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We propose a quantum algorithm for simulating spin models based on the periodic modulation of
transmon qubits. Using the Floquet theory, we derive an effective time-averaged Hamiltonian, which is of
the general XY Z class, different from the isotropic XY Hamiltonian typically realized by the physical setup.
As an example, we provide a simple recipe to construct a transverse Ising Hamiltonian in the Floquet basis.
For a 1D system, we demonstrate numerically the dynamical simulation of the transverse Ising Hamiltonian
and quantum annealing to its ground state. We benchmark the Floquet approach with a digital simulation
procedure and demonstrate that it is advantageous for limited resources and finite anharmonicity of the
transmons. The described protocol represents a hardware-efficient quantum software and can serve as a
simple yet reliable path towards configurable quantum simulators with currently existing superconducting

chips.
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I. INTRODUCTION

Quantum simulation relies on exploiting a controllable
quantum system to imitate a complex quantum system of
interest [1]. It provides an efficient way to solve classically
inaccessible problems of material science [2] and quantum
chemistry [3,4]. Ultimately, quantum simulation may give
access to properties of complex quantum systems with
exponential speedup as compared to classical algorithms
[5,6]. Superconducting circuits (SCs) [7,8] have recently
emerged as one of the prime candidates for realizing full-
scale quantum computers, with operations close to the
fault-tolerant threshold [9—15]. From the simulation point
of view, various protocols were proposed and realized
experimentally [16], including the simulation of spin
systems [17-19], fermionic models [20], quantum chem-
istry [21], thermalization [22], synthetic magnetic fields
[23], ultrastrong coupling [24,25], and gauge field theories
[26]. To demonstrate the full potential of a quantum
simulation with SCs, however, there is a need for protocols
which can outperform classical protocols for realistic near-
term medium-size systems.

Typically, protocols for quantum simulation can be
divided into digital and analog (or emulator) types.
While these techniques are similar, they exploit different
methods to achieve a quantum speedup. The digital
approach relies on discretizing the Hamiltonian evolution
using a set of quantum gates. A protocol for simulating an
arbitrary unitary U(r) = exp(—if{r) governed by a
Hamiltonian 7{ not available in the physical setup exploits
the sequential implementation of the available unitaries U,
represented by gates. The corresponding unitary of a single
digital step j of duration 6¢ can be constructed as
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U (6t) = [1,0,. This string of unitaries can be recast

in terms of Hamiltonians U;(5) = [1,e” % An
implementation of N1, — oo of these Trotter steps com-
bines into a unitary f/(t) :limNTr_,oon(ét)NTrze‘m’,
where H = Z,n?:lm and t = OtNr, [5]. Given a universal
set of gates, any required Hamiltonian can, in principle, be
simulated. This poses the challenge of implementing long
sequences of quantum gates for successful simulation,
leading to errors if they have limited fidelity. The digital
approach is widely used for quantum simulation with SCs
[17-21,24,25], as it is tunable and does not require
changing the sample layout to simulate different models.

Analog quantum simulation relies on the actual physical
implementation of the required Hamiltonian, correspond-
ing to the emulation of a targeted real system. This is
realized on various platforms, including cold atoms in
optical lattices [27,28] and trapped ions [29-31]. By
exploiting continuous time dynamics, Trotterization errors
are minimized, and analog protocols can therefore have
superior simulation fidelities. However, they are restricted
to the types of Hamiltonian physically realizable in the
system. In particular, this is the case for SC quantum
systems. Current highly coherent chains of transmons,
sketched in Fig. 1, are typically limited to the nearest-
neighbor flip-flop type of interqubit interaction provided by
the capacitive coupling between them. Thus, they are
confined to simulate an isotropic XY-type spin-1/2 model
[32]. The accessible models can be enriched by implement-
ing different connections between the qubits to engineer
various nonlinear couplings [33-35], engineered interac-
tion through a common bus resonator [36,37], or allowing
for the modulation of interqubit interactions to break the
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FIG. 1. Sketch of the system. A chain of superconducting

transmon-type qubits coupled through isotropic XY coupling J.
Each qubit is subject to a periodically modulated effective
magnetic field h;(r).

rotating-wave approximation [38—40]. However, this adds
extra complications to experiments and potentially intro-
duces additional errors.

Here, we propose an alternative analoglike simulation
strategy, which can be performed without modifications of
the system. It is based on using a Floquet basis to perform
quantum simulation with superconducting circuits and can
be extended to ground-state preparation via quantum
annealing. The idea relies on the time-dependent modula-
tion of the Hamiltonian 7{(r) = H, + 7, (z), where H, is a
time-independent part and (1) = 7, (t + T) is harmoni-
cally varying with a period T = 2z /w. The corresponding
unitary operator for a single period can be rewritten as an
effective evolution with a time-independent Hamiltonian
given by the Magnus expansion [41,42]. When the fre-
quency of modulation @ is much bigger than the coupling
in the static Hamiltonian, /||| > 1, the dynamics of
the system can be conveniently represented in terms of a
period-averaged Floquet Hamiltonian:

= %/OTﬂ()(t)dt, (1)

where T{{(7) denotes the static Hamiltonian 7, rewritten in
the interaction picture with respect to the oscillating part.
The resulting Hamiltonian 7:[F may possess qualitatively
different behavior compared to . Such a Floquet type of
simulation recently gained attention in the cold atom [43]
and condensed matter physics communities [44,45], and for
SCs was used to study the quasienergies of a single qubit
[46]. Here we show how to use similar techniques as a
general protocol for a quantum simulation.

We consider qubits with isotropic XY coupling and show
that by exploiting fast driving of each site we can tailor the
effective Hamiltonian of the system. For concreteness, we
focus on one-dimensional chains, but the method can easily
be extended to more dimensions or to nonlocal models
using a quantum bus. First, we describe how the approach
can be used to simulate the dynamics of the transverse Ising
model, showing that, as compared to digital protocols, a
higher fidelity can be attained. Next, we simulate quantum
annealing to the ground state of the transverse Ising
model and find that the Floquet approach outperforms
the digital for restricted resources, when limited by the

finite anharmonicity of the transmons. Finally, we describe
an algorithm for simulating the spin-1/2 XYZ model with
the Floquet approach.

II. MODEL

As a physical realization, we consider a capacitively
coupled chain of transmon-type qubits (Fig. 1) [11,47-49],
where periodically oscillating effective magnetic fields are
applied at chosen lattice sites. The time-independent
Hamiltonian in the rotating frame 7:&) contains a nearest-
neighbor flip-flop interaction with bare coupling J, corre-
sponding to the isotropic XY spin-1/2 model:

ZJ(O'X j+1 +6y‘7]+1) (2)

Here o (@ = x, y, z) are spin-1/2 Pauli operators at lattice
site j, N denotes the number of qubits in the chain, and we
consider open boundary conditions. The time-dependent
Hamiltonian 7, (¢) contains a periodic magnetic field h (1)
which rapidly oscillates along arbitrary axes, and we
assume that it differs between even and odd sites:

[N/2] (N/2]

= Z hodd(t) * 021 + Z heven(t) 62 (3)
j= =

where |x| and [x] denote floor and ceiling functions,
respectively. We assume that the magnetic field is sharply
turned on at time ¢ = 0 and, thus, explicitly account for the
kick operator contribution [43]. Going to the rotating frame
with respect to 7, and integrating over a period as in
Eq. (1), we get the reduced Floquet Hamiltonian in the
general form [Appendix A]

(N/2]

Z Z Er sz 02,-1 +52]+1) 4)

aa—va Jj=

where the time-averaged coefficients &,, are defined in
Appendix A and are controlled by the effective magnetic
fields.

III. RESULTS

A. Transverse Ising model: Dynamics

We first consider the Floquet simulation of the transverse
Ising model, which represents a particular case of the more
general Floquet Hamiltonian (4).

The intuitive way to describe the realization of the Ising
model (o ojo}) from the isotropic XY case (with inter-
action type « 6{6} + 6)03) is to take two spins and imagine
one to be rotating in a magnetic field. Starting from the flip-
flop interaction, if we choose the axis of the magnetic field
to be in the e* direction, nothing will happen to the first
interaction term. At the same time, the rotation of the
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second spin leads to oscillations of the second term
between +o05 and also induces a «oy6; interaction
component. For large frequencies of oscillation and a
carefully chosen drive amplitude, the plus and minus
components will cancel each other, as well as the cross-
interaction components, ultimately leaving the Ising term
xojos only.

The transverse Ising model can be realized with a
drive of the form hey, () = (1/2)w cos(wt)e* + 2h*(1 +
Jo[22])7! cos(Asin[w?])e? and hyyq(f) = hie?, where is a
drive parameter and J[x] denotes the zeroth-order Bessel
function of the first kind. The z-directed terms additionally
introduce an effective transverse magnetic field A°. In the
infinite frequency limit |J|/w — 0 and for 1 = 2.40483
(Jo[4] = 0), this leads to an effective Hamiltonian of the
form [Appendix B]

N
6;(6;+l + h Z 0; = Htlsing’ (5)

j=1 j=1

where for later reference Jg,, = J describes the effective
simulated coupling of the model. The ratio between
the effective magnetic field in the Floquet basis and the
Ising interaction, h*/Jg,, can be controlled by the drive
parameters.

We numerically calculate the full dynamics of the system
with time-periodic driving of frequency w/|J| =50
and access the Floquet dynamics by looking at stroboscopic
times n7T, where n is an integer [Fig. 2(a)]. The results
are compared to an ideal simulation of the transverse
Ising Hamiltonian (5), with the initial state |y;,) =

®N/2(|T>211 i|i>zj_1)/\@®|T>2j. We benchmark

the Floquet simulation with a digital protocol [see
Appendix C for details and the gate sequence]. It uses
the isotropic XY interaction and its rotated version and
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FIG. 2. Transverse Ising dynamics. (a) Total normalized

magnetization of the N = 4 chain M,(r) = (y(1)| >V o%|w(1))/
N. Solid curves show the ideal continuous evolution under the
transverse Ising Hamiltonian. Bullets correspond to stroboscopic
periods of the Floquet dynamics. We set J < 0, h*/J = 3/2, and
/|J| = 50 and run the simulation for a total of 20 stroboscopic
periods. (b) Simulation infidelities. Blue diamonds identify the
dynamical overlap of the Floquet evolution with the ideal
transverse Ising evolution. The red bullets correspond to digital
evolution with N1, = 20 Trotter steps.

approaches the Ising model in the limit of a large number
of Trotter periods N, [17]. The results in Fig. 2(b)
show that the Floquet simulation has a high fidelity F¢ =
| (W s1sing (nT) [y (nT))|* with exact continuous dynamics at a
short time but deviates at later stages due to the finite
Floquet frequency. The digital approach shows substantial
deviations for this limited N, even at short times but will
have a rapid convergence with more Trotter steps (see
below). We note that a comparison of the number of
Floquet periods and Trotter steps may not be a fair
comparison, since the latter involves multiple gates.

B. Transverse Ising model: Ground-state preparation

We now study ground-state preparation of the simulated
model. To access the ground state, we perform quantum
annealing [50], which also serves as a basis for adiabatic
quantum computing [51] and may solve NP-complete prob-
lems [52]. Using the Floquet basis, we design the Hamiltonian
HF([) Jsim ZN 1 0-76;64»1 ( [/l‘f)hZ / 1 6]’ where
the effective magnetic field is linearly turned off during
the annealing time #;. We consider J, < 0, which allows
us to access the ground state of the ferromagnetic x-Ising
Hamiltonian. The ideal target state is a maximally entangled
state  |yr) = (4)2Y + |-)8%)/VE,  where |%) =
(|4) £ 11))/v/2, and we start from the trivial initial state
win) = [1)®N.

The results of the annealing procedure are shown in
Fig. 3. The dynamics of the system, quantified by the
fidelity of the instantaneous wave function of the system
with the ideal target state, FT = |{w7|y(?))[?, is shown in
Fig. 3(a) for a four-qubit chain. Blue dots correspond to a
Floquet simulation at stroboscopic times, which closely
follow the red solid curve of the ideal continuous annealer.
The blue curve shows the full dynamics. Since the fidelity
is calculated in the computational basis, strong oscillations
appear from the drives. These oscillations could be
removed by changing to a suitable rotating basis. To study
the scaling with the system size, we perform fixed time
(ty = 15|Jgm|™") annealing for chains of various lengths
[Fig. 3(b)]. Fixing the drive frequency to moderate
values, we observe that the final infidelities of the
Floquet simulator, 1 — F leoquet(tf), and digital simulator,

1 = Fita (), have similar scaling with the system size,
both adding extra infidelity on top of the continuous
evolution and largely dependent on w and N, as described
below. In Fig. 3(c), we show the dependence on the
frequency of the periodic drive of the Floquet infidelity,
measured with respect to the finite time annealing state.
The frequency is rescaled by the total annealing time, such
that wt¢/2x shows the number of stroboscopic periods. The
infidelity can be reduced for large @, with results converg-
— o0. The analogous
behavior for the digital approach corresponds to the
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FIG. 3. Transverse Ising annealing. (a) Fidelity of the simulated

state with respect to the ideal target state. The dark red line denotes
annealing with the ideal transverse Ising Hamiltonian. The blue
thin line corresponds to evolution under the time-dependent
Hamiltonian, with blue dots showing state fidelities at accessible
stroboscopic times. We assume Jg,
12.5|Jgim|™", and w/|J| = 20. (b) Final time infidelities 1 — F”
for ideal continuous, Floquet, and digital evolution shown for
different numbers of qubits. Parameters are the same as in (a) with
final simulation time 7, = 15|J,|™". The digital evolution cor-
responds to N, = 20 Trotter steps. (c) Final infidelity 1 — F¢ of
the Floquet simulation as a function of the modulation frequency
for N =4, 5, 6. (d) Infidelity 1 — F*¢ of the digital annealing as a
function of the number of Trotter steps for N = 4, 5, 6 qubits.

variation of the number of Trotter steps and is shown in
Fig. 3(d). While a direct comparison between the two
approaches is complicated, the general tendency can be
deduced: The Floquet approach has smaller infidelity for a
small number of steps and limited resources, while the
digital approach has better scaling if a large number of
Trotter steps N, can be implemented.

C. Imperfections
1. Influence of finite anharmonicity

To describe a realistic quantum simulator, we study the
influence of a finite anharmonicity A of the SC qubits,
which will be a major limitation to our approach. Driving a
transmon with a finite anharmonicity leads to the leakage of
information from the logical subspace. To account for this,
we consider a full Hamiltonian of a SC chain and perform
numerical simulations including doubly excited states of
the transmons. The full Hamiltonian reads

N-1
2JZ aj1+2,2), )
j=1
N
+3 {Ajala+(Qa;+@a))} +

Jj=1 Jj=1

where &jf (@;) corresponds to the creation (annihilation)

operator for excitations of the jth transmon circuit. The first
term in Eq. (6) corresponds to nearest-neighbor capacitive
coupling for transmons. The second term in curly brackets
denotes an effective magnetic field in the z direction given
by the flux-bias-dependent detuning A; and the microwave
drive terms €; corresponding to an effective magnetic field
in the xy plane. The last term in Eq. (6) corresponds to the
anharmonicity of the circuit A provided by Josephson
junctions. In the case of infinitely large anharmonicity,
the Hamiltonian (6) can be projected onto the lowest
occupation subspace for each qubit {|0), |1)}; accounting
only for singly excited circuits. This allows for a spin-1/2
description of the chain and subsequent simulation of
quantum magnetism as shown in the previous section.
However, in realistic transmon samples, the anharmonicity
is typically small, and higher states of the circuit must be
accounted for [see the sketch in Fig. 4(a)]. In particular, this
is important for the case of a strong microwave drive €2, as
it leads to nonzero occupation of higher-lying states and
enhanced leakage. This can largely decrease the fidelity and
typically is the bottleneck for fast digital computation.

In the following, we consider the effects of finite A by
expanding the Hilbert space for each site to have doubly

(a) 2, 2, 12, 12,
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FIG. 4. Accounting for finite anharmonicity. (a) Sketch of a
realistic transmon chain with weakly anharmonic multilevel
structure. In each circuit, we account for {|0);,[1);,|2);} states.
The infidelity of the simulation arises from microwave driving of
the |1); <> |2); transition and additional flip-flop coupling.
(b) Optimal number of Trotter steps NP plotted for different
values of the gate error. (c) Corresponding optimal infidelity as a
function of the gate error. The results are shown for transverse
Ising annealing with 7, = 15|/~ and N = 4.
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FIG. 5. Imperfections. (a) Infidelity of Floquet transverse Ising
annealing (N = 4) with respect to the ideal target state calculated
for a fixed anharmonicity and varying frequency. The point of
low infidelity defines an optimal frequency for the simulation.
(b) Final-state infidelity for transverse Ising annealing for N = 4,
w = o™, and t; = 15|J|~". The anharmonicity A spans the range
A/w = 19-99. Horizontal lines show optimized digital protocol
infidelities for fixed single-gate error e, with the cutoff (large
dots) determined by a minimal gate time fgy > 3541

occupied states, {[0), |1),]2)};. As a test case, we take the
ground-state preparation of the transverse Ising model,
studied for the case of infinite anharmonicity in the preced-
ing sections. The annealing schedule is chosen in the same
form, making use of the correspondence h* <> Q(Q*)
and h* < 2A.

We consider annealing of the transverse Ising chain with
N = 4. The resulting infidelity of the simulation is shown
in Fig. 5. First, we fix the value of the anharmonicity and
calculate the infidelity as a function of the Floquet
frequency [Fig. 5(a)]. We observe that, contrary to the
ideal circuit, the infidelity is minimized for a finite
(optimal) drive frequency @°'. The window of frequencies
in which the infidelity stays close to minimal is typically
broad. In Fig. 5(b), we show the optimized infidelity of the
simulation as a function of A (blue curve).

To benchmark the results of the Floquet simulation, we
compare it to the digital simulation. The estimate of the
digital protocol infidelity accounts for several contribu-
tions. The first comes from the Trotterization procedure
edig(NTr) and depends strongly on the number of Trotter
steps, favoring long sequences. The second contribution is
a total infidelity from gate operations e€gyes(N1r) =
1 —[1 — (5N — 4)¢e]¥r, which increases with the number
of Trotter steps. The optimization procedure is performed
for different values of the gate error e. The results are
plotted in Fig. 4(b), and the optimal Trotter step number
NP is shown to decrease in the case of large gate errors.
The corresponding optimal infidelity [Fig. 4(c)] shows a
significant increase for ¢ > 1073,

To compare the digital and Floquet approaches, we
should compare how each of the two approaches could
be implemented on comparable physical systems. To this
end, we consider transmons with the same anharmonicity A
and assume that they also have comparable decoherence

rates (but note that we assume that the physical coupling J
can be different in the two scenarios). Therefore, to have a
similar influence of decoherence in the two approaches, we
assume that the simulations need to be completed in the
same time. To simulate the same evolution, this requires
that the two approaches have the same J;,, and, thus, the
same values of A/J,. In the Floquet case, this is defined
by the A/w and w/J ratios. For the digital simulation, the
relation is more subtle and relies on the scaling of the gate
time with A for a fixed error value. A full discussion of this
complex subject lies beyond the scope of present study, and
for simplicity we just assume that each gate can be
implemented in a time #y,, = ¢/A, where c is a constant
which controls the quality of the gate. Taking the existing
studies [53-55] and considering a best-case scenario, we
set ¢ = 35. For realistic devices with A = 2z x 300 MHz,
this will correspond to 18-ns gates.

Assuming the same value e for the single- and two-qubit
errors, the error for a single Trotter step is equal to
ety = (5N —4)e. We optimize the total infidelity 1 — FL, =
1—(1—er)V(1 —eg) with respect to the number of
Trotter steps, using the data shown in Fig. 4. To highlight the
relevant parameter range, we assign a cutoff based on the
single-gate time 7y, > 35A7". The results are plotted as
horizontal lines in Fig. 5(b) and show that the Floquet
approach can outperform the digital approach unless very-
high-fidelity gates with ¢ < 10™* are used. Furthermore, the
Floquet approach is highly advantageous for small values of
A/Jm, which for a given transmon anharmonicity A is the
regime where the simulation is finished the fastest and thus
has the least influence of decoherence. Thus, for a shorter
time of simulation or higher error rates, the Floquet is
advantageous compared to the digital approach. We high-
light that, while digital approaches typically exploit deriva-
tive reduction by adiabatic gate (DRAG) technique to
remove leakage [54,55], the presented Floquet approach
is not specifically designed to work for small A, and it may
be improved by using few-tone drives.

To quantify the performance, we consider numbers
which can be achieved with currently available transmon
setups [47,49]. Taking the anharmonicity to be A =
27 x 300 MHz, drive frequency @ = 27z x 9.8 MHz,
nearest-neighbor coupling J = 2z x 1 MHz (reduced com-
pared to most setups), and 7, =2.4 us, the four-qubit
chain can be annealed to the ground state of the Ising model
with 1 — Fl’l;lq = 0.037 (ideal continuous annealing gives
1 - FL . =0.00616).

Reaching a similar performance with the digital strategy
is highly challenging and would require single- and two-
qubit gate operation times of 18 ns = 354! and ¢ = 10~*
accuracy. The single Trotter step duration for N =4 is
fry = 0.162 ps, and with 7, = 2.4 ps this allows for 14
Trotter steps. The total digital error is 1 — Fg, = 0.041
(dephasing should be added separately).
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2. Influence of the coupling to the environment

So far, we have considered the situation where the
dynamics of the quantum system is unitary and errors
arise due to the difference between the target Hamiltonian
and the effective Floquet Hamiltonian engineered by the
drive. In realistic setups, errors also appear due to the
coupling to the environment, so that a qubit can decay, or its
state can be dephased by the external noise. To account for
the environmental contribution, we perform a master-
equation simulation for the density matrix p of the super-
conducting qubit chain, p(r) = —i[H(1). p(1)] + Dp(1)].
Assuming that each qubit can decay due to the collapse
operator C j = \/ro; with arate y, the decoherent part of
the dynamics is described by the Liouvillian superoperator
Dip] = Zj.vzl C,-pé‘} - {C‘j@j, p}/2. Here y corresponds to
the Markovian decay rate, and we assume a zero temper-
ature of the bath, which is justified for modern experiments
performed at 7' =~ 25 mK, with kgT being much smaller
than the qubit frequency (approximately 5 GHz). We note
that, even though we assume the environment to be at a zero
temperature, the application of the strong driving fields
creates a nonequilibrium situation. In the effective model,
this decay will thus not correspond to a zero-temperature
bath [56]. Furthermore, we note that pure dephasing effects
can be included in a similar fashion.

To study the performance of the simulator under the
influence of environmental effects, we consider the bench-
marking example of annealing to the ground state of the
transverse Ising Hamiltonian. We calculate the infidelity
1 — FT of the continuous finite time annealing and Floquet
annealing, measured with respect to the ideal GHZ target
state, as a function of the qubit decay. The parameters used
are w/|J| =20 and 1 = 15[Jgy|™", and we consider
a chain with N =4 qubits. The results are shown in
Fig. 6. Taking the circuit considered in the previous sub-
section (A =2z x 300 MHz, J =27 x 1 MHz), we find

0.50

0.20
0.10

[y

T 0.05

0.02

0.01

0.0001 0.001 0.01 0.05
7/|Jsim|

FIG. 6. Influence of decay. Final-state infidelity for annealing to
the ground state of the transverse Ising model, shown as a
function of qubit decay rate y. Continuous annealing (magenta
curves) and Floquet annealing (blue curves) are considered, with
fidelity measured with respect to the ideal target state. The
parameters are N =4, w/|J| = 20, and t; = 15|Jgp| ™"

that, for qubits with 7} = 10 us decay time, the infidelity of
GHZ state preparation becomes 1 — F ;lq = 0.248. Even in

the absence of decay, the Floquet protocol has a larger error,
since we consider a finite w/|J|. As expected, the addition of
the decay increases the infidelity for both continuous and
Floquet annealing. Although the scaling looks similar on the
log-log scale, it corresponds to a more rapid growth of
decoherence-related infidelity for the Floquet approach at
large decay rates. The presence of decay leads to another
trade-off, favoring large coupling Jg,,, at the expense of
leakage and Floquet errors, but we have not included this in
our optimizations. Finally, we note that the described
annealing protocol is resource demanding, as it requires
long simulation time 7, to achieve a high fidelity even in the
ideal unitary case, while dynamical simulations can be
performed in a much shorter time, thus having less effects
of decoherence.

3. Influence of cross talk between neighboring qubits

In ideal transmon circuits, each qubit has a separate
independently controllable microwave and flux loop lines,
which allow engineering the effective magnetic field.
However, in realistic samples, the microwave lines can
have an additional capacitive coupling to neighboring
qubits, thus providing an extra drive [57]. This parasitic
or “cross-talk” coupling may have a harmful influence on
the effective Hamiltonian. If these cross talks are com-
pletely known for the sample at hand, one can always
compensate for this by adding extra drives to each qubit
which counteract the cross talk. In practice, however, we
may not have a complete characterization of the sample,
and this introduces errors in the protocol.

Here, we study the influence of cross-couplings on the
performance of the simulator, providing estimates for the
associated infidelity of the simulation. Taking the example
of annealing to the ground state of the transverse Ising
Hamiltonian, the Floquet approach requires an x-oriented
periodic drive for each second qubit (e.g., even sites),
while odd sites are not driven. Using the drive parameters
introduced in Appendix A, this situation corresponds to
¢,=0,0,=x/2, p,=0, 8, =x/2, and ideally 4, = 0.
The presence of nonzero cross-talk coefficients results in the
appearance of an additional drive, such that 4, = ¢4,, where
¢ is a cross-talk coefficient, which may be different for each
link, ¢ — {¢;} [see the sketch in Fig. 7(a)]. Using the
generic model given by Eq. (4), with the coefficients written
in Appendix A, we can write the interaction constants as

ElI=1 EoI=3 (T4 + Tolhc=4). ()

(\70[/1e _/10] _j()[/le_’lo])v (8)

N =

e

and other interaction constants are zero: a/ J= a/ J =
&../J = 0. Assuming the cross-talk coefficients to be small,
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FIG. 7. Influence of cross talk. Final-state infidelity for
annealing to the ground state of the transverse Ising model as
a function of the mean cross-talk coefficient .. The calculation is
performed for several sets of cross-coefficients drawn from the
half-normal distribution with different y.. The error bar shows one
standard deviation of the calculated infidelity of the sample; i.e., it
represents the fluctuations expected between different devices.
The curve is calculated using 20 sets of the cross-couplings. Other
parameters are /|J| = 20, t; = 15|Jgy,|™", and N = 4.

¢ < 1, we can expand YY and ZZ interaction constants,
arriving at

X
24,

Tia) -3} + 0w

©)

é:_zz/-] =T [/Ie] + O<ﬂ'o)3’ (10)

E/J:jo[’?'e}—’_{

where additional terms appear due to nonzero 4,. The first
term in (9) corresponds to the leading 1,-based contribution,
and to achieve the Ising Hamiltonian coupling we tune
Ae = Ag, where T[] = 0. This leaves only the residual
term for &,,/J ~ (43/220)*T 1[Ag] & 0.1143, which is typi-
cally negligible for small cross-talk coefficients. At the same
time, an effective ZZ coupling arises to first order, giving
E.)J ~2,T1[A) ~ 0.52,. We note, however, that know-
ing the cross-talk coefficients can enable fine-tuning the
interaction such that &__/J is minimized.

Finally, to account for the randomly distributed cross talk
{¢;}, we perform numerical calculation of the annealing to the
transverse Ising Hamiltonian ground state including the cross
talk. The coefficients {c,;} are drawn from the half-normal
distribution. They correspond to the set of absolute values of
random variables {|x;|} drawn from the normal dis-

tribution with Ppoma (x:0)=1/[2/ (n6?)]exp(—x?/26?) (c?

is the variance of the normal distribution). Then, u, =

L ¢;/L is calculated as an arithmetic mean for the sample,
where L is the total sample size. The choice of positive
coefficients is determined by the fact that cross talk is typically
represented by the passive capacitive coupling and does not
change the sign of the parasitic magnetic field on the
nondriven sites. We also check the case where this situation
may not hold, taking the normal distribution with a zero mean
and the same o, and find that the associated infidelity in the
simulation is of a comparable size.

We choose to plot the results as a function of mean
cross-coupling p.. The infidelity with respect to the target
state is shown in Fig. 7(b). The sampling is performed for
w/|J| =20, ty = 15|Jgy|™", and N =4 and considering
20 cross-talk configurations. The infidelity naturally grows
for increasing values of the cross-coupling. Taking, for
instance, a mean cross talk of 5%, we find the additional
infidelity to be around 0.015.

Finally, concluding the imperfections section, we note
that Floquet systems can suffer from induced heating even
for isolated setups [58]. This is related to an effective
breakdown of the Magnus expansion for systems of a large
size, where characteristic energy spacing becomes small.
However, the latter concerns the thermodynamic limit and
happens at critical times being exponentially large in the
drive frequency [59,60].

D. Generic XYZ Hamiltonians

The Floquet approach may be extended to simulate
generic spin-1/2 models represented by XYZ-type
o (Jrojoy, + Pojer +
Jm?aj .1)- This coupling is of the nonstoquastic type,

spin Hamiltonians, Hyy,; =

where recent results have suggested that it can give
enhanced computational powers [61]. To simulate the
XYZ model in the Floquet basis, we start with the time-
dependent Hamiltonian in the form

N-1 N
H(1)=> J(oios, +0jo),)+ > _h(1)-6;+H,. (11)
j=1

Jj=1

where we consider the oscillating effective magnetic field
to be homogeneous for all sites. 7:{2 describes the part of
the Hamiltonian responsible for implementing the static
z-oriented magnetic field for annealing. Considering
h(7) = (1/2)w cos(wt)e* with @ being the largest energy
scale and setting A = 3.622 88, we eliminate the cross terms
and are left with a Floquet Hamiltonian of the form

N-1
Hp =) (J'ojo), + Pojol, + ojoi,) (12)
=1
N A~
—l—hzchf = Hxyz. (13)
=
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where the couplings are J¥ =2J%/3, J*=J"/3, and
J* =J < 0. Here the simulated coupling changes for the
YY and ZZ interaction components, and we consider
J* = Jgm as a reference. We note that, as compared to
the transverse Ising case, this Hamiltonian possesses a
small energy gap, and in the absence of an additional
transverse field it is difficult to anneal even with the ideal
continuous Hamiltonian.

To characterize the Floquet and digital simulation
procedures, we plot the instantaneous infidelity with
respect to the continuous annealing case, observing how
closely one can follow the ground state [Fig. 8(a)]. The blue
curve for the Floquet simulation at stroboscopic times
shows that the deviation begins to grow once we approach
the critical point. To compare with the digital procedure
[see Appendix D for details], we plot the infidelity for the
Trotterization approach. We assume the number of Trotter
steps is equal to half of number of Floquet periods,
Nt = 1/2(t;/T) = 477. This will be an upper bound
for the number of Trotter steps for the digital simulator
for the same resources. This can be deduced from the
digital simulation protocol, assuming that the time required
to implement the two-qubit gate is inversely proportional to
the coupling strength, 7y ~|J|™', and, in addition, the

(a)
0.020
o 0.015
Ty
< 0010
0.005
Floquet
0.000
0 50 100 150 200
Time, t X Jgim
(6) 0.20 Floquet © 0.20 Digital
0.10 0.10
L 005 L 0.0s
0.02 0.02
0.01 0.01
200 300 500 1000 200 300 500 1000
oti2r Nrr
FIG. 8. XYZ annealing. (a) Time dependence of the infidelity

for the Floquet evolution (blue line) and optimal digital annealing
(red line). Here the infidelity is measured with respect to the
instantaneous wave function of the continuous annealing. The
digital evolution contains N, = 477 Trotter steps, equal to half
the number of stroboscopic periods. (b) Modulation frequency
dependence of the final-state infidelity for annealing with
1, =200[J|"!, measured with respect to an ideal target state.
(c) Final infidelity of the digital quantum simulation of the XYZ
model as a function of the number of Trotter steps. F is measured
with respect to an ideal target state.

gates on the two sublattices have to be applied separately.
We note that considering different ordering of the gates
leads to largely different results for the final-state infidelity.
While we have not performed a full optimization of this
ordering, the results presented in the figure are the outcome
of the optimization over 24 different possibilities for a
Trotter step composition. This suggests that the digital
procedure is strongly model dependent, and extra resources
are required for sequence optimization [2,4]. In Fig. 8(b),
we plot the dependence of the Floquet XYZ annealing on
the drive frequency, showing the resources necessary for
high-fidelity annealing as a function of the number of
stroboscopic periods. A similar analysis is performed for
the digital procedure, where the dependence of the Trotter
step number is considered [Fig. 8(c)]. Akin to the trans-
verse Ising annealing case described in the previous
sections, the Floquet approach shows a smaller infidelity
for a limited number of steps, in particular, for N = 4.
Unlike the transverse Ising model, however, even for N, as
large as a thousand steps, the digital approach does not
provide a smaller infidelity as compared to the Floquet
approach, but this may change if even higher numbers of
Trotter steps are considered.

IV. CONCLUSIONS

In conclusion, we presented a scheme for a reconfig-
urable and tunable superconducting quantum simulator
based on transmon qubits. Utilizing the Floquet approach,
the original isotropic XY interaction can be transformed
into a transverse Ising or XYZ-type spin-1/2 Hamiltonian.
The approach allows the simulation of multiqubit system
dynamics and the preparation of nontrivial ground
states. The Floquet simulation is shown to perform
better than a digital scheme for restricted resources and
represents a realistic path for modern SC quantum
simulators.
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APPENDIX A: DERIVATION OF THE GENERIC
FLOQUET HAMILTONIAN

Here we present the derivation of Eq. (4) in the main
text and simultaneously describe the general Floquet
Hamiltonian originating from an arbitrary axis magnetic-
field oscillation for the two sublattices.

We start with the transmon Hamiltonian written in the
form
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and consider the effective magnetic fields to be different for
even and odd sublattices. Here | x| and [x] denote floor and
ceiling functions, correspondingly. To have an explicit form
of hyenjoaa(t), we decompose it into heyen/oaa(t) =
Fero(t)(€hy,, + e}he/a + e°hy,,), where  f,/,(1) =
feso(t + T) is some periodic function, e** form a
Cartesian basis, and h‘e"/o are components of an effective
magnetic field for even (indexed by ¢) and odd (indexed
|

[N/2]

U(r) = T exp {—i / dr'f,(t) Z hyo%, . + ooy,
)

where ’j'{} is the time-ordering operator and 7, is an
initial switch-on time. The unitary (A2) can be factorized
into odd and even sublattices parts, and time ordering
disappears as the magnetic field oscillates along a fixed
axis. This yields U(r) = U, (1)U, () with

oh+nioh)|. (A3)

~ 9p (1),
U, (1) = exp [_l 5 > (nyoh +ny

Jj=1

where
denote

indices p=o0, e and P=2j-1,2j help
sublattice parity, and we define the time-

integrated functions g,(r) =2 [ dr'f,(¢)h,. Here h, =

VU + (B}

,)? + (h5)? defines the absolute value of the
effective magnetic-field vector,

XV.Z X Y2
and n,”" = hy*/h,

X X Y
505, +ny,

R R R UG DI

by o) sites. This corresponds to the magnetic field oscillat-
ing along a certain axis, which is different for even and odd
sublattices. Here we consider the time dependence to be the
same for all spin components, such that the axis of the
magnetic field does not precess. This restriction decreases
the number of independent tuning parameters. Note that the
effective magnetic field used for the simulation of the
transverse Ising model deviates slightly from this form.
This deviation is, however, a perturbation and is dealt
with below. If the fields do not have this form, the time-
dependent Hamiltonian 7, () does not commute with itself
at different times, thus largely complicating the solution.
This more general setting will be considered in future
work.

We perform a unitary transformation with respect to the
rapidly oscillating time-dependent part 7, (7). This is done
using the unitary operator:

/2
Z (hios; + hioy; + hics)) |
Jj=

+h505;,) + fo(t' (A2)

[
correspond to the normalized Cartesian components.
The rotated Hamiltonian then reads /(1) =
U (eyH () U(1) = ild* (£)0,U(t). The second term is divided
into two parts and each of these can be rewritten using the
relation for the derivative of an arbitrary time-dependent
matrix A(7), being e 4)9,eA0) = A(1) — [A(1), A(1)] /2! +
[A(1). [A(1). A(1)]]) /3! - For the case of A(f) =

—i{[g,(1)]/2} Z;V:”l (nyop + npop + nbop)  considered
here, the commutators vanish, and in total the derivative
term gives —F, (). However, we emphasize that this
conclusion would not be true for general time dependence
of the Cartesian components of an effective magnetic field,
where additional derivative-dependent terms appear.

Next, we need to calculate the matrix product terms of
the form

”;j—l +n§0§i71 )}

):| e{_i[gu (t)/z] Z;V:ul ("éo—;]’_] +nl‘;‘7§j-1+n;(’§j-1 )}e{_i[ge(t)/2] Z;V:Ll (n§6;j+ni6§j+n(z'6§j)} . (A4)

Let us perform the unitary rotation for each sublattice consecutively. For this, it is convenient to go from Cartesian to

the spherical coordinate frame: n, = {n}.np.n

rotations as

5} < {cos g, s1n9p,s1n¢P sinf,,cos#,}. Next, noting that the
unitary operation is defined as a spln rotation w1th respect to a fixed axis

po it can be decomposed into Cartesian
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A

R (g) = e 2o = RYG)RI(O)R3(9) R (0) R ()T (AS)

where the rotation operator is defined as 7%“((/)) = ¢~ilp/2)0" (a = x, y, z). Then, the Hamiltonian after the odd sublattice
transformation can be obtained through rotations

U () Hl(1) = ULTRS (0 R (8, RE (=90 R (=0, )R (=00 ) Lo RE ()R (00 R (90) R (=0, R (—p )1, (AG)

and the subsequent transformation for the even sublattice can be performed in a similar fashion.

Finally, to get a closed expression for the transformed Hamiltonian, we use the Baker-Campbell-Hausdorff
formula

| A

Mg M = FHy + [M, Ho) + 5 1. M. H f: (A7)

?\7‘|>—a

where [M H,), denotes the kth-order nested commutator. We proceed with calculating the commutators and resumming
the series. After straightforward but tedious algebra, we can get the Hamiltonian in a rotating frame:

N/2
Z Zﬁaa 02, 52, 1+‘72]+1) (A8)
aa—xyz Jj=

with the coefficients

£u(1) = Jsin? (0, ) cos(¢, ) [cos(g, [1])cos* (6, ) cos(¢b, ) cos(¢b. — ¢,) —sin(¢b, ) sin(g,[1]) cos(6), )
— cos(g,[1]) sin(¢, ) sin(h, — ¢,) + sin(0,) cos(, ) cos(, — ¢b,)]
+cos(ge[1]){cos(g,[1]) [cos*(0,) cos (¢, ) (cos? (6, ) cos (¢, ) cos(¢b. — p,) + sin(¢b, )
xsin(¢, = ¢,)) +sin(@,) (sin(¢, ) cos(¢, — ¢,) —cos*(6, ) cos(¢, ) sin(h, = ¢,))]
+sin*(6, ) sin(gb, ) cos(b, ) sin(g, [1]) cos(6,) + cos? (6, ) cos(¢, )sin* (6, ) cos(¢, ) cos(¢p, — b,)

(S0, 05(d) sineh = )+ sin(a 1) os(0,) s, i) cos(0,) =i (21 i 0, sin2,) |

£,y(1) = Jsin*(6,) sin(¢, ) [sin(¢, ) cos(, — b, ) (cos(g,[1])cos?(6,) +sin*(6,)) +cos(¢, ) sin(g, [1]) cos(6,)
+cos(g, [1]) cos(¢p,) sin(, — ,)] + cos(g.[1]){cos(g,[1]) [cos* (¢, ) (cos* (6, )sin? (¢,) + cos(¢,))
+cos?(6, ) sin(¢, ) (cos? (6, ) sin(¢, ) cos(¢p, — ) + cos(h, ) sin(¢p. — b))
+sin(¢, ) cos(¢p, )sin® (6, ) sin(¢b, ) cos (¢, )] — sin* (6, ) sin(¢b, ) cos(eb, ) sin(g, [1]) cos(6,)
+5in*(6,) sin(¢h, ) (cos* (6, ) sin(¢, ) cos(, — ¢,) —cos(@.) sin(¢, — ¢,)) } +sin(g.[1]) cos(6,)

X {Sin(go [7]) cos(@,) + sin? (902[ })sinz(éo)sin(ZqSo)},
(1) = T5in0,)sin(0,){cos( = ) [snta 1) sin(, 1) + 201 =cost 1) eost0, i (%5 ) cos(o, )

sin(g = )| (1 =cos(a 1) os(0, sin( 1) 2sinta v (57 ) eost)| |
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£ (1)

é:yx(t)

&y:(1)

¢(1)

é:xz (t)

&x(1)

— Jsin?(0,)sin(6,)[cos(g. 1)) (cos2 (8, ) cos () cos(dhe — ) +sin(b,) sin(h, — ) + sin>(0, )cos* (b, cos(s,)]

+sin®(¢,) {sin2 (0,)cos*(¢,)sin(g,[t]) cos(8,) + %sin2 (6,)(sin?(8,)sin(2¢,) —2sin(g,[t]) cos(é’e))}
+sin(g,[]) cos(6,) x [cos? (¢, ) (cos(g, [1])cos? (6, ) +sin (6, )cos? (¢,)) + cos(g, [1])sin* (¢, )]

1 cos(g, 1) [4cos(g, [)cos(6,) cos(, cos(gh,) x (sin(g,)cos(gh,) ~cos(,sin(6,)sin(,)
+ 4sin? (97[”) Sin?(0,)sin (245, )cos2 (6, )sin? (g,) + dsin(gh, ) cos(dh Jcos* (¢, (sin? (0,) — cos(g,[1])

—4sin?(0,) sin(,) cos(h,) (cos(g. 1] )sin> () +sin?(0, )cos2 () —sin(g,[1]) cos (6,
% (25in2(0,) cos(2,) +cos(26,) + 3)} ,

:J%{Ssm( c[1]) cos(8,)sin? (0, )cos? (¢, ) + 8cos(g,[1])sin?(8,) sin(¢, ) cos(¢, ) (cos* (0, )sin? (¢, ) + cos?(¢,))
+2c0s(g, [t]) [4cos* (8, ) cos(¢h, ) (sin* (6, ) sin(¢, ) cos(p. — ¢, ) —cos(g,[1]) cos(¢b. ) sin(¢p, — b))
+4cos(g,[1])cos?(6,) x sin(¢, ) (cos*(6,) cos(¢, ) cos(¢, — b, ) —sin(¢, ) sin(p. — ;)

+sin(g.[1]) cos(6, ) (—2sin*(6,) cos(2¢, ) +cos(26,) +3) —4sin(¢h, ) (cos(g.[1]) cos(¢b, ) cos (¢, — b,)
+sin?(0,)sin(¢, ) sin(¢, — p,))] + 8sin*(8, ) sin(¢, )sin*(, ) cos(¢p, ) x (cos(p, — p,) —cos(g,[t]) cos(¢p,) cos(¢,))
—8sin*(6), )sin?(¢b, ) sin(g,[1]) cos(6,) —2cos (g, [t]) sin(g, [7]) cos(6,) x (2sin*(6,) cos (2, ) +cos(26,) +3)},

—ssin(0,){cost. o0, sineh) (25 (%) o0, cos(g. ~ ) +sinta ) sin( 4.~ 4o)

+sin(g,[?])cos(6,) (2sin2 <gOT[t]> cos(@,)cos(¢p,) —sin(g,[t]) sin(gba))
+cos(¢p, — ) (23in2(98) sin(¢, )sin? <gOTM> cos(@,) +cos(g,[t]) cos(¢h,) sin(g,|1] ))

sin(g =) (s02(0,)sin)sin 1)~ 2ol ) costgsin? (%47 ) o)) |

=Jsin(0,){cos(g,[1])[sin(g,[1]) cos (e, ) (cos® (6, )sin* (¢, ) +cos> (¢, )) = (cos(g,[]) — 1) cos (6, ) [cos* (6, ) sin(¢h, )

XCON(dhe= ) +CO8( ) sinlehe— b))+ in(a i) in(gh Jsin® (0, )sin(eh cos(h)] —sin 6, sin(,)
x [(cos(g.[t]) —1)cos(8,)cos(p, — ¢, ) +sin(g,[t]) sin(¢, — d,)] —sin(g, [1]) cos(8, ) [(cos(g.[t]) — 1) cos(b, ) cos(¢, )
+sin(g€ [f]) Sin(¢e)]}’

— ssin(6,) {cos(0, 1) [cos (s, ~ ) (260520, cos(ah Jsind (P21) cos(6,) —sins, ) sin(, 1)

Fsin(g,— ) x (2sin(g,sin? (%) cos(6,) +cos2(9, cos(as, ) sin(o, 1) )
+sin?(6,)cos(¢,) (2sin2 (%M) cos(@,)cos(p, —¢,) +sin(g,[t]) sin(¢p, — gbo))
—sin(g,[t])cos(8,) (2811’1 (902[ }) cos(8,)sin(¢,)+sin(g, [t])cos(gb(,)) }

1]

—ssin(0,){sin? (0, os() 25 (%42 co(6, cosgh ~ ) =sin( i) sin( — )| ~costa ) i 1)

x (cos?(8,)cos(¢,)sin(¢p, — ¢, ) +sin(¢, ) cos(p, —p,)) + (cos(g,[t]) — 1) cos(8, ) (cos?(8,) cos(¢, ) cos(¢. — )
—sin(¢, ) sin(¢, —,))] —sin(g, [t]) cos(6,)[sin(g, [1]) cos(¢. ) — (cos(g M)—l)COS(He)Sin(cbe)]}’
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where we state explicitly the time dependence of even and
odd integral terms g,[t] and g,[t], respectively.

Once we have rotated the Hamiltonian into a suitable
frame, the corresponding unitary operator for the evolution
during a period 7 can be rewritten using the Magnus
expansion [41]:

. ~ T ~ ~

U (T)=T exp <—i/ dl’H’(t’)) ~exp(—iHzT), (A9)
0

with the Hamiltonian ’I:KF = 7:(53) + 7:{%1) +

7%53’ + .-+, which consists of corrections in O[l/w].
They can be written as

Floquet

. 1T
H\ :?/ dr T (1), (A10)
HY = 2'T/ dt/ d'[F(¢), ()], (Al1)

F 3'T/ df/ dt/// dt///{ H/ H/( //)] H/( ///)]
+{[FC () () ()} (A12)

and higher-order terms can be written in a similar way

using nested commutators. We notice that ||7C[5Vk)|\ ~
(1/w)*, and thus for very small time intervals, given by
the period of the oscillating term 7 = 2z/@ — 0O (infinite-
frequency limit), the effective Floquet Hamiltonian is
represented by the period average of the time-dependent

|

Hamiltonian written in Eq. (A10). In this work, we consider
the Floquet Hamiltonian only to the lowest order,
Hy = 7:[1(3), while higher-order corrections ~(1/w)k
(k > 0) are accounted for in the numerical integration of
the full time-dependent Hamiltonian.

Finally, let us choose the form of the oscillatoric
magnetic field and find the period-averaged Floquet
Hamiltonian for the transmon chain. This can be chosen
in the form

Ao/o@®
e/o
f 1) =

6/0() 2he,

cos(wt + @, /). (A13)

where 4,/, are constants of order unity and ¢,/, are initial
phases for the modulation. The latter is of high importance
in the Floquet formalism, as it leads to kick-operator terms
which change the basis of the system but do not enter the
effective time-independent Hamiltonian [43]. However, in
the current study we are interested in actual protocols with
Floquet simulation, where the drive term is abruptly turned
on at time point 7, = 0, and the initial phase of the drive
may be important. Here we consider zero initial phases
®eso = 0, such that the kick operator is unity.
The integral functions g,,,[t] are given by

ge/o[t] = /16’/0 Sin<wt)- (A14)
Then, the period-averaged  coefficients &, =
(1/27) [37 dvé,y (1) can be written in the form

B = 502(00) o571 €080, 05 ) o5( ) = () sinh )
F5i0%(0,) Co5(eh )T 4 (c052(8,) cO5(3h) co(he = by) +Sinleh ) sin(dh, — ) -+ sin*(6,)cos () cos(dh — )]
0 E00) (o020, os () (0520, o) cos(h ~ ) —sin(h ) sin( — )
b0, (c08(6,) c05(dh) Sin(h, — ) + Sin(dh) cos(dh — ) — cos(6,) cos(6,)]
00 Z80) o2, cos(,)(c05 (0, cos(,) cos(, — ) — sin(g,) sin(dh, ~ ,)
Fsin(,) (c082(0,) cos(gh) sin(h, — ) + sin(gh) cos((h, — b)) + cos(6,) cos(0, ).

&,y = J{sin*(0,) sin(¢,) T o(4,)(cos* (6,) sin(¢h,) cos(¢b,

- ¢0) + COS(¢0) Sin(¢ - ¢0))

+ Sinz(ga) Sin(¢o)[Sin<¢e) COS(¢€ - (f)o)(COSz(@e) (’1 ) + sin ( )) \70(/1 )COS(¢e) Sln(¢e - ¢0)}}
+ Lo 20Dt eos()(c0s2(0,)sin(9,) + cos?(,) + sin(, )sin(6,) sin(,) cos(g,)]

+ c0s2(0,) sin(eh,) (cos2(6,) sin(h,) cos (b, — ) + cos(d,) sin(b,

jO(/le - /10)
S

+ cos?(6, ) sin(¢h, ) (cos*(6,) sin(gb,) cos(¢b,

- ¢0)) - COS(Qe) COS(QO)}

{cos(¢.)[cos(¢. ) (cos?(0,)sin*(¢,) + cos*(4,)) + sin(¢, )sin(6,) sin(¢h,) cos(gb,)]
- ¢0) + COS(¢0) Sin(¢e - ¢0)) + COS(Ge) COS(HO)}’
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£ = J5sin(6,)sin(0,) cos(dh, — 6, {2e08(6,) cos(0, )

+ (COS(Qe) COS(QO) + l)jO(/le _ﬂa)}’

ay = J%{Sinz(eo) Sin(2¢o) [ZSinz(ee) [2 - 4COSZ(¢e)\70 (}“0) + COS(2¢€)(jO (i
To(Ae +2,))] + sin®(
8(Jo(4,) —1)sin?(8,)sin?

+ (008(296) +3)(2j0(/1€) _\70(/1@ _A'o) -

- jO (ie + /10)) (ZSinz(eo) COS(2¢0) + 008(290) + 3) -

_‘-70(/13) _jO(j'o)) +

(cos(,)cos(0,) — 1) To(Ae +4,)
e _/10) + jO(ie +A'0) _2k70(j'e) + 2)]

‘96) Sin(2¢e)[(2‘70(’1(}) - jO(le - /10)
(0]}

= J%{SW (0.)[(1 = To(4.)) sin(2, )sin (0, )cos? (,) +2sin(¢, ) T o(4,) (cos?(6,) cos(¢b,) cos(¢p, — b,)

—sin(¢,) sin(¢, — ¢,))] + sin?(8,) sin(2¢,) [sin?(p, ) (cos?(0,) T o () + sin?(0,)) + T o (4. )cos? (¢, )]
+Jo(Ae = 4,)[cos* (0, ) sin(¢, ) (cos®(0,) cos(¢h, ) cos(¢, — b,) —sin(¢,) sin(¢, — b,))
—cos(¢,)(cos*(8,) cos(¢h, ) sin(p, — b,) + sin(,) cos(b. — b,))]

+ T 0(%e + 4o )[c0s* (0, ) sin(e, ) (cos*(6,) cos(¢,) cos(¢, = ¢,) = sin(,) sin(¢, — ¢,))
—cos(¢,)(cos*(6,) cos(¢p, ) sin(p, — b,) + sin(e,) cos(d. = b,))]}.

& = /5 {5in(20,)[sin() cos(h. — ) c0s2(0,) Tolde) = sin2(0,)(To(h,) = )]
- Sin(eo)jo (le - }“0) (0082(96) Sin(¢e) COS(@O) COS(¢€

- jo(le) COS(¢@) Sin<¢e - ¢o)]

- ¢0) + COS(HL’) Sin(¢()) - COS(¢6) cos(é’(,) Sin(d)e - ¢0))

+ Sin(eo)jo (’Ie + )“0) [COS(GE) Sin(¢()) + COS(¢e) COS(QO) Sin(¢e - ¢n) - 0082 (66) Sin(¢e) COS(Q(,) COS(¢e - ¢0)]}’

£y =T ysin(0.) (~cos(0,) (T~
(Tola) -

—2cos(0

}*0) +\70(/19 +’10)

—sin(6,)J,

(
—sm( o) Jo(

g_zx = JE{Sin(Zee) [COS(¢()) COS(¢€ - ¢0) [COSZ (90)\-70 (20) -

0,) + cos(0,) sin(¢, ) sin(¢p,
—sin(0,) T o(4, — 4,)[cos(8, ) (cos(6, ) cos(8,) cos(¢,) cos (¢,

+ Sin(ee)j0<’1e —|—ﬂ,0)(COS(¢e) COS(

The above equations define the exact form of the generic
Hamiltonian (4) from the main text and, thus, describe the
possible Hamiltonians accessible for the Floquet quantum
simulation with this method, assuming different even or
odd periodic cosine modulation.

APPENDIX B: TRANSVERSE ISING
MODEL DERIVATION

In this Appendix, we provide a procedure to engineer the
transverse Ising Hamiltonian as an effective Floquet
Hamiltonian of the isotropic XY model with transverse
and longitudinal fields. For this, we consider a system with
two (odd and even) sublattices, where only one of the

—2.7(2,))(c05*(0,) sin(s,) cos (4,
1)sin(6,) sin(h,) cos(b, — b,) + sin(h,) cos
£ = 15 (5in(20), [cos(g.) cos(dh, — ) [c0s2(0)To(A) ~sin(8,) (Toh,) -
Do+ ,)(c05*(0,) cos(p,) cos(0,) cos (4
3o = 2,)[c08(6,) (c08(0, ) c0s(h ) c05(6,) cos(¢h,

(To(2e) = )sin(8,)] = To (4

= o) —cos(0,) cos(¢,) +sin(¢h,) cos(6,) sin(gb,

- ¢0) + COS(¢0> Sin(¢e - ¢0))
90)(‘70(16 +ﬂ“0) - \70(1’6 _lo))}’
1)] + jO(ie) Sin(¢e) Sin(¢e - ¢0)]

_450))
_¢0)]},

) sin (¢0) Sin(¢e - ¢0H

- ¢0) - COS(@E)COSZ(HO) COS<¢0) COS(¢€ - ¢0))
- ¢0) + COS(d’e)) - COS(Qe) Sin(¢0) Sin(d’e - ¢0)]}

—¢,) +cos(¢,)) +sin(¢,) cos(8,) sin(¢,

|
sublattices experiences fast oscillations of the magnetic
field (see the sketch in Fig. 9).

Taking the full solution from Appendix A, the starting
Hamiltonian for the simulation of the Ising model in the
transmon chain reads

byl

even(t Odd even t) Odd even

FIG. 9. Superconducting qubit chain with isotropic XY inter-
action J, a static effective magnetic field in the z direction on the
odd sublattice, h{,4, and a fast time-dependent magnetic field
acting on even sublattice sites, hgye, (7).
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N-1
() =1 (olet,, +0l0),,)
j=1
N2, .
+ E COS(C()I) Hmagn( ) (Bl)
j=1

where A(=Ayeq) is a drive parameter and 7[x] denotes the
zeroth-order Bessel function of the first kind. In the infinite-
frequency limit |J|/@ — 0 and for 1 = 2.40483 (such that
Jol4] = 0), the interaction term can be reduced to the Ising
type. Additionally, the last term in Eq. (B1) is designed to
introduce a transverse effective magnetic field and can be
written as

[N/2]
Hinagn( Z ho3j-1
he [N/2]
1+j0 27 z:: cos(4sinfwt])o3;. (B2)

The first term in Eq. (B2) is a static magnetic field on the
odd sublattice and commutes trivially with the fast oscil-
lation part. However, the magnetic field on the even
sublattice can be modified by the drive. The second term
representing the magnetic field deviates from the general
form considered in Appendix A, since it does not have the
same time dependence. As opposed to the other field,
however, the magnitude of this field does not increase with
increasing @ and can thus be treated as a perturbation in the
limit of large w. Since it does not commute with the main
driving field, it will be strongly modified by the drive.
Going to the rotating frame with the unitary operator

Ug(t) = exp {iAsin(wt)}, the magnetic term becomes

[N/2]

Finally, performing the period averaging, the o";j term
vanishes, since the sine function oscillates between
positive and negative values. At the same time, given that
A is fixed by the condition Jy[A] =0, the integral
J¢" dx cos?(Asin[x]) = (1 + Jo[24]) gives a finite result:

man
& hzg ot

thus allowing us to introduce an effective transverse
field A*.

(B4)

APPENDIX C: DIGITAL SIMULATION
OF TRANSVERSE ISING MODEL

In this Appendix, we describe the digital simulation
protocol, which we use to benchmark the performance of
the Floquet quantum simulator. The transverse Ising model
simulation, which we consider, is theoretically described in
Ref. [17] and experimentally realized in Ref. [18]. The
circuit scheme is shown in Fig. 10.

The algorithm relies on the realization of a unitary
transformation with the effective Hamiltonian of interest
using repetitions of a small step, corresponding to the
Trotterization procedure. The protocol for the simulation of
an arbitrary m-local Hamiltonian 7{ (generally not available
in the physical setup) relies on the sequential implementa-
tion of the available parts of a Hamiltonian 7:{k (constructed
from gates acting on m qubits) such that Eka H. The
corresponding unitary of a single digital step j of duration
ot reads

U,(s1) = emitidtg=iTtor o

—i7:[k5t’ (C])

. 2h* .
Hinagn (1) = I Z 031 ‘|‘ T 702 cos(4 sinfwr]) and the implementation of N, — oo Trotter steps com-
bines into the unitary U(t) = limy, o, U;(5t)"Vr ~ e~
LN/ 2l . i . . . In this spirit, the implementation of the transverse Ising
X Z {cos[Asin(wr )]621' +sinf2 Sm(wt)]%j ;- model model is proposed to rely on multiple applications of
=l the Trotter step graphically shown in Fig. 10. It starts with
(B3)  the implementation of Uyxy = exp{—idt ZNﬂ sz 12}
Trotter step 1 Trotter step 2
O1
J
Qz
J
Qs

FIG. 10. Digital simulation scheme from Ref. [17]. It relies on Trotterization of the isotropic XY model dynamics, where additional
single-qubit rotations at every second site effectively eliminate the Y'Y coupling.
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Trotter step 1

Trotter step 2

a
J
oe
J
os
FIG. 11.
couplings [ ay,J(0}0}, | + 007,

Digital simulation scheme of the Heisenberg-type model from Ref. [17]. It relies on the sequential application of bare XY
)1 and its z/2 rotated version corresponding to XZ [« a..J(c}o}, | + oj0;

Hg e “i)] and YZ

[ ) J (6;0‘; 41 T 050%,,)] interactions. Here a,, .. correspond to dimensionless coefficients which allow tuning the model into

the anisotropic XYZ model. We note that the described sequence can be further optimized by combing single-qubit rotations to unity
matrices and z rotations. Moreover, the ordering of the terms can be changed to optimize the procedure.

where by ﬂﬁ? = (J/2)(cjo) +0j0;) we define the
simple application of XY interaction for each pair of
qubits. Next, this unitary can be rotated by applying z
rotations around x axis for every second qubit,
R, = exp{—i(n/2) Zjvﬁ o3}, which
RiUyyR, = exp{-ist Zz}vz/lz ﬂg;ll,zi}, where we define
7265_]2 = (J/2)(cjo} — 0j0}) as the XY Hamiltonian with
the YY term flipped by rotation. Finally, the Ilast
layer in the Trotter step implements the transverse fields
with U, = exp{—idth* j.\’:l o5 }. Once the Trotter step is
repeated many times, the noncommuting Hamiltonian parts
can be added, thus implementing the transverse Ising model
digitally.

The same considerations can be repeated for the digitized
annealing procedure [19]. Here the important part is to keep
the phase applied by the U, gates consistent with the
adiabatic evolution.

leads to

APPENDIX D: DIGITAL SIMULATION
OF XYZ MODEL

The considered digital simulation protocol for the XYZ
model, originally described in Ref. [17], is sketched in
Fig. 11. It relies on the sequential rotation of the basis for
nearest-neighbor interaction, such that in the limit of a large
number of Trotter steps it sums up to Y5 (J*ajo}, |+

]yg}gi a+ JZafaj +1). First, the XY unitary is performed,

implementing Uxy = exp{=idt 31 a,,J(cfo), | +
;0;,,)}, where a,, is some constant. Next, applying

m/2 rotation around the x axis for each qubit, R, =
exp{—i(z/4)3_%_, o}}, the two-qubit unitary can be
transformed  to Uy, = exp{—idr Y} a.J (o0}, |+
%0%.1)}. Subsequent 7/2 rotation around the y axis
. . 2

implements the Uy, = exp{—idt Zﬁvz/l a, J(ojo,, +
)} interaction. For instance, the final chosen

loatlor

Z 2
0.i6j+1

configuration of J, = 2J*/3, J* = J*/3 can be achieved
by choosing J, = J (can be different from Jgy,), a,, = 2/3,
a,, = 1/3, and a,, = 0, simplifying the gate sequence.
Finally, the U, operation introduces an effective magnetic
field in the z direction which allows for annealing to the
ground state of the XYZ model. The linear schedule can
then be designed similarly to the nonstoquastic case
considered in Ref. [19]. While the sequence represented
in Fig. 11 works perfectly in the N1, — oo limit, we note
that the order of the unitaries {S} = {Uyxy, Uy,
Uyz, Uz}, which form a Trotter step, alter the final
infidelity for the annealed state. Thus, for the digital
simulation procedure, we consider 24 permutations of
unitaries for the set S and choose the sequence of the step
which yields minimal infidelity.

We note that alternatively the XYZ model can be
simulated with controlled-phase (ZZ) gates as described
by Barends et al. [19].
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