2jδðn −mÞδðj − j0Þ

∀j; j0 ∈ JðBÞ; n; m ∈ N; ðC45Þ

E½wnA
j
m� ¼ E½wnB

j0
m�≡ 0 ∀j; j0 ∈ JðBÞ; n;m ∈ N:

ðC46Þ

Consider a jth state-space resonator, xjn, in the LKFFB,
where the superscript j denotes an oscillator (not a power),
and we obtain

ΘðjωðBÞ
0 ΔtÞ ¼

"
cosðjωðBÞ

0 ΔtÞ − sinðjωðBÞ
0 ΔtÞ

sinðjωðBÞ
0 ΔtÞ cosðjωðBÞ

0 ΔtÞ

#
; ðC47Þ

xjn≡
�
Aj
n

Bj
n

�
¼ΘðjωðBÞ

0 ΔtÞ

2
64Îþ wn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aj
n−1

2þBj
n−1

2
q

3
75
"
Aj
n−1

Bj
n−1

#
;

ðC48Þ

⇒ E½xjn� ¼ 0; ðC49Þ

⇒ E½xjnxjmT �j ¼ σ2jδðn −mÞ
�
1 0

0 1

�
: ðC50Þ

The cross-correlation terms disappear under the temporal
correlation functions so defined; namely, if we assume that
n ≥ m, then states Aj

m−1 and B
j
m−1 at m − 1 have, at most, a

wn−2 term (for the case n ¼ m) and cannot be correlated
with a future noise term wn−1.
The dynamical trajectory in the LKFFB is linearized for

a small Δt. The linearization is an approximation to a true,
continuous-time deterministic trajectory defining a stochas-
tic process on a circle.
We briefly examine this continuous-time trajectory to

specify the link between the LKFFB and GPR (periodic
kernel). Let t denote the continuous-time deterministic
dynamics for a random initial state given by aj0 and bj0,
where the superscript j denotes an oscillator with a

frequency ωj ≡ jωðBÞ
0 (not a power):

E½aj0� ¼ E½bj00 � ¼ 0 ∀j; j0 ∈ JðBÞ; ðC51Þ

E½aj0bj
0
0 � ¼ 0 ∀j; j0 ∈ JðBÞ; ðC52Þ

E½aj0aj
0
0 � ¼ E½bj0bj

0
0 � ¼ σ2jδðj − j0Þ ∀j; j0 ∈ JðBÞ;

ðC53Þ

xjðtÞ≡
�
cosðωjtÞ − sinðωjtÞ
sinðωjtÞ cosðωjtÞ

��
aj0

bj0

�
; ðC54Þ

E½xjðtÞ� ¼ 0; ðC55Þ

E½xjðtÞxjðt0ÞT �¼σ2j

�
cosðωjνÞ 0

0 cosðωjνÞ
�
; ν≡ jt0− tj:

ðC56Þ

We see that the initial state variables, aj0 and bj0, must be
zero-mean independent and identically distributed varia-
bles for each value of j, such that xjðtÞ is covariance
stationary. If aj0 and bj0 are Gaussian, then the joint
distribution, xjðtÞ, remains Gaussian under the linear
operations above. Hence, the continuous-time limit of
the dynamics in the LKFFB for JðBÞ independent substates,
xjðtÞ, describes a process with the same first and second
moments for a periodic kernel truncated at JðBÞ. For
Gaussian processes, the LKFFB for JðBÞ stacked resonators
approximately matches an expansion of the periodic kernel
truncated at JðBÞ.
While the formalism of the LKFFB shares a common

structure with GPR (periodic kernel) in a particular limit,
the physical interpretation of Aj

n and Bj
n in LKFFB is that

these are components of the Hilbert transform of the
original signal [29]. These components give us the ability
to track and extract an instantaneous amplitude and phase
associated with each basis oscillator in the LKFFB. By
contrast, the coefficients of the periodic kernel are always
contingent on the arbitrary truncation of the infinite basis,
as seen in Eqs. (C30), (C31), and (C33). Hence, tracking
(or extracting) amplitudes and phases for individual oscil-
lators does not seem appropriate for the periodic kernel, as
these values change depending on the arbitrary choice of a
truncation point.
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