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A photon-number-resolving transition edge sensor (TES) is used to measure the photon-number
distribution of two microcavity lasers. The investigated devices are bimodal microlasers with similar
emission intensity and photon statistics with respect to the photon autocorrelation. Both high-β microlasers
show partly thermal and partly coherent emission around the lasing threshold. For higher pump powers, the
strong mode of microlaser A emits Poissonian distributed photons, while the emission of the weak mode is
thermal. By contrast, laser B shows a bistability resulting in overlayed thermal and Poissonian distributions.
While a standard Hanbury Brown and Twiss experiment cannot distinguish between the simple thermal
emission of laser A and the temporal mode switching of the bistable laser B, TESs allow us to measure the
photon-number distribution, which provides important insight into the underlying emission processes.
Indeed, our experimental data and their theoretical description by a master equation approach show that
TESs are capable of revealing subtle effects like the mode switching of bimodal microlasers. As such, we
clearly demonstrate the benefit and importance of investigating nanophotonic devices via photon-number-
resolving transition edge sensors.
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I. INTRODUCTION

Analyzing the photon statistics using a Hanbury Brown
and Twiss (HBT) configuration is a well-established
method in quantum optics [1] which essentially measures
the time correlation of photon pairs to determine the
second-order autocorrelation function gð2ÞðτÞ. However, a
full understanding of the processes involved in the emission
of such nanophotonic devices often requires not only the
information quantified in gð2Þð0Þ but also knowledge of the
photon-number distribution.
The challenge of determining the photon-number

distribution of emission can be tackled by using photon-
number-resolving detectors. Unfortunately, standard single-
photon-sensitive detectors based on avalanche photodiodes

are not capable of measuring the number of impinging
photons. This shortcoming is not present for another class of
highly efficient detectors—namely, transition edge sensors
(TESs; see Fig. 1). Such detectors usually have high
quantum efficiency in excess of 90% over a large range
of wavelengths [2] and can be used as photon-number-
resolving detectors because of their calorimetric operation
principle [3,4]. Interestingly, in spite of the advantage of
being able to experimentally access the photon-number
distribution of ultralow-light-level emitters [5], TESs have
not yet been applied for an in-depth analysis of nano-
photonic devices.
Knowledge about the photon-number distribution of

nanophotonic devices allows one to better understand their
operation and to improve their application in fields where
nonlinear processes are dominant—e.g., for ghost imaging
[6], subwavelength lithography [7], metrology [8], and
two-photon-excited fluorescence [9,10]. Here, we inves-
tigate two bimodal microlasers and explore diverse char-
acteristics in their full photon statistics. It is interesting to
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note that, even though intensity fluctuations of two-mode
(ring) lasers have been studied using photomultiplier tubes in
photon-counting mode (see, e.g., Ref. [11]), these detectors
are not able to determine the photon-number distribution
of microlasers in the few-photon limit. By contrast, TES
detectors are close-to-ideal devices to experimentally explore
this distribution because of their high quantumefficiency and
photon-number-resolving capabilities.
Microlasers are of strong interest for both fundamental

research of cavity-enhanced nanophotonic devices and their
future applications due to their small size, high speed, and
low energy consumption [12]—for instance, in the field of
quantum nanophotonics [13]. Popular microlaser concepts
are based on photonic crystal cavities [14], plasmonic
resonators [15], or micropillar cavities [16,17]. These reso-
nator structures have smallmodevolumes in common,which
result in enhanced light-matter coupling. Consequently,
the associated spontaneous emission factor β, which is the
fraction of spontaneously emitted light coupled into the
cavity mode, is strongly enlarged so that the ultimate limit of
thresholdless lasing can be approached [18].
In devices with high β factors, analyzing the input-output

characteristics is not sufficient to prove lasing operation
due to the lack of a significant nonlinearity at the threshold
[19]. Furthermore, optical injection, superradiance, mode
competition, and saturation of the low-dimensional gain
medium can also lead to deviations from the standard
behavior [20–25].
Studying the correlation of photon pairs has become

an important tool to characterize microlasers, as it reveals
the transition from predominantly spontaneous emission
towards stimulated emission at threshold by a change of
gð2Þð0Þ from 2 to 1 [26]. Interestingly, in bimodal lasers,
additional effects like gain competition [22,27] and dis-
sipative coupling [28] occur which are difficult to identify
using a HBT measurement alone.

In this article, we apply a TES to measure the photon-
number distribution of two microlasers with two orthogo-
nally polarized modes. The TES allows us to obtain deeper
insight into the emission properties, which is hardly possible
using standard characterization tools such as a HBT con-
figuration. Our work also highlights the big potential of
TESs as an important measurement concept in the applica-
tion of microlasers and in the wide field of nanophotonics.
To illustrate this potential, we select two bimodal micro-
lasers with, at first sight, very similar emission features. For
the first laser, A, the emission of both modes is in a transient
state from thermal to coherent light around the laser thresh-
old.While for high pump rates the stronger mode emits pure
coherent light, the weaker mode is in the thermal regime.
The second laser, B, has similar input-output characteristics
and gð2Þð0Þ values. Excitingly, for this laser gain competition
between the two emission modes leads to mode bistability
and an associated double-peaked photon-number distribu-
tion. The latter can be revealed only with the TES technique
and is best described by an overlay of thermal and
Poissonian statistics.

II. THEORETICAL METHODS

To calculate the full photon statistics Pn of emission
from the microlaser, we solve a master equation for the
diagonal elements of the density matrix ρnN giving the
probabilities of finding the system in a state with photon
numbers n ¼ ðnw; nsÞ in the weak and in the strong mode
of the laser andN excited emitters. The master equation is a
multimode generalization of the equation used in Ref. [21]
and is based on a statistical birth-death model including all
relevant processes of a multimode laser on a phenomeno-
logical level.
Classical ring lasers in particular [29], but also micro-

lasers based on photonic crystals [30] and micropillars [27],
have been modeled with Langevin equations where the
spontaneous emission is introduced by a random force
or by Fokker-Planck equations for the (quasi)probability
distribution of the electric field [29,31,32]. Within our
model, we follow the quantum-mechanical approach intro-
duced in Ref. [21], which is based on Ref. [33] and which
gives a statistical representation of the Einstein rate
equations for the photon probability distribution. It thus
includes spontaneous emission and the discrete nature of
the distribution.
The mean-field equations for the field intensities derived

from our model are identical with the two-level-emitter
limiting case of the microscopic laser theory developed in
Ref. [34]. This model has been applied successfully to
bimodal microcavity lasers before, to address the origin of
superthermal intensity fluctuations [22] and to investigate
the connection between nonequilibrium Bose-Einstein
condensation [35] and pump-power-driven switching of
the lasing mode in Ref. [36]. We take the finite coherence
time of the signal and the finite temporal resolution of the

Cryostat (approx. 15 K)

Microlaser

CCD

SPCM 

S
P

C
M

 
FIG. 1. Sketch of the experimental setup. Themicrolaser sample
is operated in a He-flow cryostat at 15 K and is excited by a pulsed
electrical voltage supply. The emitted light is analyzed by a
spectrometer or the TES or, alternatively, by a standardHBT setup.
SPCM denotes single-photon counting module.
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detector into account by folding the gð2ÞðτÞ signal with the
detector function [26].
As reported in Ref. [37], the nonlasing weak mode also

has a relatively large coherence time for high pump rates.
Thus, we can detect the super-Poissonian gð2Þð0Þ in this
region, in contrast to the situation below the threshold pump
rate, where the low coherence time hinders its detection. To
describe the detection of photons emitted by the microlaser
with the TES, a detection model introduced in Ref. [38] is
used. The pulsed excitation and detection applied in this
work is theoretically described by two steps: First, the steady
state of the laser system is found for a pump rate corre-
sponding to the pump area. Second, this steady state decays
via the leaky cavity and the leaked and detected photons are
counted (for further details, see the Appendix).

III. SAMPLE TECHNOLOGY AND
EXPERIMENTAL SETUP

The gain medium of the microlasers used is composed of
a single layer of In0.3Ga0.7As quantum dots with a density
of 5 × 109= cm2. The active layer is embedded in the
central 1-λ GaAs cavity, which is sandwiched between an
upper (lower) distributed Bragg reflector consisting of
26 (30) mirror pairs that are based on λ=4-thick layers
of GaAs and AlAs. Micropillars of 4 μm diameter are
produced via electron-beam lithography and plasma etch-
ing. The sample is planarized with benzocyclobutene,
and individual micropillars are electrically contacted with
circular gold contacts. The Q factor of the electrically
contacted micropillars is about 20 000. Details on the
sample fabrication are explained in Ref. [39].
The microlaser sample is placed in a continuous-flow He

cryostat and cooled down to a temperature of T ¼ 15 K (see
Fig. 1). It is pumped by an electrical pulse generator with a
variable pulse length (0.5–10 ns) and a pulse amplitude of up
to 5.1 Vac bias and a repetition frequency of 10 kHz. A bias
voltage Vbias ¼ Vdc bias þ Vac bias with Vdc bias ¼ 1.5 V is
applied. For laser A, a pulse length of τP ¼ 2 ns—and for
laser B a pulse length of τP ¼ 1.5 ns—is chosen as the best
balance between coherence time limitations and a sufficient
pulse area to reach the lasing regime, respectively. A
microscope objective collects the emission. Polarization
optics are used to separate the two orthogonal modes, and
their emission is spectrally resolved by a spectrometerwith a
resolution of 30 μeV. Finally, the signal is analyzed with a
TES or, alternatively, by a HBT setup.
The TES acts as a highly sensitive calorimeter to detect

the small energy input from an absorbed photon pulse. The
temperature change is measured with a sensitive thermom-
eter which is, simultaneously, the absorber. By voltage
biasing, the TES heats up within the superconducting phase
transition and is stabilized by negative electrothermal
feedback [2] so that the absorption of a photon pulse
results ultimately in a current redistribution. The current
change is measured via an inductively coupled two-stage dc

superconducting quantum-interference device (SQUID)
[40]. The TES-SQUID detector unit is fiber coupled and
mounted on the cold stage of an adiabatic demagnetization
refrigerator, which is stabilized at 130 mK. From analyzing
many pulses, a histogram of the photon-number distribu-
tion can be extracted. The detection efficiency of the TES is
determined to be 87% [41].

IV. EXPERIMENTAL RESULTS

Owing to a slightly asymmetric cross section of the
micropillar, the degeneracy of the fundamental emission
mode is lifted [42] and two orthogonally polarized linear
mode components with a splitting of 20 μeV are observed.
Both fundamental mode components couple to the
common gain medium and show lasing influenced by gain
competition, while higher-order lateral modes have much
less spectral overlap with the quantum-dot gain and do not
show lasing [26]. The intensity-bias voltage dependence of
laser A [Fig. 2(a)] reveals the typical behavior: At first, both
modes increase superlinearly at the threshold, then, at
higher excitation gain, competition leads to a further
increase in the strong mode (the blue squares) [22].
Figures 2(b)–2(d) depict the photon-number distribution

for three voltages. For low-voltage pulses, both modes have
a Poissonian distribution. Themicrolaser is expected to emit
thermal light, but since the coherence time is shorter than the
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FIG. 2. (a) Intensity-bias voltage characteristic of laser A. The
strong mode (the blue squares) shows an S-shaped behavior,
while the weak mode (the orange circles) saturates in intensity
(given as the number of photons inside the cavity, set to 1 at the
laser threshold) above the threshold. (b)–(d) Photon statistics at
three bias voltages, indicated by the red arrows. The bars
correspond to the statistics measured with the TES; the dots,
connected by a line, correspond to the theory. (b) For low bias
voltage (Vbias ¼ 3.9 V), both modes possess a Poissonian dis-
tribution. (c) Above threshold (Vbias ¼ 4.4 V), the photon sta-
tistics exhibits a transient distribution which is partly thermal and
partly Poissonian. (d) For high voltage (Vbias ¼ 6.0 V), the weak
mode shows a thermal distribution, whereas the strong mode
exhibits a Poissonian distribution.
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pulse length τcoh ≪ τP, the real character is not accessible in
this regime since thermal bunching arises on a scale of the
coherence time [26]. Therefore, a longer pulse averages over
many bunching events and a Poissonian distribution is
measured [43]. The coherence time at the bias voltage of
3.9 V can be estimated from the linewidth as τcoh ∼ 170 ps
[44]. The theoretical calculations (dots connected by a line)
which are detailed below do not suffer from coherence time
limitations and reproduce a thermal distribution almost
perfectly. For these low photon numbers, the two distribu-
tions are almost indistinguishable to the eye.
Above the threshold atVbias ¼ 4.4 V, bothmodes are in a

transient state and the photon-number distribution is partly
thermal and partly Poissonian [45]. In this mixed photon-
number distribution, the Poissonian part, which indicates the
emission of coherent light, is recognizable by the enhanced
contribution of higher photon numbers. Our theory
describes the same behavior; however, without coherence
time limitation, it predicts a higher probability for zero-
photon events when compared to the experimental data.
For a high bias voltage of 6.0 V, the photon-number

distribution for the weak and the strong mode differs
considerably. Whereas the strong mode emits pure coherent
light, indicated by Poissonian statistics, emission of theweak
mode has thermal properties. The experimental photon-
number distribution of the strong mode is in good agreement
with theory. Since the coherence time (τcoh;w ∼ 530 ps) is
shorter than the pulse length (τp ∼ 2 ns), a pure thermal
distribution cannot be measured for the weak mode. This
observation explains again the deviation between theory and
experiment noticeable at low photon numbers ≤ 5.
Interestingly, while standard HBT measurements pro-

vide only information about the second-order autocorrela-
tion function, all moments—and hence all orders—of the
autocorrelation function at zero-time delay gðkÞð0Þ can be
calculated from the experimentally determined photon-
number distribution Pn [46]:

gðkÞð0Þ ¼
P

n

Q
k−1
i¼0ðn − iÞ · Pn

hnik : ð1Þ

To determine the second-order autocorrelation function
gð2Þð0Þ, only the mean photon number hni ¼ P

nnPn and
the variance VðnÞ ¼ hðn − hniÞ2i are required:

gð2Þð0Þ ¼ 1þ VðnÞ − hni
hni2 : ð2Þ

In Fig. 3(a), the gð2Þð0Þ values of laser A for varied pulse
voltages are presented. The data calculated from the TES
measurements are in close-to-perfect agreement with the
corresponding HBT data. At low voltage, the thermal
emission with an expected gð2Þð0Þ ¼ 2 is, as already
discussed, not resolvable, and a gð2Þð0Þ ¼ 1 value is
measured. In the transition region, an increase of up to

1.3 is visible. This change represents the transition from
thermal emission to lasing operation, with a simultaneous
increase of the coherence time [25,26,47]. The autocorre-
lation of the strong mode decreases to gð2Þð0Þ ¼ 1 for
higher voltage, indicating coherent emission. For the
weak mode, the autocorrelation increases to values slightly
above 2. This behavior, i.e., gð2Þð0Þ > 2, is an indication for
thermal emission with minor contributions from mode
coupling [22]. The accordance of both techniques proves
the accuracy of the determined gð2Þð0Þ value.
The third and fourth orders of the autocorrelation

function [see Eq. (1)] obtained from the TES data are
depicted in Fig. 3(b). The different orders of gðkÞð0Þ follow
the same trend as gð2Þð0Þ but reach higher values, and the
theoretical simulations confirm this behavior. Deviations
between experimental and theoretical gð4Þð0Þ values at low
bias voltages are attributed to additional temporal resolu-
tion limitations not considered in our theory. Being able to
address higher-order photon autocorrelation functions to,
e.g., better understand the threshold behavior of micro-
lasers [48] is another advantage of the TES technique.
Indeed, higher-order autocorrelations cannot be accessed
by standard HBT experiments, and, to date, only elaborate
streak-camera measurements have allowed us to access the
autocorrelation function up to fourth order [49,50].
To highlight the importance of investigating microlasers

with a TES, a second laser, B, with almost identical input-
output and autocorrelation characteristics (see the insets of
Fig. 4) is investigated. Analyzing its full photon statistics,
accessible only with a TES, we see substantial differences
between laser A and laser B. Compared to laser A, both the
weak and the strong mode show a behavior with an
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emission being composed of a thermal distribution with a
low mean photon number hni and a Poissonian distribution
with a large hni value. In striking contrast to the statistics of
laser A, for laser B, the zero-photon state is the most likely
one for both the strong and the weak mode. The difference
between the weak and the strong mode results in the fact
that the emission statistics of the former mode is dominated
by the thermal part, whereas the strong mode is dominated
by the Poissonian part. This behavior can be explained as
follows: Both modes are potential lasing modes where
carrier fluctuations largely influence the switch-on process.
The photon statistics at Vbias ¼ 5.4 V are exemplary. This
behavior can be observed for a wide excitation range.
For every electrical pulse, each of the two modes could

potentially reach the lasing regime, while the other mode
stays in the thermal regime. In the presented case, the
analysis of the experimental photon-number distributions
yields that, in about 75% of the pulses, the strong mode is
in the lasing regime and emits coherent light, while the
weak mode radiates thermally. In the other approximately
25% of the pulses, the weak mode is lasing and the strong
mode is not. This bimodal behavior is comparable to
spontaneous switching under continuous-wave excitation
[22,27]. Simultaneously, the dwell time (the average time
before a mode switch) is assumed to be large compared to
the pulse length, but it is not accessible for pulsed
excitation. Also, the theoretical description reproduces this
behavior well in both the photon-number distribution and
the gð2Þð0Þ values. In the master equation, the spontaneous
transition between the modes is effectively reduced (com-
pared to laser A) due to stronger modal interactions and
carrier population oscillations [30], thus trapping the weak

mode close to the zero-photon state and giving rise to
bistable behavior [36].

V. CONCLUSION

We demonstrate in this paper that TESs are powerful
detectors to investigate the photon statistics of microscopic
laser devices. Where former HBT experiments were able
only to detect intensity fluctuations quantified in gð2Þð0Þ,
regardless of their origin, the TES gives direct access to the
photon-number distribution and enables the differentiation
between various effects. Determining the full photon sta-
tistics via TES detectors has great potential to become a
powerful characterization method to reveal and understand
the physics of nanophotonic devices at the quantum level
[51]. It will be of particular importance for the further
development of microcavities towards applications which
benefit from a tunable and controllable photon statistics of
emission.
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APPENDIX: DETAILS OF THE
THEORETICAL METHODS

To describe the measurement theoretically, we divide the
process into two subprocesses: (i) the excitation of the laser
device by the pump pulse and (ii) the subsequent detection
of the emitted cavity photons. The first subprocess is
modeled by the steady state of the master equation (A1),
which is determined by solving the linear equation
ðd=dtÞρnN ¼ 0 [see Eq. (A1)]. This steady state is then
modified according to Ref. [38] [see Eq. (A2)].

1. Master equation

The utilized master equation

d
dt
ρnN¼P½ρnN−1−ρnN �−τ−1½NρnN−ðNþ1ÞρnNþ1�

−
X
i

gi½Nðniþ1ÞρnN−ðNþ1Þniρn−eiNþ1 �

−
X
i

li½niρnN−ðniþ1Þρnþei
N �−

X
i;j

Ri→j½niðnjþsÞρnN

−ðniþ1Þðnj−1þsÞρnþei−ej
N � ðA1Þ
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[inset of (b)] gð2Þð0Þ values of laser B are similar to laser
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is based on a phenomenological model that takes all of the
relevant processes of the microcavity laser into account.
Here, P is the pump rate, τ−1 is the rate of spontaneous
emission into nonlasing modes, gi is the rate of emission
into the lasing mode i, li is the loss rate of photons from
cavity i, and Ri→j is the transition rate of the cavity photons
frommode i tomode j. s is the factor quantifying how strong
the gain-medium induced mode interaction effectively
reduces the spontaneous emission between the modes.
The solution of Eq. (A1) can be interpreted as the diagonal
elements of the density matrix hn; Njρjn; Ni ¼ ρnN , giving
the probability to find the systemwithN excited emitters and
n ¼ ðnw; nsÞ photons in the weak mode and strong mode,
respectively. By tracing over the emitters and one of the
modes, one can obtain, for example, the distribution of the
weak mode Pnw ¼ P

N;ns
ρnN . The parameters for the theory

are given in Table I.

2. Detection model

Since the master equation models the inside of the cavity,
it is necessary to study the change of the statistics with
respect to the leakage of photons out of the cavity li and the
nonideal setup, with an efficiency denoted by ξ. Assuming
that the leakage of the cavity is the relevant process—i.e.,
the pump pulse has already subsided and the rate of the
intermode kinetics is comparable small—the influence
of the detection for a single-mode distribution can be
modeled as

Pout
m ðt1; t2Þ ¼

X
ni¼m

Pni

�
ni
m

�
ð1 − ξe−lit1 þ ξe−lit2Þni−m

× ðξe−lit1 − ξe−lit2Þm; ðA2Þ

where Pni is the single mode distribution [see Eq. (A1)],
Pout
m is the detected distribution, and t1 and t2 are the times

at which the measurement begins and ends, respectively

[38]. Although this transformation shifts the whole statis-
tics to a lower mean number, it does not alter the photon
autocorrelation gð2Þð0Þ. To prove this statement, we define
ζ ¼ ξe−lit1 − ξe−lit2 and find that hniout and hn2iout can be
expressed by ζ and the expectation values inside the
cavity by

hniout ¼ ζhni;
hn2iout ¼ ζ2hn2i þ ðζ − ζ2Þhni: ðA3Þ

This follows from Eq. (A2) by changing the order of
summation and using the knowledge of the mean and the
variance of the binomial distribution.
Relations (A3) can be inserted into Eq. (2) and it follows

that the transformation Pout
m ðt1; t2Þ does not change gð2Þð0Þ.

The setup efficiency is estimated to be ξ ¼ 0.1. Since the
measurement lasts much longer than the cavity decay time,
we set t2 → ∞ and t1 ¼ 0 since the initial state for the
detection model is the steady state of Eq. (A1).
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