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We demonstrate experimentally that single-photon detection can be achieved in micrometer-wide NbN
bridges, with widths ranging from 0.53 to 5.15 μm and for photon wavelengths of 408 to 1550 nm. The
microbridges are biased with a dc current close to the experimental critical current, which is estimated to be
about 50% of the theoretically expected depairing current. These results offer an alternative to the standard
superconducting single-photon detectors, based on nanometer-scale nanowires implemented in a long
meandering structure. The results are consistent with improved theoretical modeling based on the theory of
nonequilibrium superconductivity, including the vortex-assisted mechanism of initial dissipation.
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I. INTRODUCTION

The present superconducting nanowire single-photon
detectors (SSPDs) are based on long meandering super-
conducting strips with a width in the range of 50 to 150 nm
[1]. It has been empirically found that the use of wider
strips leads either to the loss of the single-photon nature of

the response or to a rather small detection efficiency [2,3].
This result is in line with the initial interpretation of this
type of detector [4,5], in which it was understood that the
width of the supercurrent-carrying strip should be compa-
rable to the diameter, D, of the normal hot spot (a region
where the superconducting state is suppressed) due to the
absorption of the photon. If the strip is biased near its
experimentally determined critical current, the emergence
of the hot spot forces a redistribution of the supercurrent,*korneeva@rplab.ru
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leading to a locally enhanced supercurrent density, trigger-
ing the switch to the resistive state. Using simple estimates
based on the conservation of energy and typical parameters
for niobium nitride (NbN), given the energy of an optical
photon, leads to D ∼ 40 nm for the expected size of the
normal hot spot [6].
This geometrical mechanism to exceed the critical

current density has initiated a more thorough analysis of
the conditions of the superconducting strips under current
bias by Zotova and Vodolazov [7,8]. They consider a
superconducting strip, biased sufficiently close to the
intrinsic depairing current Idep. Then a small amount of
energy can switch the current-carrying superconductor to a
resistive state, with the needed energy going to zero when I
approaches Idep. The only requirement for the width of the
strip is that it should be smaller than the Pearl penetration
depth Λ ¼ 2λ2=d (with λ being the London penetration
depth for a dirty superconductor and d the thickness of the
strip). Under these conditions, the supercurrent is uniform
across the width, whereas for wider strips the supercurrent
is distributed nonuniformly. For a typical NbN film
with a thickness of about 5 nm and λ ∼ 470 nm [9], one
obtains Λ ≃ 90 μm.
Using the microscopic theory for superconductivity, it

was shown in Refs. [7,8] that, if such a strip with a uniform
supercurrent I can be biased at I ≳ 0.5–0.7Idep, the super-
conducting state becomes unstable in response to relatively
small additions of energy in the form of a localized
disturbance, loosely called a “hot spot.” Its specific nature
in terms of the microscopic theory of nonequilibrium
superconductivity has not yet been worked out. It is
considered to be a localized nonequilibrium distribution
over the energies and with at least a depressed local energy
gap initially surrounded by an equilibrium superconductor.
The dynamics of such an “impact crater” in the super-
conducting film depends on the materials.
In previous work, this process was mostly described by

what we label as a “geometric-hot-spot model.” The
essential feature of this approach is that the supercurrent,
initially carried over the full width w of the supercurrent in
the wire, is pushed to a more narrow part, excluding the
“hot” part with a diameter d. This increased current density
then may exceed the critical current density initiating a
transition to a voltage-carrying state. To optimize the
efficiency of detection, the wire should be on the order
of the size d of the hot spot in the superconductor created
by the absorbed photon. This geometric-hot-spot model is
often used for qualitative discussions and has, for the most
part, been leading technological development.
More recently, the microscopic approach has emerged,

including the use of nonequilibrium superconductivity. In
this approach, the phase coherence of the superfluid flow is
fully taken into account, as well as the emergence of
resistivity in the superconductor by the creation of vortices.
In order to make a clear distinction with previous

approaches, we call this the “photon-generated supercon-
ducting vortex model.” The theory states that the efficiency
of the photon detection is not determined by the geometry,
as long as the initial current density is uniform and close to
the critical pair-breaking current. The requirement for
uniformity of the current density was given previously.
If the superconducting wire can be biased close to the
critical pair-breaking current, all photons can be detected,
wherever they hit the wire, because all of them create a
sufficient disturbance to trigger a local excess of the critical
current density, initiating the creation of vortex-antivortex
pairs. In the film, vortex-antivortex pairs are created inside
the hot spot (if it is located far from the edge of the strip) or
by vortex entry into the strip (if the hot spot is located close
to the edge). The motion of a vortex and/or antivortex due
to the Lorentz force leads to a voltage in the superconductor
and, eventually, to the appearance of a normal domain [8].
Rather than assuming a fully normal hot spot, this model
takes into account the resistive properties of the super-
conducting state due to vortex movement, with details
determining the full dynamics.
In order to build experimentally on a model based on

current densities close to the critical pair-breaking current,
one needs to determine whether the observed critical
current is determined by intrinsic or extrinsic properties,
such as material imperfections. The commonly used
material for single-photon detection is NbN with a thick-
ness of about 5 nm, chosen because of its fast electron-
phonon relaxation, including phonon escape to the
substrate. However, such films have a fairly high resistivity,
a low diffusion constant, and a high resistance per square
on the order of 800Ω, which implies that they have an
intrinsic tendency to become electronically inhomogeneous
with a spatially fluctuating superconducting energy gap
[10,11], which may worsen due to material imperfections.
Therefore, it is to be expected that the critical current for a
long superconducting wire is determined by the weakest
spot, which statistically will be the lowest value of the
energy gap along the wire. Second, in order to know the
value of the critical depairing current, one has to rely on a
quantitative estimate based on measured parameters, and
preferably on a comparison with the functional depend-
ence, such as that carried out for aluminum by Romijn et al.
[12]. Relatively high critical current densities were
reported recently by Charaev et al. [13], although in more
narrow strips, larger values have been reported [3,14].
Nevertheless, the maximally reachable value is not known
and, given the expected inhomogeneities, may vary.
Instead, we decide to work with relatively short micro-
bridges and vary the width, to minimize the risks of hitting
a critical current that is too low while expecting a
reasonably uniform current density.
In this work, we report on our findings, that relatively

wide NbN bridges with widths in the range of 0.53 to
5.15 μm are able to detect single photons of wavelengths
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ranging from 408 to 1550 nm. We determine the internal
detection efficiency, η, the detection efficiency normalized
to the absorption, for different bias currents I and find that it
reaches a value in the tens of percent near the experimental
critical current Ic. From the experimental data, we distin-
guish between two regimes. Regime I, in which a sharp
increase in η is observed for an increasing current, is
analogous to the conventional meanderlike SSPDs. It is
followed by a much slower increase of the η upon
approaching Ic, which we label regime II. We attribute
regime I to fluctuation-assisted photon detection with the
slope of the η as a function of current I comparable to the
slope of the number of dark counts with the bias current.
We attribute regime II to deterministic photon counting, as
described theoretically by Zotova and Vodolazov [15]. We
are able to explain quantitatively the dependence of the η on
the current I in regime II for the short wavelengths, taking
into account the actual geometry of our samples. We argue
that, in this parameter range, we observe an η close to unity.
Our findings offer an alternative route towards super-

conducting single-photon detectors with a short dead time,
a few hundred picoseconds, because of the relatively small
kinetic inductance of short superconducting bridges in
comparison to the conventional superconducting meanders
[1]. Additionally, our results provide support for the
relevance of the vortex-assisted contribution to photon
detection, as proposed by one of the authors [8].

II. SAMPLES AND CHARACTERIZATION

Our samples are planar constriction-type microbridges,
as shown in Fig. 1. They are made from reactively sputtered
NbN films with a thickness 5.8 nm, determined from a
calibrated sputter rate and a sputter time. The width w of the
bridges at the narrowest point varies from 0.53 to 5.15 μm.
The constriction-type topology is chosen to prevent current
crowding effects [16] and to maximize the chance to reach
in the experiments the critical pair-breaking current. Note
that, given the properties of the NbN films, the constrictions

are much larger in length and width than the coherence
length. Therefore, it is assumed that the wider part with the
lower current density does not lead to an enhancement of
the critical pair-breaking current, in contrast to the case
treated by Aslamazov and Larkin [17], because of the short
coherence length in NbN [18]. The parameters of the
studied devices are summarized in Table I. The details of
the fabrication process are presented in Appendix A.
We experimentally observed critical current densities jc

for two different temperatures T ¼ 4.2 K and T ¼ 1.7 K.
In Table I, these results are listed for a temperature
T ¼ 4.2 K. Obviously, there is some scatter in the values
of the critical temperature, as well as in the critical current
density. It indicates that there is some uncontrolled varia-
tion from sample to sample, although the samples are from
the same film. This variation may be caused by the
metallurgy resulting from the deposition conditions, but
it may also be intrinsic due to the competition between
localization in this low-diffusivity material and supercon-
ductivity. For a material like NbN, the experimental values
in this experimental geometry are reassuringly close to the

FIG. 1. Drawing of a typical NbN constriction-type bridge with
a scanning-electron-microscope (SEM) image of one of the
bridges with indicated dimensions (sample C in Table I). The
contacts on top of the NbN film are made of gold (Au). All
bridges have edges designed as a segment of a circle with the
radius 8.6 μm.

TABLE I. Parameters of the studied samples for a temperature T ¼ 4.2 K. The width of the bridge w is at the neck, Tc is the critical
temperature determined from the midpoint of the resistive transition, ρ (20 K) is the resistivity at T ¼ 20 K, jc and jshc are the critical
current densities measured without and with a shunt resistor, and jdep is the calculated depairing current at the indicated temperature,
using jdep (0) as the calculated critical depairing current at T ¼ 0 following from Eq. (2). The variations in the calculated values are due
to the variations in resistance per square determined for each sample. The diffusion constant D is kept constant.

Sample ID Width (μm) Tc (K)
ρ (20 K)
(μΩ cm)

jc (4.2 K)
(A=cm2)

jshc (4.2 K)
(A=cm2)

jdep (4.2 K)
(A=cm2)

jdep (0)
(A=cm2)

A 0.53 8.25 386 3.16 × 106 3.67 × 106 3.79 × 106 5.94 × 106

B 1.61 8.35 396 2.74 × 106 3.72 × 106 3.81 × 106 5.89 × 106

C 2.12 8.5 393 3.75 × 106 4.43 × 106 4.02 × 106 6.11 × 106

D 3.07 8.35 398 3.06 × 106 3.66 × 106 3.79 × 106 5.87 × 106

E 4.04 8.35 402 2.52 × 106 3.16 × 106 3.75 × 106 5.8 × 106

F 5.15 8.35 427 2.28 × 106 2.57 × 106 3.54 × 106 5.47 × 106
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theoretical values. Since these relatively wide samples have
impractically high critical currents, we connect a 3-Ω shunt
resistor in parallel to the sample to prevent latching and to
enable a spontaneous return to the superconducting state.
Although not expected, this connection of the shunt resistor
leads to different increases of experimentally observed
critical currents. In Fig. 2(a), we show current-voltage
characteristics for sample C without (the red curve) and
with the 3-Ω shunt resistor (the blue curve) with different
critical currents (points A and B, respectively). A similar
observation was reported on and discussed previously by
Brenner et al. [19]. In our measurements, this behavior can
be attributed, at least in part, to division of the current
between the chip with a superconducting bridge and the
shunt: the chip with a superconducting bridge also contains
normal resistance, on the order of a few tenths of an ohm,
because this is a two-point measurement. Of course, the
quantity of interest is a supercurrent, i.e., the current
flowing through the sample; hence, we use the measured
current with the shunt only as a value to plot the data.
We assume that the theoretical depairing currents can be

described by the expression derived for clean supercon-
ductors by Bardeen [20]. It deviates by less than 3% from
the results of the microscopic calculations for dirty

superconductors, which have been compared to experi-
ments on aluminum by Romijn et al. [12]:

IdepðTÞ ¼ Idepð0Þ
�
1 −

�
T
Tc

�
2
�
3=2

; ð1Þ

with the prefactor Idepð0Þ, calculated from Eq. (31) in Clem
and Kogan [21]:

Idepð0Þ ¼ 0.74
w½Δð0Þ�3=2
eRs

ffiffiffiffiffiffiffi
ℏD

p : ð2Þ

Here, Δð0Þ is the superconducting energy gap at 0 K, e is
the electron charge, Rs is the resistance per square, andD is
the diffusivity. Strictly speaking, Eqs. (1) and (2) are
quantitatively valid for moderately dirty superconductors
with kFl ≫ 1 (kF is the Fermi wave vector and l is the mean
free path for elastic scattering). We also assume the BCS
ratio of Δð0Þ=kBTc ≈ 1.76.
In applying these expressions to the present NbN films,

we make a conceptual step, which would require a deeper
justification and which is currently not available. It is
known that the critical temperature Tc varies with the
resistance per square, reminiscent of experiments on the
superconductor-insulator transition [9,22–25]. It has also
been found that the ratio of Δð0Þ=kBTc for such films is not
a constant but changes with the resistance per square. It is
often attributed to the film properties and the substrate
surface [26]. Nevertheless, there is compelling evidence
that these materials are anomalous in many respects [27].
Given this uncertainty, we make the choice to take the most
straightforward input towards Eqs. (1) and (2), and
we use the BCS ratio for Δ, and kBTc and for kFl ≈ 3–5
[23,25,26,28]. For the diffusion constant, we use
D ¼ 0.31 cm2 s−1, which is determined from the upper
critical field (see additional details on sample C in
Appendix A). Similarly, we use Eq. (2) together with
the temperature dependence expressed in Eq. (1) as a best
estimate for the theoretical depairing current. For further
study, we select the samples with the highest ratio of jc=jdep
to analyze the photon response.
Since Eqs. (1) and (2) give rather approximate values of

the depairing current for our samples under study, and
taking into account the increase of the switching current jshc
due to the shunt resistor, the ratio jshc =jdep should be treated
as a semiquantitative estimate which samples are closer to
jdep, and which are farther. Thus, one should not pay much
attention to the absolute values of ratio jshc =jdep: they all
seem to be higher than they actually are and are sometimes
even higher than jdep (sample C).
Biased near the critical current we observe voltage pulses

quite similar to those we routinely observe with the usual
meander-type SSPDs. Figure 2(b) presents a typical voltage
transient of the 2.12-μm-wide bridge. We do not intend to

FIG. 2. (a) I-V curves of sample C measured with a 3-Ω shunt
resistor (blue) and without one (red) at a temperature T ¼ 4.2 K.
(b) Single-shot waveform transient from sample Cwhen a photon
is absorbed.
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resolve the rising and falling edges of the pulse precisely,
and we use rather simple readout electronics with a 1-GHz
band. Nevertheless, one can see that the decay time is much
shorter than in the meandering SSPDs, but it is still longer
than expected from the kinetic inductance Lk of the bridge
[29] connected to the 3-Ω shunt resistor. The value of Lk in
our samples is in the range of 0.4 to 1.1 nH, giving a
characteristic decay time in the subnanosecond range. We
attribute this discrepancy to a parasitic inductance of the
readout lines and the mounting. As for the rising edge, its
timing is well beyond the capabilities of the readout that
we use.

III. SINGLE-PHOTON DETECTION

The photon detection is carried out in an experimental
setup that is discussed in detail in Appendix B. Figure 3
presents real-time waveform transients taken with a digital
oscilloscope. The top blue curve shows the clock pulses
from the laser. The red curves are the responses from the
sample measured for decreasing power by increasing the
optical attenuation. We observe (1) that the amplitude of
the photoresponse does not depend on the attenuation, and

(2) that the probability of observing a response drops with
the increase of optical attenuation.
We proceed with a statistical analysis of the photon count

rate on the number of incident photons used previously in
Refs. [30,31]. In the single-photon counting regime, the
photon count rate R should be proportional to the photon
flux Rph: R ∝ Rph. For multiphoton detection, we expect
that R ∝ Rn

ph, with n being the number of simultaneously
absorbed photons producing a single count. This behavior
follows from the Poisson distribution of the incident photon
flux. In a strongly attenuated laser beam, the probability p
of having a given number of photons n in a given
constant time slot should be distributed according to
p ∝ hmi expð−hmiÞ=n!, where hmi is the mean number
of photons in the time slot. The probability p of detecting
one photon is proportional to the mean photon number hmi,
the probability of detecting two photons is proportional to
hmi2, and so on. In Fig. 4, we show the count rate vs the
incident photon flux for sample C at three wavelengths—
408, 829, and 1550 nm—and for two bias currents. The
photon flux is calculated at the input of the fiber, and
coupling losses (which are different for different wave-
lengths) are not taken into account in this plot. We
select two bias currents which are supposed to correspond
to two different mechanisms of photoresponse, as
proposed by Zotova and Vodolazov [15]: (1) regime I
(at Ibias ¼ 0.7I=Idep) corresponds to the initial sharp
increase of η, and (2) regime II (at Ibias ¼ 0.9I=Idep)
denotes a much slower increase of η. More details about
these regimes are given below. One can see that, for all
studied wavelengths and bias currents, we observe ∝ Rph, a
dependence which confirms the single-photon operation of
the sample. We observe the same results for all studied
samples, including the largest, the 5.15-μm-wide sample F.

FIG. 3. Real-time waveform record showing clock pulses from
the laser (the top blue curve) and photon pulses detected by the
bridge at different attenuation levels of the power from the laser
(the red curves, with power decreasing from top to bottom). With
the increase of attenuation of the power, the number of detected
pulses decreases.

FIG. 4. Count rate versus the number of photons in the laser
pulse. Blue symbols are used for Ibias ¼ 0.7I=Idep, red symbols
for Ibias ¼ 0.9I=Idep. The linear dependence of the count rate with
the number of photons in the pulse corresponds to the Poisson
statistics and indicates the single-photon nature of the response,
irrespective of the bias current.
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As a further test of the response, we study the interarrival
time distribution of photon counts, as suggested by Marsili
et al. [32]. The statistics of the interarrival time is studied
using the digital oscilloscope Tektronix DPO-70404C. We
record the waveform transient of maximum length, which is
a total of 12.5 × 106 points, covering 10-ms windows with
800-ps resolution. Such a time resolution makes it possible
to obtain at least one point on the rising edge and two to
three points on the decreasing edge of the pulse [Fig. 5(a)].
As a result, we have a set of times ti and, correspondingly,
the instantaneous voltages Ui. Then we extract all time
moments tiA, which correspond to the appearance of
photocounts. As an objective criterion, we take the voltage
rise above a threshold value to indicate the voltage pulses
UiA, which count as events. UiA is taken to be much larger
than the noise amplitude. From the array tiA, we determine
the time intervals between all successive photocounts:
Δti ¼ tiþ1 − ti. From these time intervals we construct a
histogram of the distribution of these time intervals,

normalized to the number of time intervals and their width.
Figure 5(b) shows the histograms of this interarrival time
for sample D.
Since the photons in the incoming light from the cw laser

are independent and since they obey Poisson statistics, the
probability of recording n photons in a time interval t is
ðνtÞn expð−νtÞ=n!, with ν being the mean photon flux. Let
the first count be observed at t ¼ 0. The probability of a
second count during the interval from t to tþ dt is the
multiplication of probabilities of having exactly one photon
in the interval ½t; tþ dt�, and n − 1 photons in ½0; t�. The
probability of the former event is νdt, whereas the latter is
ðνtÞn−1 expð−νtÞ=ðn − 1Þ!. Thus, the probability distribu-
tion for the second photon count appearance is

ρðtÞ ¼ νðνtÞn−1 expð−νtÞ
ðn − 1Þ! : ð3Þ

The red straight line in Fig. 5(b) is the prediction of Eq. (3)
with n ¼ 1 (n is the number of photons for a time interval t).
It clearly proves that the sample does not accumulate more
than one photon to produce a single photon count.

IV. DEPENDENCE OF DETECTION
EFFICIENCY ON CURRENT

In Figs. 6(a) and 6(b), we show the evolution of the η
with the bias current. We distinguish between the two
regimes indicated in the figure. In regime I, the η grows fast
in an exponential-like manner. We associate this regime
with fluctuation-assisted photon counting. In this case, the
absorption of a photon triggers the transition to the resistive
state only with the help of thermally activated vortex
nucleation near the point of impact of the photon [15].
The indirect proof of this intrinsic mechanism comes from
the fact that the slopes of ηðIÞ in regime I and the
dependence of the dark count rate on the bias current
[see Figs. 6(a) and 6(b)] are identical for all samples and
bias conditions.
The second regime, regime II, begins at a current denoted

by I ≳ I2, which we relate to the position-dependent photon
counting proposed in Refs. [8,15,33]. It is worth noting that
I2 is an arbitrarily chosen value at which η ¼ 1%. This
method gives a reasonable accuracy, as below I2, η
increases sharply with an increasing bias current. In this
deterministic regime, the η monotonically grows with the
current, starting from the current called Imin

det , where the
region near the edges of the sample (with a typical width of
about the diameter of the hot spot) starts to detect photons.
It grows up to a current Imax

det , at which the central part of the
sample joins the detection process. For relatively narrow
widths, it is expected that Imin

det ≃ Imax
det − 0.1Idep (see Fig. 9

in Ref. [8]). The calculations for wider samples give
ðImax

det − Imin
det Þ=Idep in range 0.03–0.04, and the dependence

ηðIÞ has a steplike form with η ≪ 1 for I < Imin
det and η ¼ 1

FIG. 5. (a) Oscilloscope waveform transient (top panel) and a
fragment of the time trace (bottom panel). (b) Statistical analysis
of the interarrival time of the photon counts measured with a cw
laser of wavelength λ ¼ 1550 nm. The exponential distribution
of the interarrival time intervals between photon counts shows the
same Poisson distribution as the photons in the incoming light,
providing additional proof of the single-photon response of the
sample.
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at I > Imax
det due to the small contribution of the near-edge

region of the sample to full intrinsic detection efficiency.
Therefore, we can safely assume that the current I2 ∼ Imax

det .
The model of Ref. [8] predicts that the ratio Imax

det =Idep
increases at higher temperatures (see Fig. 11), and so does
I2=Idep. This result qualitatively coincides with the present
experimental findings. At T ¼ 4.2 K ≃ 0.5Tc, the ratio
I2=Idep has a larger value for all of the bridges than at
T ¼ 1.7 K ≃ 0.2Tc, but the deterministic regime extends
over a wider current interval at lower temperatures.
Moreover, for example, sample F (w ¼ 5.15 μm), with
the lowest reduced critical current at T ¼ 4.2 K, detects
photons at high temperature only in the fluctuation-assisted
regime, while at T ¼ 1.7 K, it operates in the deterministic
regime, too.
In our experiment, regime II extends over the current

range of approximately 0.6Idep–0.9Idep (depending on the
temperature and the specific sample), which is much wider
than the theory [8] predicts. We also do not observe a
saturation of η. We believe that the main reason is the
geometry of our bridges, Fig. 1. The width of the bridge
increases when one moves from its center to the leads and
the local current density decreases. Therefore, with increas-
ing current, a larger (longer) part of the bridge participates
in the detection process and the η grows monotonically
until the bridge switches to the resistive state at I > Ishc .

V. DISCUSSION

Now, we summarize and explain our observations by
using the concept of vortex-assisted detection, introduced
by Zotova and Vodolazov [7,8,15]. Because our samples
have widths that are large compared to the estimated

hot-spot diameter and to the coherence length, one expects
that the detection mechanism should be insensitive to the
width of the bridge, and dependent only on the supercurrent
density j.
The model has one specific prediction. For a sufficiently

large width of the bridge, the onset of deterministic
detection is governed by the current density rather than
by the current. Physically, this means that the registration of
a detection event, which starts upon exceeding the critical
current density (the critical supervelocity) [7,15], is sensi-
tive only to the local density of the current (and to the size
and “depth” of the spot, determined by the energy of the
absorbed photon), but not to the distance between the hot
spot and the edge of the strip. The latter requirement is true
only if the strip is sufficiently wide compared to the size of
the hot spot.
What “sufficiently wide” means is seen in Fig. 11,

where the normalized detection current Imax
det =Idep,

which is proportional to the density jdet, saturates near
w ¼ 100ξc. For simplicity of theoretical modeling, we use

ξc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏD=kBTc

p
instead of the zero-temperature coher-

ence length ξ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏD=Δð0Þp

. For our bridges, ξc ¼ 5.4 nm.
In our experiment, for most of the samples, w > 100ξc

holds, and we identify Imax
det with regime II with onset

current I2. Hence, the density of this current I2=w ¼ jdet for
a given wavelength is predicted to be the same for all of the
samples (excluding perhaps the narrowest sample, A, with a
width on the order of 100ξc, which is a borderline case).
A direct check of this prediction needs to take into account

the following two aspects: (1) there is some on-chip
resistance in series with the superconducting bridge, and
(2) there is the shunt resistance connected in parallel to the

FIG. 6. Dependence of detection
efficiency on a bias current normal-
ized to the absorption, ηðIÞ. The bias
current Ibias is normalized to the
calculated depairing current Idep.
(a) η at 4.2 K and (b) η at 1.7 K
for samples (from top to bottom) A,
with w ¼ 0, 53 μm (the green sym-
bols); C, with w ¼ 2, 12 μm (the red
symbols); D, with w ¼ 3, 07 μm
(the blue symbols); and F, with
w ¼ 5, 15 μm (the magenta sym-
bols). These dependencies show
two regimes: (1) one with a sharp
increase of η (regime I) and (2) an-
other with a much slower increase of
η (regime II). Current I2 denotes the
point where the regimes change.
Quantitatively, we define I2 as the
current at which η ¼ 1%. The red
dashed vertical lines denote I2 for a
408-nm wavelength for each sample.

OPTICAL SINGLE-PHOTON DETECTION IN … PHYS. REV. APPLIED 9, 064037 (2018)

064037-7



chip. Therefore, we do not know the current flowing through
the bridgewith sufficient accuracy. Hence, in the raw data in
Fig. 6, one observes a spread of measured normalized
detection currents I2=Idep over the different samples.
However, we note that the division of the current

between the superconductor and the shunt being unknown
varies from sample to sample; it is unaffected by the
wavelength of the detected photons. This means that the
ratio of the detection currents, even those measured with a
shunt, corresponding to two wavelengths, I2ðλ1Þ=I2ðλ2Þ,
should be the same for all samples with different widths.
This prediction can be checked by renormalizing the bias
current for all samples in a way which makes I2—or, rather,
I2=w—the same for one wavelength. After this renormal-
ization, we expect I2=w at all other wavelengths to be the
same for all samples.
Figure 7(a) demonstrates these results for a temperature

of 1.7 K. We normalize the bias currents to match ηðIÞ at
η ¼ 1% for the wavelength of 408 nm. To relate the
numbers to the current density, we apply the following
procedure. We take the data for sample B, which has the
closest values of critical current measured with and without
a shunt and, hence, presumably the lowest on-chip serial
resistance. We then calculate the current flowing through
the superconducting bridge by multiplying the measured
current to the ratio Ic=Ishc for this sample, and divide by Idep
at 1.7 K to obtain the ratio j=jdep ¼ I=Idep. One can clearly
observe that for the wavelength of 829 nm the detection
current densities come very close to each other. This
behavior holds also for wavelengths of 637 and 937 nm
(not shown here). The only deviating sample is the
narrowest sample, A, which is in line with the observations
above.
For the largest wavelengths, 1310 (not shown) and

1550 nm, the spread of η curves at η ¼ 1% between
different samples is significantly larger, and it is problem-
atic to state that they have the same detection current
density after the normalization. We note, however, that, for
these low energies of photons, the detection current by
itself is not well defined because of the absence of a sharp
increase of η above some current. We relate this effect to an
increased role of fluctuations and local inhomogeneities
with the decrease of energy deposited by the photon.
Anyway, even for the largest wavelengths, the variation
of jdet obtained after the normalization is still significantly
less than the variation of I2=w before this procedure.
The same argument about the dependence of η on j

rather than on I holds also for fluctuation-assisted detec-
tion. In this case, one assumes that the detection events in
this regime occur in the narrowest part of the bridge with
the highest current density. This argument is also consistent
with the data.
Next, for wide strips of constant width, the deterministic

nature of detection should result in a steplike dependence of
η in its dependence on j. η ≪ 100% at j < jdet, and η ¼

100% at j > jdet. For our neck-shaped samples, we assume
that we have unit probability of response to the absorbed
photon in the central part of bridge, where j > jdet. The
probability is zero farther away from the narrowest part (see
the inset in Fig. 7). The boundary between the inner and
outer parts is set by the condition j ¼ jdet. Hence, intro-
ducing the area of the central, “detecting,” part SdetðjÞ, we
derive the prediction that the internal detection efficiency is
ηðjÞ ¼ SdetðjÞ=S, where S is the total area of the bridge.
[Details on the calculation of this ηðjÞ can be found in
Appendix D]. Figure 7(b) compares this prediction with the
experiment for wavelengths of 408 and 829 nm. One sees
that the model reproduces three features: (i) a steeper
increase of ηðjÞ for wider bridges, (ii) the convex shape of

FIG. 7. (a) Dependencies of η on current density near the onset
of regime II, demonstrating the invariance of the detection current
density jdet with respect to the width of the bridge. Violet
triangles, red circles, and empty black symbols correspond to
the wavelengths of 408, 829, and 1550 nm. The widths of the
samples are w ¼ 0.53 μm (sample A), 1.06 and 1.61 μm (B),
2.12 μm (C), 3.07 μm (D), 4.07 μm (E), and 5.15 μm (F).
Arrows show how they correspond to the curves, from narrow
to wide. The temperature is 1.7 K. (b) η in regime II for
wavelengths of 408 and 829 nm, compared to the ratio of the
detecting area of the bridge to its total area. Data for samples C–F
are shown, from bottom to top. The temperature is 1.7 K. (Inset)
Schematics of bridge biased by a supercurrent. The part of the
bridge at which j > jdet detects all absorbed photons, whereas the
outer part with j < jdet does not.
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the ηðjÞ dependencies, and (iii) up to a factor of 0.7–1.5, the
absolute value of the measured η. The last discrepancy can
be explained by the systematic and stochastic errors of our
method of determining the η. The nonregular deviation of
the curves for some of the samples from the model
prediction can be attributed to defects in the samples.
The model agrees with the experiment qualitatively, and
even quantitatively for a sizable fraction of the samples.
This is a strong indication that we observe photon detection
with near-unity intrinsic probability at short wavelengths.
Comparing these findings to the predictions of the

microscopic theory, we note that the observed detection
current density jdet ≈ 0.5jdep for the wavelength of 408 nm
is close to the calculated one [8]. As expected, jdet increases
with the wavelength (i.e., with the decrease of photon
energy) and appears to equal the experimental jc ≈ 0.7jdep
for the wavelength of 1550 nm. This means that, to realize η
close to unity for near-IR photons, one has to either reach a
larger jc=jdep quantity or—an option which seems to be
more achievable—enhance the effect of the hot spot,
created by an IR photon, on the current density using
thinner films.

VI. CONCLUSION

We develop in this paper single-photon detectors based
on NbN microbridges. The dependence of the η on the
supercurrent qualitatively resembles those of meander-type
SSPDs with widths less than 200 nm. Our results demon-
strate an alternative type of single-photon detector based on
a short superconducting bridge with dimensions compa-
rable to the diameter of an optical fiber and an η of about 1.
This design provides a much shorter dead time, which is, in
presently used detectors, several nanoseconds, due to the
long length of the meander-type nanowire. Indirectly, our
results confirm the vortex-assisted mechanism of photon
detection using a wide current-carrying strip, as originally
proposed by one of the authors [8].
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APPENDIX A: DEVICE FABRICATION
AND CHARACTERIZATION

The 5.8-nm-thick NbN film is deposited by dc magnet-
ron sputtering of a niobium target in a plasma consisting of
a mixture of argon (Ar) and nitrogen (N2). The film is
deposited on a silicon wafer with a buffer layer of silicon
dioxide. The SiO2 layer is 250 nm thick. Before starting the
sputtering process, we heat the substrate to 400 °C. The film
is characterized by a critical temperature of approximately
Tc ¼ 8.3 K. The deposition is done in the gas mixture with

flow rates of 40 cm3min−1 and 6.6 cm3min−1 for Ar and
N2, respectively, and a current of 550 mA. The deposition
rate under these conditions is 0.88 Å s−1.
The NbN film is patterned into a single bridge with

rounded edges, using electron-beam lithography and the
reactive ion etching technique. From one film, we make a
batch of samples with different widths ranging from 0.53 to
5.15 μm. The size of each sample is determined with a
SEM. All bridges are characterized by the critical temper-
ature determined from the superconducting transition. The
I-V curves are determined at temperatures of T ¼ 4.2 K
and T ¼ 1.7 K. From a measurement of the temperature
dependence of the second critical magnetic field, Bc2
[Fig. 8(a)], we infer a diffusion constant D from the
formula for diffusivity of the quasiparticles in the dirty
superconductor [34]:

D ¼ −
4kB
πe

�
dBc2

dT

�
−1
: ðA1Þ

FIG. 8. (a) Dependence of resistivity on temperature for the
2.12-μm-wide sample C at different magnetic fields ranging from
B ¼ 0 T to B ¼ 4 T. The black arrow indicates the direction of
the increasing B values. (b) Measured temperature dependence of
the critical magnetic field for the 2.12-μm-wide sample C (the
circles), and linear fits of the data (the solid line) used for Bc2ð0Þ
and the determination of the diffusivity.
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The calculated diffusivity isD ¼ 0.31 cm2 s−1 [Fig. 8(b)].
This value is determined for one device and assumed to be
identical for the other devices. Based on experiments on
similar samples [35], we expect this assumption to cause an
error of, at most, 20%. Extrapolating the linear temperature
dependence of Bc2 near Tc to T ¼ 0, we find
that Bc2ð0Þ ¼ 30 T.
As an additional proof of the high quality of our bridges,

we measure the dependence of the critical current Ic on the
perpendicular magnetic field B. Figure 9 shows the
dependencies of Ic on B measured for devices C and D
(2.12 and 3.07 μm wide). We find the linear decay IcðBÞ at
low magnetic fields, which demonstrates the dominant
contribution of the edge barrier for vortex entry [36] and
kinks in the dependence of IcðBÞ at B=Bc2 ≈ 10−3 (marked
by arrows), which are connected to the presence of the
single vortex chain in the middle of the bridge [14,37,38].
Neither of these results can be observed in the bridge with a
dominant contribution of bulk pinning to Ic and the presence
of a large number of defects able to pin the vortices.

APPENDIX B: EXPERIMENTAL SETUP
AND MEASUREMENTS

The electro-optical characterization of our samples is
performed in a fiber-based setup. The sample is mounted on
a dipstick to be inserted into a liquid He Dewar. The
measurements are carried out at two temperatures: T ¼
4.2 K and T ¼ 1.7 K. The latter is reached by vacuum
pumping the helium from a cryoinsert for a storage Dewar.
As light sources, we use light-emitting diodes with wave-
lengths of 408, 637, 829, 937, 1330, and 1550 nm which
can be operated in both pulsed and cw regimes. The sample

chip with the transmission line is connected to a dcþ rf–
output port of a bias tee. The bias current is supplied
through the dc port. We connect a 3-Ω resistor in parallel to
the sample to prevent latching when the critical current is
exceeded. The voltage pulse is amplified by two room-
temperature Mini-Circuits ZFL-1000LN+ (1-GHz band,
46-dB total gain) amplifiers, and it is fed to a digital
oscilloscope and a pulse counter [Agilent 53131A (225-
MHz band)].
In view of the topology and the small active area of our

samples, we do not package them with a single-mode fiber,
as is usually done with meander SSPDs [39,40]. For the
present measurements, we use the sample holder shown in
Fig. 10. In this sample holder, we use the optical fiber
SM-28, which is single mode for wavelength 1550 nm,
with a 9-μm core diameter and aN (numerical aperture) of
0.14. However, at lower cutoff wavelengths (below
1260 nm), the mode distribution in SM-28 fiber is not
Gaussian because the fiber becomes multimodal [41]. To
illuminate our bridge uniformly, we increase the diameter
of the output Gaussian beam by placing the sample at a
distance of d ¼ 80 mm from the end of the fiber. Figure 10
shows the calculated field profiles emitted from the fiber for

FIG. 9. Dependence of the normalized critical current Ic=Idepð0Þ
[Ic, critical current measured without the shunt; Idepð0Þ, theore-
tical depairing current at T ¼ 1.7 K calculated from Eq. (2);
Bc2ð1.7 KÞ ¼ 23 T] on the magnetic field measured for 2.12- and
3.07-μm-wide samples at a temperature T ¼ 1.7 K. The linear
dependence in low magnetic fields is evidence that the NbN film
does not have large extrinsic defects leading to vortex pinning in
the strip. The arrow-marked kinks are connected with the appear-
ance of the single vortex chain in the middle of the bridge at that
specific magnetic-field strength.

FIG. 10. A sketch of the sample illumination principle: to
produce a uniform illumination with a relatively large area, we
place the sample 80 mm away from the fiber pigtail. (Inset)
Calculation of the light-beam intensity profile at the sample
plane. Curve LP01 is a single-mode profile which is observed in
SM-28 fiber for wavelengths longer than 1 μm. It is a Gaussian
profile calculated as I ¼ I0 expð2x2=r02Þ, with I0 being the
irradiance at the center of the beam and r0 the radius of the
beam at which the irradiance is I0=e2 and r0 ¼ dN , where d is
the distance from the surface of the optical fiber to the surface of
the detector and N is the numerical aperture. For fiber SM-28,
r0 ¼ 11.2 mm. Curve LP03 corresponds to the multimode profile
at 408-nm wavelength, and it is described by Bessel functions of
the second kind. The gray rectangle corresponds to a 0.5-mm
displacement. One can see that, in the worst case, the light
intensity is at least 94% of its maximum in the center.
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the wavelengths 1500 and 408 nm. At wavelengths of 1310
and 1550 nm, the light intensity within a 1-mm-diameter
spot is not less than 99% of the light intensity in the center
(the LP01 profile shown in Fig. 10). For the 408-nm
wavelength, the mode profile is narrower (LP03 in
Fig. 10), but, even in this case, if the device is displaced
by �0.5 mm, the light intensity is not less than 95% of the
intensity in the center.
The dipstick is calibrated with a meander SSPD with a

filling factor of 50% (100-nm strip and 100-nm gap). The η
of the meander SSPD has been previously measured by
packaging it with single-mode fibers. Subsequent measure-
ments of this sample in the dipstick with a known detection
efficiency make it possible to determine the number of
photons in the flow incident on the sample with an area of
10 × 10 μm. Knowing the ratio of the areas of the meander-
shaped SSPD and the bridge, we calculate the number of
photons incident on the bridge.

APPENDIX C: THEORETICAL ESTIMATES

In Fig. 11, we present the calculated dependence of
Imax
det =Idep on the temperature for strips with different widths
and two wavelengths. The results are obtained in the
framework of the two-temperature hot-spot model devel-
oped by one of the authors in Ref. [8]. The calculations are
carried out at temperatures of T ≥ 0.35Tc, where the
numerical procedure converges well. In this model, Imax

det
is defined as the maximal value of the detection current at
which all points across the strip participate in the photon

detection (and where the intrinsic detection efficiency
reaches unity). The growth of Imax

det =Idep with temperatures
ranging from 0.35Tc to 0.7Tc is connected to the nonlinear
temperature dependence of the electronic and phonon
energies [8]. The growth of Imax

det =Idep at a temperature
T ≳ 0.7Tc for wide strips (w > 40ξc and ξc ¼ 5.4 nm
for our bridges, as shown above) is explained by the rapid
drop of IdepðTÞ. This leads to a reduced Joule heating in
the superconductor when the first vortex-antivortex pair
nucleates inside the (nonequilibrium) hot spot and worsens
conditions for the appearance of a fully normal domain.
This is the case for the same reason that Imax

det =Idep grows for
a strip with w ¼ 20ξc and λ ¼ 620 nm at T > 0.85Tc. One
would expect that, with the approach to Tc, photon
detection becomes impossible [8] because the normal
domain cannot appear in the strip.
In the calculations, we assume that the escape time of the

nonequilibrium phonons to the substrate, τesc, is equal to
the characteristic time τ0 ∼ 270 ps and, furthermore, that
the important parameter γ ¼ 10. Both are typical values for
NbN (for the definition of τ0 and γ, see Ref. [8]). Choosing
a smaller value of τesc (up to 0.1τ0) hardly changes the
obtained dependencies, at least for temperatures
T < 0.8Tc, because the time for the nucleation of a normal
domain δt [8] does not exceed 0.1τ0. At T ¼ 0.9Tc, the
time δt approaches 0.4τ0 for a strip with w ¼ 180ξc. A
smaller value of τesc provides a large value of Imax

det =Idep.

APPENDIX D: ACCOUNTING FOR THE
NONRECTANGULAR SHAPE

OF THE BRIDGES

To apply our simple model of deterministic detection,
which predicts η ¼ 0 at j < jdet and η ¼ 1 at j > jdet, to
our bridges with nonconstant widths, and hence non-
constant j values over the length, we calculate the detecting
amount of the bridge area, in which j > jdet. To do so, we
introduce coordinates as shown in Fig. 12. We express
the area of the bridge segment of length 2x as

FIG. 11. Dependence of Imax
det =Idep on temperature for two

wavelengths, λ ¼ 2250 nm and λ ¼ 900 nm (inset), of the
photon and at different widths of the strip. At the current
I ≥ Imax

det , all points across the strip participate in photon detec-
tion, and the intrinsic detection efficiency reaches unity. Calcu-
lations are made in the framework of the 2T hot-spot model in
Ref. [8]. Dashed lines show the expected dependence at low
temperatures (they follow from results using the hot-belt model—
see Fig. 6 in Ref. [8]), where the numerical scheme from Ref. [8]
does not converge. FIG. 12. Calculation of the detecting area Sdet.
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SðxÞ ¼ 4
R
yðxÞdx ≈ 2wxþ 2x3=3R, where yðxÞ ¼ w=2þ

R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
≈ w=2þ x2=2R is the half width of the

bridge at the cross section with the coordinate x. The
current density at the same cross section is jðxÞ ¼ jw=yðxÞ,
with j being the current density at the center of the bridge,
x ¼ 0. At the boundary between the detecting and
nondetecting parts, xdet, one has jðxdetÞ ¼ jdet and
yðxdetÞ ¼ ðj=jdetÞðw=2Þ. Expressing the half width at this
boundary as ydet ≈ Rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=jdet − 1

p
, we derive that the

detecting area Sdet¼SðxdetÞ≈R1=2w3=2½2ðj=jdet−1Þ1=2þ
ð2=3Þðj=jdet−1Þ3=2�. Finally, to obtain ηðjÞ ¼ Sdet=S,
we divide SdetðjÞ by the total area of bridge,
S ≈ wLþ L3=12R.
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