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We propose a quantum algorithm for simulating spin models based on the periodic modulation of
transmon qubits. Using the Floquet theory, we derive an effective time-averaged Hamiltonian, which is of
the general XYZ class, different from the isotropic XY Hamiltonian typically realized by the physical setup.
As an example, we provide a simple recipe to construct a transverse Ising Hamiltonian in the Floquet basis.
For a 1D system, we demonstrate numerically the dynamical simulation of the transverse Ising Hamiltonian
and quantum annealing to its ground state. We benchmark the Floquet approach with a digital simulation
procedure and demonstrate that it is advantageous for limited resources and finite anharmonicity of the
transmons. The described protocol represents a hardware-efficient quantum software and can serve as a
simple yet reliable path towards configurable quantum simulators with currently existing superconducting
chips.
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I. INTRODUCTION

Quantum simulation relies on exploiting a controllable
quantum system to imitate a complex quantum system of
interest [1]. It provides an efficient way to solve classically
inaccessible problems of material science [2] and quantum
chemistry [3,4]. Ultimately, quantum simulation may give
access to properties of complex quantum systems with
exponential speedup as compared to classical algorithms
[5,6]. Superconducting circuits (SCs) [7,8] have recently
emerged as one of the prime candidates for realizing full-
scale quantum computers, with operations close to the
fault-tolerant threshold [9–15]. From the simulation point
of view, various protocols were proposed and realized
experimentally [16], including the simulation of spin
systems [17–19], fermionic models [20], quantum chem-
istry [21], thermalization [22], synthetic magnetic fields
[23], ultrastrong coupling [24,25], and gauge field theories
[26]. To demonstrate the full potential of a quantum
simulation with SCs, however, there is a need for protocols
which can outperform classical protocols for realistic near-
term medium-size systems.
Typically, protocols for quantum simulation can be

divided into digital and analog (or emulator) types.
While these techniques are similar, they exploit different
methods to achieve a quantum speedup. The digital
approach relies on discretizing the Hamiltonian evolution
using a set of quantum gates. A protocol for simulating an
arbitrary unitary ÛðtÞ ¼ expð−iĤtÞ governed by a
Hamiltonian Ĥ not available in the physical setup exploits
the sequential implementation of the available unitaries Ûl
represented by gates. The corresponding unitary of a single
digital step j of duration δt can be constructed as

ÛjðδtÞ ¼
Q

lÛl. This string of unitaries can be recast

in terms of Hamiltonians ÛjðδtÞ ¼
Q

me
−iĤmδt. An

implementation of NTr → ∞ of these Trotter steps com-
bines into a unitary ÛðtÞ ¼ limNTr→∞ÛjðδtÞNTr ≈ e−iĤt,
where Ĥ ¼ P

mĤm and t ¼ δtNTr [5]. Given a universal
set of gates, any required Hamiltonian can, in principle, be
simulated. This poses the challenge of implementing long
sequences of quantum gates for successful simulation,
leading to errors if they have limited fidelity. The digital
approach is widely used for quantum simulation with SCs
[17–21,24,25], as it is tunable and does not require
changing the sample layout to simulate different models.
Analog quantum simulation relies on the actual physical

implementation of the required Hamiltonian, correspond-
ing to the emulation of a targeted real system. This is
realized on various platforms, including cold atoms in
optical lattices [27,28] and trapped ions [29–31]. By
exploiting continuous time dynamics, Trotterization errors
are minimized, and analog protocols can therefore have
superior simulation fidelities. However, they are restricted
to the types of Hamiltonian physically realizable in the
system. In particular, this is the case for SC quantum
systems. Current highly coherent chains of transmons,
sketched in Fig. 1, are typically limited to the nearest-
neighbor flip-flop type of interqubit interaction provided by
the capacitive coupling between them. Thus, they are
confined to simulate an isotropic XY-type spin-1=2 model
[32]. The accessible models can be enriched by implement-
ing different connections between the qubits to engineer
various nonlinear couplings [33–35], engineered interac-
tion through a common bus resonator [36,37], or allowing
for the modulation of interqubit interactions to break the
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rotating-wave approximation [38–40]. However, this adds
extra complications to experiments and potentially intro-
duces additional errors.
Here, we propose an alternative analoglike simulation

strategy, which can be performed without modifications of
the system. It is based on using a Floquet basis to perform
quantum simulation with superconducting circuits and can
be extended to ground-state preparation via quantum
annealing. The idea relies on the time-dependent modula-
tion of the Hamiltonian ĤðtÞ ¼ Ĥ0 þ Ĥ1ðtÞ, where Ĥ0 is a
time-independent part and Ĥ1ðtÞ ¼ Ĥ1ðtþ TÞ is harmoni-
cally varying with a period T ¼ 2π=ω. The corresponding
unitary operator for a single period can be rewritten as an
effective evolution with a time-independent Hamiltonian
given by the Magnus expansion [41,42]. When the fre-
quency of modulation ω is much bigger than the coupling
in the static Hamiltonian, ω=kĤ0k ≫ 1, the dynamics of
the system can be conveniently represented in terms of a
period-averaged Floquet Hamiltonian:

ĤF ¼ 1

T

Z
T

0

Ĥ0
0ðtÞdt; ð1Þ

where Ĥ0
0ðtÞ denotes the static Hamiltonian Ĥ0 rewritten in

the interaction picture with respect to the oscillating part.
The resulting Hamiltonian ĤF may possess qualitatively
different behavior compared to Ĥ0. Such a Floquet type of
simulation recently gained attention in the cold atom [43]
and condensed matter physics communities [44,45], and for
SCs was used to study the quasienergies of a single qubit
[46]. Here we show how to use similar techniques as a
general protocol for a quantum simulation.
We consider qubits with isotropic XY coupling and show

that by exploiting fast driving of each site we can tailor the
effective Hamiltonian of the system. For concreteness, we
focus on one-dimensional chains, but the method can easily
be extended to more dimensions or to nonlocal models
using a quantum bus. First, we describe how the approach
can be used to simulate the dynamics of the transverse Ising
model, showing that, as compared to digital protocols, a
higher fidelity can be attained. Next, we simulate quantum
annealing to the ground state of the transverse Ising
model and find that the Floquet approach outperforms
the digital for restricted resources, when limited by the

finite anharmonicity of the transmons. Finally, we describe
an algorithm for simulating the spin-1=2 XYZ model with
the Floquet approach.

II. MODEL

As a physical realization, we consider a capacitively
coupled chain of transmon-type qubits (Fig. 1) [11,47–49],
where periodically oscillating effective magnetic fields are
applied at chosen lattice sites. The time-independent
Hamiltonian in the rotating frame Ĥ0 contains a nearest-
neighbor flip-flop interaction with bare coupling J, corre-
sponding to the isotropic XY spin-1=2 model:

Ĥ0 ¼
XN−1

j¼1

Jðσxjσxjþ1 þ σyjσ
y
jþ1Þ: ð2Þ

Here σαj (α ¼ x, y, z) are spin-1=2 Pauli operators at lattice
site j, N denotes the number of qubits in the chain, and we
consider open boundary conditions. The time-dependent
Hamiltonian Ĥ1ðtÞ contains a periodic magnetic field hjðtÞ
which rapidly oscillates along arbitrary axes, and we
assume that it differs between even and odd sites:

Ĥ1ðtÞ ¼
X⌈N=2⌉

j¼1

hoddðtÞ · σ2j−1 þ
XbN=2c

j¼1

hevenðtÞ · σ2j; ð3Þ

where bxc and ⌈x⌉ denote floor and ceiling functions,
respectively. We assume that the magnetic field is sharply
turned on at time t ¼ 0 and, thus, explicitly account for the
kick operator contribution [43]. Going to the rotating frame
with respect to Ĥ1 and integrating over a period as in
Eq. (1), we get the reduced Floquet Hamiltonian in the
general form [Appendix A]

ĤF ¼
X

α;α0¼x;y;z

XbN=2c

j¼1

ξαα0 σ
α
2jðσα

0
2j−1 þ σα

0
2jþ1Þ; ð4Þ

where the time-averaged coefficients ξαα0 are defined in
Appendix A and are controlled by the effective magnetic
fields.

III. RESULTS

A. Transverse Ising model: Dynamics

We first consider the Floquet simulation of the transverse
Ising model, which represents a particular case of the more
general Floquet Hamiltonian (4).
The intuitive way to describe the realization of the Ising

model (∝ σx1σ
x
2) from the isotropic XY case (with inter-

action type∝ σx1σ
x
2 þ σy1σ

y
2) is to take two spins and imagine

one to be rotating in a magnetic field. Starting from the flip-
flop interaction, if we choose the axis of the magnetic field
to be in the ex direction, nothing will happen to the first
interaction term. At the same time, the rotation of the

J J J J

h  (t)1 h  (t)Nh  (t)2 h  (t)3 h  (t)4

FIG. 1. Sketch of the system. A chain of superconducting
transmon-type qubits coupled through isotropic XY coupling J.
Each qubit is subject to a periodically modulated effective
magnetic field hjðtÞ.
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second spin leads to oscillations of the second term
between �σy1σ

y
2 and also induces a ∝σy1σ

z
2 interaction

component. For large frequencies of oscillation and a
carefully chosen drive amplitude, the plus and minus
components will cancel each other, as well as the cross-
interaction components, ultimately leaving the Ising term
∝σx1σx2 only.
The transverse Ising model can be realized with a

drive of the form hevenðtÞ ¼ ðλ=2Þω cosðωtÞex þ 2hzð1þ
J 0½2λ�Þ−1 cosðλ sin½ωt�Þez and hoddðtÞ ¼ hzez, where λ is a
drive parameter and J 0½x� denotes the zeroth-order Bessel
function of the first kind. The z-directed terms additionally
introduce an effective transverse magnetic field hz. In the
infinite frequency limit jJj=ω → 0 and for λ ¼ 2.40483
(J 0½λ� ¼ 0), this leads to an effective Hamiltonian of the
form [Appendix B]

ĤF ¼ Jsim
XN−1

j¼1

σxjσ
x
jþ1 þ hz

XN
j¼1

σzj ≡ ĤtIsing; ð5Þ

where for later reference Jsim ¼ J describes the effective
simulated coupling of the model. The ratio between
the effective magnetic field in the Floquet basis and the
Ising interaction, hz=Jsim, can be controlled by the drive
parameters.
We numerically calculate the full dynamics of the system

with time-periodic driving of frequency ω=jJj ¼ 50
and access the Floquet dynamics by looking at stroboscopic
times nT, where n is an integer [Fig. 2(a)]. The results
are compared to an ideal simulation of the transverse
Ising Hamiltonian (5), with the initial state jψ ini ¼
⨂N=2

j¼1ðj↑i2j−1 − ij↓i2j−1Þ=
ffiffiffi
2

p
⊗ j↑i2j. We benchmark

the Floquet simulation with a digital protocol [see
Appendix C for details and the gate sequence]. It uses
the isotropic XY interaction and its rotated version and

approaches the Ising model in the limit of a large number
of Trotter periods NTr [17]. The results in Fig. 2(b)
show that the Floquet simulation has a high fidelity Fc ¼
jhψ tIsingðnTÞjψðnTÞij2 with exact continuous dynamics at a
short time but deviates at later stages due to the finite
Floquet frequency. The digital approach shows substantial
deviations for this limited NTr even at short times but will
have a rapid convergence with more Trotter steps (see
below). We note that a comparison of the number of
Floquet periods and Trotter steps may not be a fair
comparison, since the latter involves multiple gates.

B. Transverse Ising model: Ground-state preparation

We now study ground-state preparation of the simulated
model. To access the ground state, we perform quantum
annealing [50], which also serves as a basis for adiabatic
quantum computing [51] and may solve NP-complete prob-
lems [52].Using theFloquet basis,wedesign theHamiltonian
ĤFðtÞ ¼ Jsim

P
N−1
j¼1 σxjσ

x
jþ1 þ ð1 − t=tfÞhz

P
N
j¼1 σ

z
j, where

the effective magnetic field is linearly turned off during
the annealing time tf. We consider Jsim < 0, which allows
us to access the ground state of the ferromagnetic x-Ising
Hamiltonian. The ideal target state is a maximally entangled
state jψTi ¼ ðjþi⊗N þ j−i⊗NÞ= ffiffiffi

2
p

, where j�i ¼
ðj↓i � j↑iÞ= ffiffiffi

2
p

, and we start from the trivial initial state
jψ ini ¼ j↓i⊗N .
The results of the annealing procedure are shown in

Fig. 3. The dynamics of the system, quantified by the
fidelity of the instantaneous wave function of the system
with the ideal target state, FT ¼ jhψT jψðtÞij2, is shown in
Fig. 3(a) for a four-qubit chain. Blue dots correspond to a
Floquet simulation at stroboscopic times, which closely
follow the red solid curve of the ideal continuous annealer.
The blue curve shows the full dynamics. Since the fidelity
is calculated in the computational basis, strong oscillations
appear from the drives. These oscillations could be
removed by changing to a suitable rotating basis. To study
the scaling with the system size, we perform fixed time
(tf ¼ 15jJsimj−1) annealing for chains of various lengths
[Fig. 3(b)]. Fixing the drive frequency to moderate
values, we observe that the final infidelities of the
Floquet simulator, 1 − Fc

FloquetðtfÞ, and digital simulator,
1 − Fc

digitalðtfÞ, have similar scaling with the system size,
both adding extra infidelity on top of the continuous
evolution and largely dependent on ω and NTr as described
below. In Fig. 3(c), we show the dependence on the
frequency of the periodic drive of the Floquet infidelity,
measured with respect to the finite time annealing state.
The frequency is rescaled by the total annealing time, such
that ωtf=2π shows the number of stroboscopic periods. The
infidelity can be reduced for large ω, with results converg-
ing to continuous annealing for ω=jJj → ∞. The analogous
behavior for the digital approach corresponds to the
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FIG. 2. Transverse Ising dynamics. (a) Total normalized
magnetization of the N ¼ 4 chain MαðtÞ ¼ hψðtÞjPN

j σαj jψðtÞi=
N. Solid curves show the ideal continuous evolution under the
transverse Ising Hamiltonian. Bullets correspond to stroboscopic
periods of the Floquet dynamics. We set J < 0, hz=J ¼ 3=2, and
ω=jJj ¼ 50 and run the simulation for a total of 20 stroboscopic
periods. (b) Simulation infidelities. Blue diamonds identify the
dynamical overlap of the Floquet evolution with the ideal
transverse Ising evolution. The red bullets correspond to digital
evolution with NTr ¼ 20 Trotter steps.
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variation of the number of Trotter steps and is shown in
Fig. 3(d). While a direct comparison between the two
approaches is complicated, the general tendency can be
deduced: The Floquet approach has smaller infidelity for a
small number of steps and limited resources, while the
digital approach has better scaling if a large number of
Trotter steps NTr can be implemented.

C. Imperfections

1. Influence of finite anharmonicity

To describe a realistic quantum simulator, we study the
influence of a finite anharmonicity A of the SC qubits,
which will be a major limitation to our approach. Driving a
transmon with a finite anharmonicity leads to the leakage of
information from the logical subspace. To account for this,
we consider a full Hamiltonian of a SC chain and perform
numerical simulations including doubly excited states of
the transmons. The full Hamiltonian reads

Ĥ¼2J
XN−1

j¼1

ðâ†j âjþ1þ âjâ
†
jþ1Þ

þ
XN
j¼1

fΔjâ
†
j âjþðΩjâjþΩ�

j â
†
jÞgþ

XN
j¼1

A
2
â†j â

†
j âjâj; ð6Þ

where â†j (âj) corresponds to the creation (annihilation)
operator for excitations of the jth transmon circuit. The first
term in Eq. (6) corresponds to nearest-neighbor capacitive
coupling for transmons. The second term in curly brackets
denotes an effective magnetic field in the z direction given
by the flux-bias-dependent detuning Δj and the microwave
drive terms Ωj corresponding to an effective magnetic field
in the xy plane. The last term in Eq. (6) corresponds to the
anharmonicity of the circuit A provided by Josephson
junctions. In the case of infinitely large anharmonicity,
the Hamiltonian (6) can be projected onto the lowest
occupation subspace for each qubit fj0i; j1igj accounting
only for singly excited circuits. This allows for a spin-1=2
description of the chain and subsequent simulation of
quantum magnetism as shown in the previous section.
However, in realistic transmon samples, the anharmonicity
is typically small, and higher states of the circuit must be
accounted for [see the sketch in Fig. 4(a)]. In particular, this
is important for the case of a strong microwave drive Ω, as
it leads to nonzero occupation of higher-lying states and
enhanced leakage. This can largely decrease the fidelity and
typically is the bottleneck for fast digital computation.
In the following, we consider the effects of finite A by

expanding the Hilbert space for each site to have doubly
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occupied states, fj0i; j1i; j2igj. As a test case, we take the
ground-state preparation of the transverse Ising model,
studied for the case of infinite anharmonicity in the preced-
ing sections. The annealing schedule is chosen in the same
form, making use of the correspondence hx ↔ ΩðΩ�Þ
and hz ↔ 2Δ.
We consider annealing of the transverse Ising chain with

N ¼ 4. The resulting infidelity of the simulation is shown
in Fig. 5. First, we fix the value of the anharmonicity and
calculate the infidelity as a function of the Floquet
frequency [Fig. 5(a)]. We observe that, contrary to the
ideal circuit, the infidelity is minimized for a finite
(optimal) drive frequency ωopt. The window of frequencies
in which the infidelity stays close to minimal is typically
broad. In Fig. 5(b), we show the optimized infidelity of the
simulation as a function of A (blue curve).
To benchmark the results of the Floquet simulation, we

compare it to the digital simulation. The estimate of the
digital protocol infidelity accounts for several contribu-
tions. The first comes from the Trotterization procedure
ϵdigðNTrÞ and depends strongly on the number of Trotter
steps, favoring long sequences. The second contribution is
a total infidelity from gate operations ϵgatesðNTrÞ ¼
1 − ½1 − ð5N − 4Þϵ�NTr , which increases with the number
of Trotter steps. The optimization procedure is performed
for different values of the gate error ϵ. The results are
plotted in Fig. 4(b), and the optimal Trotter step number
Nopt

Tr is shown to decrease in the case of large gate errors.
The corresponding optimal infidelity [Fig. 4(c)] shows a
significant increase for ϵ > 10−3.
To compare the digital and Floquet approaches, we

should compare how each of the two approaches could
be implemented on comparable physical systems. To this
end, we consider transmons with the same anharmonicity A
and assume that they also have comparable decoherence

rates (but note that we assume that the physical coupling J
can be different in the two scenarios). Therefore, to have a
similar influence of decoherence in the two approaches, we
assume that the simulations need to be completed in the
same time. To simulate the same evolution, this requires
that the two approaches have the same Jsim and, thus, the
same values of A=Jsim. In the Floquet case, this is defined
by the A=ω and ω=J ratios. For the digital simulation, the
relation is more subtle and relies on the scaling of the gate
time with A for a fixed error value. A full discussion of this
complex subject lies beyond the scope of present study, and
for simplicity we just assume that each gate can be
implemented in a time tgate ¼ c=A, where c is a constant
which controls the quality of the gate. Taking the existing
studies [53–55] and considering a best-case scenario, we
set c ¼ 35. For realistic devices with A ¼ 2π × 300 MHz,
this will correspond to 18-ns gates.
Assuming the same value ϵ for the single- and two-qubit

errors, the error for a single Trotter step is equal to
ϵTr¼ð5N−4Þϵ. We optimize the total infidelity 1 − FT

tot ¼
1 − ð1 − ϵTrÞNTrð1 − ϵdigÞ with respect to the number of
Trotter steps, using the data shown in Fig. 4. To highlight the
relevant parameter range, we assign a cutoff based on the
single-gate time tgate ≥ 35A−1. The results are plotted as
horizontal lines in Fig. 5(b) and show that the Floquet
approach can outperform the digital approach unless very-
high-fidelity gates with ϵ < 10−4 are used. Furthermore, the
Floquet approach is highly advantageous for small values of
A=Jsim, which for a given transmon anharmonicity A is the
regime where the simulation is finished the fastest and thus
has the least influence of decoherence. Thus, for a shorter
time of simulation or higher error rates, the Floquet is
advantageous compared to the digital approach. We high-
light that, while digital approaches typically exploit deriva-
tive reduction by adiabatic gate (DRAG) technique to
remove leakage [54,55], the presented Floquet approach
is not specifically designed to work for small A, and it may
be improved by using few-tone drives.
To quantify the performance, we consider numbers

which can be achieved with currently available transmon
setups [47,49]. Taking the anharmonicity to be A ¼
2π × 300 MHz, drive frequency ω ¼ 2π × 9.8 MHz,
nearest-neighbor coupling J ¼ 2π × 1 MHz (reduced com-
pared to most setups), and tf ¼ 2.4 μs, the four-qubit
chain can be annealed to the ground state of the Ising model
with 1 − FT

Flq ¼ 0.037 (ideal continuous annealing gives
1 − FT

cont ¼ 0.006 16).
Reaching a similar performance with the digital strategy

is highly challenging and would require single- and two-
qubit gate operation times of 18 ns ¼ 35A−1 and ϵ ¼ 10−4

accuracy. The single Trotter step duration for N ¼ 4 is
tTr ¼ 0.162 μs, and with tf ¼ 2.4 μs this allows for 14
Trotter steps. The total digital error is 1 − Fdig ¼ 0.041
(dephasing should be added separately).
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2. Influence of the coupling to the environment

So far, we have considered the situation where the
dynamics of the quantum system is unitary and errors
arise due to the difference between the target Hamiltonian
and the effective Floquet Hamiltonian engineered by the
drive. In realistic setups, errors also appear due to the
coupling to the environment, so that a qubit can decay, or its
state can be dephased by the external noise. To account for
the environmental contribution, we perform a master-
equation simulation for the density matrix ρ of the super-
conducting qubit chain, _ρðtÞ ¼ −i½ĤðtÞ; ρðtÞ� þ D̂½ρðtÞ�.
Assuming that each qubit can decay due to the collapse
operator Ĉj ¼ ffiffiffi

γ
p

σ−j with a rate γ, the decoherent part of
the dynamics is described by the Liouvillian superoperator
D̂½ρ� ¼ P

N
j¼1 ĈjρĈ

†
j − fĈ†

j Ĉj; ρg=2. Here γ corresponds to
the Markovian decay rate, and we assume a zero temper-
ature of the bath, which is justified for modern experiments
performed at T ≈ 25 mK, with kBT being much smaller
than the qubit frequency (approximately 5 GHz). We note
that, even though we assume the environment to be at a zero
temperature, the application of the strong driving fields
creates a nonequilibrium situation. In the effective model,
this decay will thus not correspond to a zero-temperature
bath [56]. Furthermore, we note that pure dephasing effects
can be included in a similar fashion.
To study the performance of the simulator under the

influence of environmental effects, we consider the bench-
marking example of annealing to the ground state of the
transverse Ising Hamiltonian. We calculate the infidelity
1 − FT of the continuous finite time annealing and Floquet
annealing, measured with respect to the ideal GHZ target
state, as a function of the qubit decay. The parameters used
are ω=jJj ¼ 20 and tf ¼ 15jJsimj−1, and we consider
a chain with N ¼ 4 qubits. The results are shown in
Fig. 6. Taking the circuit considered in the previous sub-
section (A ¼ 2π × 300 MHz, J ¼ 2π × 1 MHz), we find

that, for qubits with T1 ¼ 10 μs decay time, the infidelity of
GHZ state preparation becomes 1 − Fγ

Flq ¼ 0.248. Even in
the absence of decay, the Floquet protocol has a larger error,
since we consider a finiteω=jJj. As expected, the addition of
the decay increases the infidelity for both continuous and
Floquet annealing. Although the scaling looks similar on the
log-log scale, it corresponds to a more rapid growth of
decoherence-related infidelity for the Floquet approach at
large decay rates. The presence of decay leads to another
trade-off, favoring large coupling Jsim, at the expense of
leakage and Floquet errors, but we have not included this in
our optimizations. Finally, we note that the described
annealing protocol is resource demanding, as it requires
long simulation time tf to achieve a high fidelity even in the
ideal unitary case, while dynamical simulations can be
performed in a much shorter time, thus having less effects
of decoherence.

3. Influence of cross talk between neighboring qubits

In ideal transmon circuits, each qubit has a separate
independently controllable microwave and flux loop lines,
which allow engineering the effective magnetic field.
However, in realistic samples, the microwave lines can
have an additional capacitive coupling to neighboring
qubits, thus providing an extra drive [57]. This parasitic
or “cross-talk” coupling may have a harmful influence on
the effective Hamiltonian. If these cross talks are com-
pletely known for the sample at hand, one can always
compensate for this by adding extra drives to each qubit
which counteract the cross talk. In practice, however, we
may not have a complete characterization of the sample,
and this introduces errors in the protocol.
Here, we study the influence of cross-couplings on the

performance of the simulator, providing estimates for the
associated infidelity of the simulation. Taking the example
of annealing to the ground state of the transverse Ising
Hamiltonian, the Floquet approach requires an x-oriented
periodic drive for each second qubit (e.g., even sites),
while odd sites are not driven. Using the drive parameters
introduced in Appendix A, this situation corresponds to
ϕe ¼ 0, θe ¼ π=2, ϕo ¼ 0, θo ¼ π=2, and ideally λo ¼ 0.
The presence of nonzero cross-talk coefficients results in the
appearance of an additional drive, such that λo ¼ cλe, where
c is a cross-talk coefficient, which may be different for each
link, c → fclg [see the sketch in Fig. 7(a)]. Using the
generic model given by Eq. (4), with the coefficients written
in Appendix A, we can write the interaction constants as

ξxx=J¼ 1; ξyy=J¼
1

2
ðJ 0½λe−λo�þJ 0½λe−λo�Þ; ð7Þ

ξzz=J ¼ 1

2
ðJ 0½λe − λo� − J 0½λe − λo�Þ; ð8Þ

and other interaction constants are zero: ξxy=J ¼ ξyz=J ¼
ξxz=J ¼ 0. Assuming the cross-talk coefficients to be small,
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Continuous

0.0001

T

FIG. 6. Influence of decay. Final-state infidelity for annealing to
the ground state of the transverse Ising model, shown as a
function of qubit decay rate γ. Continuous annealing (magenta
curves) and Floquet annealing (blue curves) are considered, with
fidelity measured with respect to the ideal target state. The
parameters are N ¼ 4, ω=jJj ¼ 20, and tf ¼ 15jJsimj−1.
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c̄ ≪ 1, we can expand YY and ZZ interaction constants,
arriving at

ξyy=J ¼ J 0½λe� þ
�
λ2o
2λe

J 1½λe� −
λ2o
2
J 0½λe�

�
þOðλoÞ3;

ð9Þ

ξzz=J ¼ λoJ 1½λe� þOðλoÞ3; ð10Þ

where additional terms appear due to nonzero λo. The first
term in (9) corresponds to the leading λe-based contribution,
and to achieve the Ising Hamiltonian coupling we tune
λe → λ0, where J 0½λ0� ¼ 0. This leaves only the residual
term for ξyy=J ≈ ðλ2o=2λ0Þ2J 1½λ0� ≈ 0.11λ2o, which is typi-
cally negligible for small cross-talk coefficients. At the same
time, an effective ZZ coupling arises to first order, giving
ξzz=J ≈ λoJ 1½λ0� ≈ 0.52λo. We note, however, that know-
ing the cross-talk coefficients can enable fine-tuning the
interaction such that ξzz=J is minimized.
Finally, to account for the randomly distributed cross talk

fclg,weperformnumerical calculationof the annealing to the
transverse Ising Hamiltonian ground state including the cross
talk. The coefficients fclg are drawn from the half-normal
distribution. They correspond to the set of absolute values of
random variables fjxljg drawn from the normal dis-
tribution with Pnormalðx;σÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðπσ2Þ�

p
expð−x2=2σ2Þ (σ2

is the variance of the normal distribution). Then, μc ¼P
L
l cl=L is calculated as an arithmetic mean for the sample,

where L is the total sample size. The choice of positive
coefficients is determinedby the fact that cross talk is typically
represented by the passive capacitive coupling and does not
change the sign of the parasitic magnetic field on the
nondriven sites. We also check the case where this situation
may not hold, taking the normal distributionwith a zeromean
and the same σ, and find that the associated infidelity in the
simulation is of a comparable size.
We choose to plot the results as a function of mean

cross-coupling μc. The infidelity with respect to the target
state is shown in Fig. 7(b). The sampling is performed for
ω=jJj ¼ 20, tf ¼ 15jJsimj−1, and N ¼ 4 and considering
20 cross-talk configurations. The infidelity naturally grows
for increasing values of the cross-coupling. Taking, for
instance, a mean cross talk of 5%, we find the additional
infidelity to be around 0.015.
Finally, concluding the imperfections section, we note

that Floquet systems can suffer from induced heating even
for isolated setups [58]. This is related to an effective
breakdown of the Magnus expansion for systems of a large
size, where characteristic energy spacing becomes small.
However, the latter concerns the thermodynamic limit and
happens at critical times being exponentially large in the
drive frequency [59,60].

D. Generic XYZ Hamiltonians

The Floquet approach may be extended to simulate
generic spin-1=2 models represented by XYZ-type
spin Hamiltonians, ĤXYZ ¼P

N−1
j¼1 ðJxσxjσxjþ1 þ Jyσyjσ

y
jþ1 þ

Jzσzjσ
z
jþ1Þ. This coupling is of the nonstoquastic type,

where recent results have suggested that it can give
enhanced computational powers [61]. To simulate the
XYZ model in the Floquet basis, we start with the time-
dependent Hamiltonian in the form

ĤðtÞ¼
XN−1

j¼1

Jðσxjσxjþ1þσyjσ
y
jþ1Þþ

XN
j¼1

hðtÞ ·σjþĤz; ð11Þ

where we consider the oscillating effective magnetic field
to be homogeneous for all sites. Ĥz describes the part of
the Hamiltonian responsible for implementing the static
z-oriented magnetic field for annealing. Considering
hðtÞ ¼ ðλ=2Þω cosðωtÞex with ω being the largest energy
scale and setting λ ¼ 3.622 88, we eliminate the cross terms
and are left with a Floquet Hamiltonian of the form

ĤF ¼
XN−1

j¼1

ðJxσxjσxjþ1 þ Jyσyjσ
y
jþ1 þ Jzσzjσ

z
jþ1Þ ð12Þ

þ hz
XN
j¼1

σzj ≡ ĤXYZ; ð13Þ
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FIG. 7. Influence of cross talk. Final-state infidelity for
annealing to the ground state of the transverse Ising model as
a function of the mean cross-talk coefficient μc. The calculation is
performed for several sets of cross-coefficients drawn from the
half-normal distribution with different μc. The error bar shows one
standard deviation of the calculated infidelity of the sample; i.e., it
represents the fluctuations expected between different devices.
The curve is calculated using 20 sets of the cross-couplings. Other
parameters are ω=jJj ¼ 20, tf ¼ 15jJsimj−1, and N ¼ 4.
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where the couplings are Jy ¼ 2Jx=3, Jz ¼ Jx=3, and
Jx ¼ J < 0. Here the simulated coupling changes for the
YY and ZZ interaction components, and we consider
Jx ¼ Jsim as a reference. We note that, as compared to
the transverse Ising case, this Hamiltonian possesses a
small energy gap, and in the absence of an additional
transverse field it is difficult to anneal even with the ideal
continuous Hamiltonian.
To characterize the Floquet and digital simulation

procedures, we plot the instantaneous infidelity with
respect to the continuous annealing case, observing how
closely one can follow the ground state [Fig. 8(a)]. The blue
curve for the Floquet simulation at stroboscopic times
shows that the deviation begins to grow once we approach
the critical point. To compare with the digital procedure
[see Appendix D for details], we plot the infidelity for the
Trotterization approach. We assume the number of Trotter
steps is equal to half of number of Floquet periods,
NTr ¼ 1=2ðtf=TÞ ¼ 477. This will be an upper bound
for the number of Trotter steps for the digital simulator
for the same resources. This can be deduced from the
digital simulation protocol, assuming that the time required
to implement the two-qubit gate is inversely proportional to
the coupling strength, tgate ∼ jJj−1, and, in addition, the

gates on the two sublattices have to be applied separately.
We note that considering different ordering of the gates
leads to largely different results for the final-state infidelity.
While we have not performed a full optimization of this
ordering, the results presented in the figure are the outcome
of the optimization over 24 different possibilities for a
Trotter step composition. This suggests that the digital
procedure is strongly model dependent, and extra resources
are required for sequence optimization [2,4]. In Fig. 8(b),
we plot the dependence of the Floquet XYZ annealing on
the drive frequency, showing the resources necessary for
high-fidelity annealing as a function of the number of
stroboscopic periods. A similar analysis is performed for
the digital procedure, where the dependence of the Trotter
step number is considered [Fig. 8(c)]. Akin to the trans-
verse Ising annealing case described in the previous
sections, the Floquet approach shows a smaller infidelity
for a limited number of steps, in particular, for N ¼ 4.
Unlike the transverse Ising model, however, even forNTr as
large as a thousand steps, the digital approach does not
provide a smaller infidelity as compared to the Floquet
approach, but this may change if even higher numbers of
Trotter steps are considered.

IV. CONCLUSIONS

In conclusion, we presented a scheme for a reconfig-
urable and tunable superconducting quantum simulator
based on transmon qubits. Utilizing the Floquet approach,
the original isotropic XY interaction can be transformed
into a transverse Ising or XYZ-type spin-1=2 Hamiltonian.
The approach allows the simulation of multiqubit system
dynamics and the preparation of nontrivial ground
states. The Floquet simulation is shown to perform
better than a digital scheme for restricted resources and
represents a realistic path for modern SC quantum
simulators.
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APPENDIX A: DERIVATION OF THE GENERIC
FLOQUET HAMILTONIAN

Here we present the derivation of Eq. (4) in the main
text and simultaneously describe the general Floquet
Hamiltonian originating from an arbitrary axis magnetic-
field oscillation for the two sublattices.
We start with the transmon Hamiltonian written in the

form
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FIG. 8. XYZ annealing. (a) Time dependence of the infidelity
for the Floquet evolution (blue line) and optimal digital annealing
(red line). Here the infidelity is measured with respect to the
instantaneous wave function of the continuous annealing. The
digital evolution contains NTr ¼ 477 Trotter steps, equal to half
the number of stroboscopic periods. (b) Modulation frequency
dependence of the final-state infidelity for annealing with
tf ¼ 200jJj−1, measured with respect to an ideal target state.
(c) Final infidelity of the digital quantum simulation of the XYZ
model as a function of the number of Trotter steps. F is measured
with respect to an ideal target state.
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ĤðtÞ ¼ Ĥ0 þ Ĥ1ðtÞ

¼ J
XN−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ þ

X⌈N=2⌉

j¼1

hoddðtÞ · σ2j−1

þ
XbN=2c

j¼1

hevenðtÞ · σ2j ðA1Þ

and consider the effective magnetic fields to be different for
even and odd sublattices. Here bxc and ⌈x⌉ denote floor and
ceiling functions, correspondingly. To have an explicit form
of heven=oddðtÞ, we decompose it into heven=oddðtÞ ¼
fe=oðtÞðexhxe=o þ eyhye=o þ ezhze=oÞ, where fe=oðtÞ ¼
fe=oðt þ TÞ is some periodic function, ex;y;z form a
Cartesian basis, and hαe=o are components of an effective
magnetic field for even (indexed by e) and odd (indexed

by o) sites. This corresponds to the magnetic field oscillat-
ing along a certain axis, which is different for even and odd
sublattices. Here we consider the time dependence to be the
same for all spin components, such that the axis of the
magnetic field does not precess. This restriction decreases
the number of independent tuning parameters. Note that the
effective magnetic field used for the simulation of the
transverse Ising model deviates slightly from this form.
This deviation is, however, a perturbation and is dealt
with below. If the fields do not have this form, the time-
dependent Hamiltonian Ĥ1ðtÞ does not commute with itself
at different times, thus largely complicating the solution.
This more general setting will be considered in future
work.
We perform a unitary transformation with respect to the

rapidly oscillating time-dependent part Ĥ1ðtÞ. This is done
using the unitary operator:

ÛðtÞ ¼ T exp

�
−i

Z
t

t0

dt0foðt0Þ
X⌈N=2⌉

j¼1

ðhxoσx2j−1 þ hyoσ
y
2j−1 þ hzoσ

z
2j−1Þ þ feðt0Þ

XbN=2c

j¼1

ðhxeσx2j þ hyeσ
y
2j þ hzeσ

z
2jÞ

�
; ðA2Þ

where T̂ f…g is the time-ordering operator and t0 is an
initial switch-on time. The unitary (A2) can be factorized
into odd and even sublattices parts, and time ordering
disappears as the magnetic field oscillates along a fixed
axis. This yields ÛðtÞ ¼ ÛoðtÞÛeðtÞ with

ÛpðtÞ ¼ exp

�
−i

gpðtÞ
2

XNp

j¼1

ðnxpσxP þ nypσ
y
P þ nzpσ

z
PÞ
�
; ðA3Þ

where indices p ¼ o, e and P¼2j−1;2j help
denote sublattice parity, and we define the time-

integrated functions gpðtÞ≡ 2
R
t
t0
dt0fpðt0Þhp. Here hp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhxpÞ2 þ ðhypÞ2 þ ðhzpÞ2
q

defines the absolute value of the

effective magnetic-field vector, and nx;y;zp ¼ hx;y;zp =hp

correspond to the normalized Cartesian components.
The rotated Hamiltonian then reads Ĥ0ðtÞ ¼
Û†ðtÞĤðtÞÛðtÞ − iÛ†ðtÞ∂tÛðtÞ. The second term is divided
into two parts and each of these can be rewritten using the
relation for the derivative of an arbitrary time-dependent
matrix AðtÞ, being e−AðtÞ∂teAðtÞ ¼ _AðtÞ − ½AðtÞ; _AðtÞ�=2!þ
½AðtÞ; ½AðtÞ; _AðtÞ��=3! − � � �. For the case of AðtÞ ¼
−if½gpðtÞ�=2g

PNp

j¼1ðnxpσxP þ nypσ
y
P þ nzpσ

z
PÞ considered

here, the commutators vanish, and in total the derivative
term gives −Ĥ1ðtÞ. However, we emphasize that this
conclusion would not be true for general time dependence
of the Cartesian components of an effective magnetic field,
where additional derivative-dependent terms appear.
Next, we need to calculate the matrix product terms of

the form

Û†ðtÞ
�
J
XN−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ

�
ÛðtÞ

¼ efi½geðtÞ=2�
P

Ne
j¼1

ðnxeσx2jþnyeσ
y
2jþnzeσ

z
2jÞgefi½goðtÞ=2�

P
No
j¼1

ðnxoσx2j−1þnyoσ
y
2j−1þnzoσ

z
2j−1Þg

×

�
J
XN−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ

�
ef−i½goðtÞ=2�

P
No
j¼1

ðnxoσx2j−1þnyoσ
y
2j−1þnzoσ

z
2j−1Þgef−i½geðtÞ=2�

P
Ne
j¼1

ðnxeσx2jþnyeσ
y
2jþnzeσ

z
2jÞg: ðA4Þ

Let us perform the unitary rotation for each sublattice consecutively. For this, it is convenient to go from Cartesian to
the spherical coordinate frame: np ¼ fnxp; nyp; nzpg ↔ fcosϕp sin θp; sinϕp sin θp; cos θpg. Next, noting that the
unitary operation is defined as a spin rotation with respect to a fixed axis np, it can be decomposed into Cartesian
rotations as
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R̂n
j ðgÞ ¼ e−iðg=2Þn·σj ¼ R̂z

jðϕÞR̂y
jðθÞR̂z

jðgÞR̂y
jðθÞ†R̂z

jðϕÞ†; ðA5Þ

where the rotation operator is defined as R̂αðφÞ ¼ e−iðφ=2Þσα (α ¼ x, y, z). Then, the Hamiltonian after the odd sublattice
transformation can be obtained through rotations

Û†ðtÞĤ0ÛðtÞ ¼ Û†
e½R̂z

oðϕoÞR̂y
oðθoÞR̂z

oð−goÞR̂y
oð−θoÞR̂z

oð−ϕoÞĤ0R̂
z
oðϕoÞR̂y

oðθoÞR̂z
oðgoÞR̂y

oð−θoÞR̂z
oð−ϕoÞ�Ûe; ðA6Þ

and the subsequent transformation for the even sublattice can be performed in a similar fashion.
Finally, to get a closed expression for the transformed Hamiltonian, we use the Baker-Campbell-Hausdorff

formula

eM̂Ĥ0e−M̂ ¼ Ĥ0 þ ½M̂; Ĥ0� þ
1

2!
½M̂; ½M̂; Ĥ0�� þ � � � ¼

X∞
k¼0

1

k!
½M̂; Ĥ0�k; ðA7Þ

where ½M̂; Ĥ0�k denotes the kth-order nested commutator. We proceed with calculating the commutators and resumming
the series. After straightforward but tedious algebra, we can get the Hamiltonian in a rotating frame:

Ĥ0ðtÞ ¼
X

α;α0¼x;y;z

XN=2

j¼1

ξαα0σ
α
2jðσα

0
2j−1 þ σα

0
2jþ1Þ; ðA8Þ

with the coefficients

ξxxðtÞ ¼ Jsin2ðθeÞcosðϕeÞ½cosðgo½t�Þcos2ðθoÞcosðϕoÞcosðϕe−ϕoÞ− sinðϕeÞ sinðgo½t�ÞcosðθoÞ
− cosðgo½t�ÞsinðϕoÞ sinðϕe−ϕoÞþ sin2ðθoÞcosðϕoÞcosðϕe−ϕoÞ�
þ cosðge½t�Þfcosðgo½t�Þ½cos2ðθoÞcosðϕoÞðcos2ðθeÞcosðϕeÞcosðϕe−ϕoÞþ sinðϕeÞ
×sinðϕe−ϕoÞÞþ sinðϕoÞðsinðϕeÞcosðϕe−ϕoÞ− cos2ðθeÞcosðϕeÞ sinðϕe−ϕoÞÞ�
þ sin2ðθeÞ sinðϕeÞcosðϕeÞ sinðgo½t�ÞcosðθoÞþ cos2ðθeÞcosðϕeÞsin2ðθoÞcosðϕoÞcosðϕe−ϕoÞ

þ sinðϕeÞsin2ðθoÞcosðϕoÞ sinðϕe−ϕoÞgþ sinðge½t�ÞcosðθeÞ
�
sinðgo½t�ÞcosðθoÞ− sin2

�
go½t�
2

�
sin2ðθoÞ sinð2ϕoÞ

�
;

ξyyðtÞ ¼ Jsin2ðθeÞ sinðϕeÞ½sinðϕoÞcosðϕe−ϕoÞðcosðgo½t�Þcos2ðθoÞþ sin2ðθoÞÞþ cosðϕeÞ sinðgo½t�ÞcosðθoÞ
þ cosðgo½t�ÞcosðϕoÞ sinðϕe−ϕoÞ�þ cosðge½t�Þfcosðgo½t�Þ½cos2ðϕeÞðcos2ðθoÞsin2ðϕoÞþ cos2ðϕoÞÞ
þ cos2ðθeÞsinðϕeÞðcos2ðθoÞ sinðϕoÞcosðϕe−ϕoÞþ cosðϕoÞsinðϕe−ϕoÞÞ
þ sinðϕeÞcosðϕeÞsin2ðθoÞsinðϕoÞcosðϕoÞ�− sin2ðθeÞ sinðϕeÞcosðϕeÞ sinðgo½t�ÞcosðθoÞ
þ sin2ðθoÞsinðϕoÞðcos2ðθeÞ sinðϕeÞcosðϕe−ϕoÞ− cosðϕeÞ sinðϕe−ϕoÞÞgþ sinðge½t�ÞcosðθeÞ

×

�
sinðgo½t�ÞcosðθoÞþ sin2

�
go½t�
2

�
sin2ðθoÞsinð2ϕoÞ

�
;

ξzzðtÞ ¼ J sinðθeÞ sinðθoÞ
�
cosðϕe−ϕoÞ

�
sinðge½t�Þ sinðgo½t�Þþ 2ð1− cosðge½t�ÞÞcosðθeÞsin2

�
go½t�
2

�
cosðθoÞ

�

þ sinðϕe−ϕoÞ
�
ð1− cosðge½t�ÞÞcosðθeÞ sinðgo½t�Þ− 2sinðge½t�Þsin2

�
go½t�
2

�
cosðθoÞ

��
;
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ξxyðtÞ¼ Jsin2ðθoÞsinðϕoÞ½cosðge½t�Þðcos2ðθeÞcosðϕeÞcosðϕe−ϕoÞþ sinðϕeÞsinðϕe−ϕoÞÞþ sin2ðθeÞcos2ðϕeÞcosðϕoÞ�

þ sin2ðϕoÞ
h
sin2ðθeÞcos2ðϕeÞsinðgo½t�ÞcosðθoÞþ

1

2
sin2ðθoÞðsin2ðθeÞsinð2ϕeÞ−2sinðge½t�ÞcosðθeÞÞ

i

þ sinðgo½t�ÞcosðθoÞ× ½cos2ðϕeÞðcosðge½t�Þcos2ðθeÞþ sin2ðθeÞcos2ðϕoÞÞþcosðge½t�Þsin2ðϕeÞ�

þ1

4
cosðgo½t�Þ

h
4cosðge½t�Þcos2ðθeÞcosðϕeÞcosðϕoÞ× ðsinðϕeÞcosðϕoÞ−cosðϕeÞsin2ðθoÞsinðϕoÞÞ

þ4sin2
�
ge½t�
2

�
sin2ðθeÞsinð2ϕeÞcos2ðθoÞsin2ðϕoÞþ4sinðϕeÞcosðϕeÞcos2ðϕoÞðsin2ðθeÞ−cosðge½t�ÞÞ

−4sin2ðθoÞsinðϕoÞcosðϕoÞðcosðge½t�Þsin2ðϕeÞþ sin2ðθeÞcos2ðϕeÞÞ− sinðge½t�ÞcosðθeÞ
× ð2sin2ðθoÞcosð2ϕoÞþcosð2θoÞþ3Þ

i
;

ξyxðtÞ¼ J
1

8
f8sinðge½t�ÞcosðθeÞsin2ðθoÞcos2ðϕoÞþ8cosðge½t�Þsin2ðθoÞsinðϕoÞcosðϕoÞðcos2ðθeÞsin2ðϕeÞþcos2ðϕeÞÞ

þ2cosðgo½t�Þ½4cos2ðθoÞcosðϕoÞðsin2ðθeÞsinðϕeÞcosðϕe−ϕoÞ−cosðge½t�ÞcosðϕeÞsinðϕe−ϕoÞÞ
þ4cosðge½t�Þcos2ðθeÞ×sinðϕeÞðcos2ðθoÞcosðϕoÞcosðϕe−ϕoÞ− sinðϕoÞsinðϕe−ϕoÞÞ
þ sinðge½t�ÞcosðθeÞð−2sin2ðθoÞcosð2ϕoÞþcosð2θoÞþ3Þ−4sinðϕoÞðcosðge½t�ÞcosðϕeÞcosðϕe−ϕoÞ
þ sin2ðθeÞsinðϕeÞsinðϕe−ϕoÞÞ�þ8sin2ðθeÞsinðϕeÞsin2ðθoÞcosðϕoÞ× ðcosðϕe−ϕoÞ−cosðge½t�ÞcosðϕeÞcosðϕoÞÞ
−8sin2ðθeÞsin2ðϕeÞsinðgo½t�ÞcosðθoÞ−2cosðge½t�Þsinðgo½t�ÞcosðθoÞ× ð2sin2ðθeÞcosð2ϕeÞþcosð2θeÞþ3Þg;

ξyzðtÞ¼ J sinðθoÞ
�
cosðge½t�Þcos2ðθeÞsinðϕeÞ

�
2sin2

�
go½t�
2

�
cosðθoÞcosðϕe−ϕoÞþ sinðgo½t�Þsinðϕe−ϕoÞ

�

þ sinðge½t�ÞcosðθeÞ
�
2sin2

�
go½t�
2

�
cosðθoÞcosðϕoÞ− sinðgo½t�ÞsinðϕoÞ

�

þcosðϕe−ϕoÞ
�
2sin2ðθeÞsinðϕeÞsin2

�
go½t�
2

�
cosðθoÞþcosðge½t�ÞcosðϕeÞsinðgo½t�Þ

�

þ sinðϕe−ϕoÞ
�
sin2ðθeÞsinðϕeÞsinðgo½t�Þ−2cosðge½t�ÞcosðϕeÞsin2

�
go½t�
2

�
cosðθoÞ

��
;

ξzyðtÞ¼JsinðθeÞfcosðgo½t�Þ½sinðge½t�ÞcosðϕeÞðcos2ðθoÞsin2ðϕoÞþcos2ðϕoÞÞ−ðcosðge½t�Þ−1ÞcosðθeÞ½cos2ðθoÞsinðϕoÞ
×cosðϕe−ϕoÞþcosðϕoÞsinðϕe−ϕoÞ�þsinðge½t�ÞsinðϕeÞsin2ðθoÞsinðϕoÞcosðϕoÞ�−sin2ðθoÞsinðϕoÞ
× ½ðcosðge½t�Þ−1ÞcosðθeÞcosðϕe−ϕoÞþsinðge½t�Þsinðϕe−ϕoÞ�−sinðgo½t�ÞcosðθoÞ½ðcosðge½t�Þ−1ÞcosðθeÞcosðϕeÞ
þsinðge½t�ÞsinðϕeÞ�g;

ξxzðtÞ¼JsinðθoÞ
n
cosðge½t�Þ

h
cosðϕe−ϕoÞ

	
2cos2ðθeÞcosðϕeÞsin2

	go½t�
2



cosðθoÞ−sinðϕeÞsinðgo½t�Þ




þsinðϕe−ϕoÞ×
	
2sinðϕeÞsin2

	go½t�
2



cosðθoÞþcos2ðθeÞcosðϕeÞsinðgo½t�Þ


i

þsin2ðθeÞcosðϕeÞ
	
2sin2

	go½t�
2



cosðθoÞcosðϕe−ϕoÞþsinðgo½t�Þsinðϕe−ϕoÞ




−sinðge½t�ÞcosðθeÞ
	
2sin2

	go½t�
2



cosðθoÞsinðϕoÞþsinðgo½t�ÞcosðϕoÞ


o
;

ξzxðtÞ¼JsinðθeÞ
�
sin2ðθoÞcosðϕoÞ

�
2sin2

�
ge½t�
2

�
cosðθeÞcosðϕe−ϕoÞ−sinðge½t�Þsinðϕe−ϕoÞ

�
−cosðgo½t�Þ½sinðge½t�Þ

×ðcos2ðθoÞcosðϕoÞsinðϕe−ϕoÞþsinðϕoÞcosðϕe−ϕoÞÞþðcosðge½t�Þ−1ÞcosðθeÞðcos2ðθoÞcosðϕoÞcosðϕe−ϕoÞ

−sinðϕoÞsinðϕe−ϕoÞÞ�−sinðgo½t�ÞcosðθoÞ½sinðge½t�ÞcosðϕeÞ−ðcosðge½t�Þ−1ÞcosðθeÞsinðϕeÞ�
�
;
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where we state explicitly the time dependence of even and
odd integral terms ge½t� and go½t�, respectively.
Once we have rotated the Hamiltonian into a suitable

frame, the corresponding unitary operator for the evolution
during a period T can be rewritten using the Magnus
expansion [41]:

Û 0ðTÞ¼ T̂ exp

�
−i

Z
T

0

dt0Ĥ0ðt0Þ
�
≈expð−iĤFTÞ; ðA9Þ

with the Floquet Hamiltonian ĤF ¼ Ĥð0Þ
F þ Ĥð1Þ

F þ
Ĥð2Þ

F þ � � �, which consists of corrections in O½1=ω�.
They can be written as

Ĥð0Þ
F ¼ 1

T

Z
T

0

dt0Ĥ0ðt0Þ; ðA10Þ

Ĥð1Þ
F ¼ −i

2!T

Z
T

0

dt0
Z

t0

0

dt00½Ĥ0ðt0Þ; Ĥ0ðt00Þ�; ðA11Þ

Ĥð2Þ
F ¼ 1

3!T

Z
T

0

dt0
Z

t0

0

dt00
Z

t00

0

dt000f½½Ĥ0ðt0Þ;Ĥ0ðt00Þ�;Ĥ0ðt000Þ�

þ½½Ĥ0ðt000Þ;Ĥ0ðt00Þ�;Ĥ0ðt0Þ�g; ðA12Þ

and higher-order terms can be written in a similar way

using nested commutators. We notice that jjĤðkÞ
F jj∼

ð1=ωÞk, and thus for very small time intervals, given by
the period of the oscillating term T ¼ 2π=ω → 0 (infinite-
frequency limit), the effective Floquet Hamiltonian is
represented by the period average of the time-dependent

Hamiltonian written in Eq. (A10). In this work, we consider
the Floquet Hamiltonian only to the lowest order,

ĤF ¼ Ĥð0Þ
F , while higher-order corrections ∼ð1=ωÞk

(k > 0) are accounted for in the numerical integration of
the full time-dependent Hamiltonian.
Finally, let us choose the form of the oscillatoric

magnetic field and find the period-averaged Floquet
Hamiltonian for the transmon chain. This can be chosen
in the form

fe=oðtÞ ¼
λe=oω

2he=o
cosðωtþ φe=oÞ; ðA13Þ

where λe=o are constants of order unity and φe=o are initial
phases for the modulation. The latter is of high importance
in the Floquet formalism, as it leads to kick-operator terms
which change the basis of the system but do not enter the
effective time-independent Hamiltonian [43]. However, in
the current study we are interested in actual protocols with
Floquet simulation, where the drive term is abruptly turned
on at time point t0 ¼ 0, and the initial phase of the drive
may be important. Here we consider zero initial phases
φe=o ¼ 0, such that the kick operator is unity.
The integral functions ge=o½t� are given by

ge=o½t� ¼ λe=o sinðωtÞ: ðA14Þ

Then, the period-averaged coefficients ξαα0 ¼
ð1=2πÞ R 2π

0 dτξαα0 ðτÞ can be written in the form

ξxx ¼ J½sin2ðθeÞ cosðϕeÞJ 0ðλoÞðcos2ðθoÞcosðϕoÞcosðϕe −ϕoÞ− sinðϕoÞ sinðϕe −ϕoÞÞ
þ sin2ðθoÞ cosðϕoÞ½J 0ðλeÞðcos2ðθeÞ cosðϕeÞ cosðϕe −ϕoÞ þ sinðϕeÞ sinðϕe −ϕoÞÞ þ sin2ðθeÞ cosðϕeÞ cosðϕe −ϕoÞ��

þJ 0ðλe þ λoÞ
2

½cos2ðθeÞ cosðϕeÞðcos2ðθoÞ cosðϕoÞ cosðϕe −ϕoÞ− sinðϕoÞ sinðϕe −ϕoÞÞ
þ sinðϕeÞðcos2ðθoÞ cosðϕoÞ sinðϕe −ϕoÞ þ sinðϕoÞ cosðϕe −ϕoÞÞ− cosðθeÞ cosðθoÞ�

þJ 0ðλe − λoÞ
2

½cos2ðθeÞ cosðϕeÞðcos2ðθoÞ cosðϕoÞ cosðϕe −ϕoÞ− sinðϕoÞ sinðϕe −ϕoÞÞ
þ sinðϕeÞðcos2ðθoÞ cosðϕoÞ sinðϕe −ϕoÞ þ sinðϕoÞ cosðϕe −ϕoÞÞ þ cosðθeÞ cosðθoÞ�;

ξyy ¼ Jfsin2ðθeÞ sinðϕeÞJ 0ðλoÞðcos2ðθoÞ sinðϕoÞ cosðϕe − ϕoÞ þ cosðϕoÞ sinðϕe − ϕoÞÞ
þ sin2ðθoÞ sinðϕoÞ½sinðϕeÞ cosðϕe − ϕoÞðcos2ðθeÞJ 0ðλeÞ þ sin2ðθeÞÞ − J 0ðλeÞ cosðϕeÞ sinðϕe − ϕoÞ�g

þ J 0ðλe þ λoÞ
2

fcosðϕeÞ½cosðϕeÞðcos2ðθoÞsin2ðϕoÞ þ cos2ðϕoÞÞ þ sinðϕeÞsin2ðθoÞ sinðϕoÞ cosðϕoÞ�
þ cos2ðθeÞ sinðϕeÞðcos2ðθoÞ sinðϕoÞ cosðϕe − ϕoÞ þ cosðϕoÞ sinðϕe − ϕoÞÞ − cosðθeÞ cosðθoÞg

þ J 0ðλe − λoÞ
2

fcosðϕeÞ½cosðϕeÞðcos2ðθoÞsin2ðϕoÞ þ cos2ðϕoÞÞ þ sinðϕeÞsin2ðθoÞ sinðϕoÞ cosðϕoÞ�
þ cos2ðθeÞ sinðϕeÞðcos2ðθoÞ sinðϕoÞ cosðϕe − ϕoÞ þ cosðϕoÞ sinðϕe − ϕoÞÞ þ cosðθeÞ cosðθoÞg;
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ξzz ¼ J
1

2
sinðθeÞ sinðθoÞcosðϕe−ϕoÞf2cosðθeÞcosðθoÞð1−J 0ðλeÞ−J 0ðλoÞÞþ ðcosðθeÞcosðθoÞ− 1ÞJ 0ðλeþ λoÞ

þ ðcosðθeÞcosðθoÞþ 1ÞJ 0ðλe− λoÞg;

ξxy ¼ J
1

16
fsin2ðθoÞ sinð2ϕoÞ½2sin2ðθeÞ½2− 4cos2ðϕeÞJ 0ðλoÞþ cosð2ϕeÞðJ 0ðλe− λoÞþJ 0ðλeþ λoÞ− 2J 0ðλeÞþ 2Þ�

þ ðcosð2θeÞþ 3Þð2J 0ðλeÞ−J 0ðλe− λoÞ−J 0ðλeþ λoÞÞ�þ sin2ðθeÞ sinð2ϕeÞ½ð2J 0ðλoÞ−J 0ðλe− λoÞ
−J 0ðλeþ λoÞÞð2sin2ðθoÞcosð2ϕoÞþ cosð2θoÞþ 3Þ− 8ðJ 0ðλeÞ− 1Þsin2ðθoÞsin2ðϕoÞ�g;

ξyx ¼ J
1

2
fsin2ðθeÞ½ð1−J 0ðλeÞÞsinð2ϕeÞsin2ðθoÞcos2ðϕoÞþ 2sinðϕeÞJ 0ðλoÞðcos2ðθoÞcosðϕoÞcosðϕe−ϕoÞ

− sinðϕoÞ sinðϕe−ϕoÞÞ�þ sin2ðθoÞ sinð2ϕoÞ½sin2ðϕeÞðcos2ðθeÞJ 0ðλeÞþ sin2ðθeÞÞþJ 0ðλeÞcos2ðϕeÞ�
þJ 0ðλe− λoÞ½cos2ðθeÞ sinðϕeÞðcos2ðθoÞcosðϕoÞcosðϕe−ϕoÞ− sinðϕoÞ sinðϕe−ϕoÞÞ
− cosðϕeÞðcos2ðθoÞcosðϕoÞsinðϕe−ϕoÞþ sinðϕoÞcosðϕe−ϕoÞÞ�
þJ 0ðλeþ λoÞ½cos2ðθeÞ sinðϕeÞðcos2ðθoÞcosðϕoÞcosðϕe−ϕoÞ− sinðϕoÞsinðϕe−ϕoÞÞ
− cosðϕeÞðcos2ðθoÞcosðϕoÞsinðϕe−ϕoÞþ sinðϕoÞcosðϕe−ϕoÞÞ�g;

ξyz ¼ J
1

2
fsinð2θoÞ½sinðϕeÞcosðϕe−ϕoÞ½cos2ðθeÞJ 0ðλeÞ− sin2ðθeÞðJ 0ðλoÞ− 1Þ�−J 0ðλeÞcosðϕeÞ sinðϕe−ϕoÞ�

− sinðθoÞJ 0ðλe− λoÞðcos2ðθeÞ sinðϕeÞcosðθoÞcosðϕe−ϕoÞþ cosðθeÞ sinðϕoÞ− cosðϕeÞcosðθoÞ sinðϕe−ϕoÞÞ
þ sinðθoÞJ 0ðλeþ λoÞ½cosðθeÞ sinðϕoÞþ cosðϕeÞcosðθoÞ sinðϕe−ϕoÞ− cos2ðθeÞsinðϕeÞcosðθoÞcosðϕe−ϕoÞ�g;

ξzy ¼ J
1

2
sinðθeÞf−cosðθeÞðJ 0ðλe− λoÞþJ 0ðλeþ λoÞ− 2J 0ðλoÞÞðcos2ðθoÞ sinðϕoÞcosðϕe−ϕoÞþ cosðϕoÞ sinðϕe−ϕoÞÞ

− 2cosðθeÞðJ 0ðλeÞ− 1Þsin2ðθoÞ sinðϕoÞcosðϕe−ϕoÞþ sinðϕeÞcosðθoÞðJ 0ðλeþ λoÞ−J 0ðλe− λoÞÞg;

ξxz ¼ J
1

2
fsinð2θoÞ½cosðϕeÞcosðϕe−ϕoÞ½cos2ðθeÞJ 0ðλeÞ− sin2ðθeÞðJ 0ðλoÞ− 1Þ�þJ 0ðλeÞ sinðϕeÞ sinðϕe−ϕoÞ�

− sinðθoÞJ 0ðλeþ λoÞðcos2ðθeÞcosðϕeÞcosðθoÞcosðϕe−ϕoÞ− cosðθeÞcosðϕoÞþ sinðϕeÞcosðθoÞ sinðϕe−ϕoÞÞ
− sinðθoÞJ 0ðλe− λoÞ½cosðθeÞðcosðθeÞcosðϕeÞcosðθoÞcosðϕe−ϕoÞþ cosðϕoÞÞþ sinðϕeÞcosðθoÞ sinðϕe−ϕoÞ�g;

ξzx ¼ J
1

2
fsinð2θeÞ½cosðϕoÞcosðϕe−ϕoÞ½cos2ðθoÞJ 0ðλoÞ− ðJ 0ðλeÞ− 1Þsin2ðθoÞ�−J 0ðλoÞsinðϕoÞ sinðϕe−ϕoÞ�

þ sinðθeÞJ 0ðλeþ λoÞðcosðϕeÞcosðθoÞþ cosðθeÞ sinðϕoÞ sinðϕe−ϕoÞ− cosðθeÞcos2ðθoÞcosðϕoÞcosðϕe−ϕoÞÞ
− sinðθeÞJ 0ðλe− λoÞ½cosðθoÞðcosðθeÞcosðθoÞcosðϕoÞcosðϕe−ϕoÞþ cosðϕeÞÞ− cosðθeÞ sinðϕoÞ sinðϕe−ϕoÞ�g:

The above equations define the exact form of the generic
Hamiltonian (4) from the main text and, thus, describe the
possible Hamiltonians accessible for the Floquet quantum
simulation with this method, assuming different even or
odd periodic cosine modulation.

APPENDIX B: TRANSVERSE ISING
MODEL DERIVATION

In this Appendix, we provide a procedure to engineer the
transverse Ising Hamiltonian as an effective Floquet
Hamiltonian of the isotropic XY model with transverse
and longitudinal fields. For this, we consider a system with
two (odd and even) sublattices, where only one of the

sublattices experiences fast oscillations of the magnetic
field (see the sketch in Fig. 9).
Taking the full solution from Appendix A, the starting

Hamiltonian for the simulation of the Ising model in the
transmon chain reads

Q1

JJJ

hodd
z

Q2 Q5 Q6

h      (t )even

J J

Q3 Q4

hodd
z hodd

zh      (t )even h      (t )even

FIG. 9. Superconducting qubit chain with isotropic XY inter-
action J, a static effective magnetic field in the z direction on the
odd sublattice, hzodd, and a fast time-dependent magnetic field
acting on even sublattice sites, hevenðtÞ.
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ĤðtÞ ¼ J
XN−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ

þ
XbN=2c

j¼1

λ

2
ω cosðωtÞσx2j þ ĤmagnðtÞ; ðB1Þ

where λð≡λevenÞ is a drive parameter and J 0½x� denotes the
zeroth-order Bessel function of the first kind. In the infinite-
frequency limit jJj=ω → 0 and for λ ¼ 2.40483 (such that
J 0½λ� ¼ 0), the interaction term can be reduced to the Ising
type. Additionally, the last term in Eq. (B1) is designed to
introduce a transverse effective magnetic field and can be
written as

ĤmagnðtÞ ¼
X⌈N=2⌉

j¼1

hzσz2j−1

þ 2hz

1þ J 0½2λ�
XbN=2c

j¼1

cosðλ sin½ωt�Þσz2j: ðB2Þ

The first term in Eq. (B2) is a static magnetic field on the
odd sublattice and commutes trivially with the fast oscil-
lation part. However, the magnetic field on the even
sublattice can be modified by the drive. The second term
representing the magnetic field deviates from the general
form considered in Appendix A, since it does not have the
same time dependence. As opposed to the other field,
however, the magnitude of this field does not increase with
increasing ω and can thus be treated as a perturbation in the
limit of large ω. Since it does not commute with the main
driving field, it will be strongly modified by the drive.
Going to the rotating frame with the unitary operator
ÛRðtÞ ¼ exp fiλ sinðωtÞg, the magnetic term becomes

Ĥ0
magnðtÞ ¼ hz

X⌈N=2⌉

j¼1

σz2j−1 þ
2hz

1þ J 0½2λ�
cosðλ sin½ωt�Þ

×
XbN=2c

j¼1

fcos½λ sinðωtÞ�σz2j þ sin½λ sinðωtÞ�σy2jg:

ðB3Þ

Finally, performing the period averaging, the σy2j term
vanishes, since the sine function oscillates between
positive and negative values. At the same time, given that
λ is fixed by the condition J 0½λ� ¼ 0, the integralR
2π
0 dx cos2ðλ sin½x�Þ ¼ πð1þ J 0½2λ�Þ gives a finite result:

Ĥmagn
F ¼ hz

XN
j¼1

σzj; ðB4Þ

thus allowing us to introduce an effective transverse
field hz.

APPENDIX C: DIGITAL SIMULATION
OF TRANSVERSE ISING MODEL

In this Appendix, we describe the digital simulation
protocol, which we use to benchmark the performance of
the Floquet quantum simulator. The transverse Ising model
simulation, which we consider, is theoretically described in
Ref. [17] and experimentally realized in Ref. [18]. The
circuit scheme is shown in Fig. 10.
The algorithm relies on the realization of a unitary

transformation with the effective Hamiltonian of interest
using repetitions of a small step, corresponding to the
Trotterization procedure. The protocol for the simulation of
an arbitrarym-local Hamiltonian Ĥ (generally not available
in the physical setup) relies on the sequential implementa-
tion of the available parts of a Hamiltonian Ĥk (constructed
from gates acting on m qubits) such that

P
kĤk ¼ Ĥ. The

corresponding unitary of a single digital step j of duration
δt reads

ÛjðδtÞ ¼ e−iĤ1δte−iĤ2δt…e−iĤkδt; ðC1Þ

and the implementation of NTr → ∞ Trotter steps com-
bines into the unitary ÛðtÞ ¼ limNTr→∞ÛjðδtÞNTr ≈ e−iĤt.
In this spirit, the implementation of the transverse Ising

model model is proposed to rely on multiple applications of
the Trotter step graphically shown in Fig. 10. It starts with

the implementation of UXY ¼ expf−iδtPN=2
j¼1 Ĥ

ðþÞ
2j−1;2jg,

Q 1

J

Q 2

J

Q 3

UXY UXY

Rx
† Rx

UXY UXY

Rx
† Rx

UZ

UZ

UZ

Trotter step 1

UXY U XY

Rx
† Rx

Trotter step 2

FIG. 10. Digital simulation scheme from Ref. [17]. It relies on Trotterization of the isotropic XY model dynamics, where additional
single-qubit rotations at every second site effectively eliminate the YY coupling.
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where by ĤðþÞ
j;j0 ¼ ðJ=2Þðσxjσxj0 þ σyjσ

y
j0 Þ we define the

simple application of XY interaction for each pair of
qubits. Next, this unitary can be rotated by applying π
rotations around x axis for every second qubit,
R̂x ¼ expf−iðπ=2ÞPN=2

j¼1 σ
x
2jg, which leads to

R̂†
xUXYR̂x ¼ expf−iδtPN=2

j¼1 Ĥ
ð−Þ
2j−1;2jg, where we define

Ĥð−Þ
j;j0 ¼ ðJ=2Þðσxjσxj0 − σyjσ

y
j0 Þ as the XY Hamiltonian with

the YY term flipped by rotation. Finally, the last
layer in the Trotter step implements the transverse fields
with UZ ¼ expf−iδthz PN

j¼1 σ
z
jg. Once the Trotter step is

repeated many times, the noncommuting Hamiltonian parts
can be added, thus implementing the transverse Ising model
digitally.
The same considerations can be repeated for the digitized

annealing procedure [19]. Here the important part is to keep
the phase applied by the UZ gates consistent with the
adiabatic evolution.

APPENDIX D: DIGITAL SIMULATION
OF XYZ MODEL

The considered digital simulation protocol for the XYZ
model, originally described in Ref. [17], is sketched in
Fig. 11. It relies on the sequential rotation of the basis for
nearest-neighbor interaction, such that in the limit of a large
number of Trotter steps it sums up to

P
N−1
j¼1 ðJxσxjσxjþ1þ

Jyσyjσ
y
jþ1 þ Jzσzjσ

z
jþ1Þ. First, the XY unitary is performed,

implementing UXY ¼ expf−iδtPN−1
j¼1 αxyJðσxjσxjþ1 þ

σyjσ
y
jþ1Þg, where αxy is some constant. Next, applying

π=2 rotation around the x axis for each qubit, R̂x ¼
expf−iðπ=4ÞPN

j¼1 σ
x
jg, the two-qubit unitary can be

transformed to UXZ ¼ expf−iδtPN−1
j¼1 αxzJðσxjσxjþ1þ

σzjσ
z
jþ1Þg. Subsequent π=2 rotation around the y axis

implements the UYZ ¼ expf−iδtPN=2
j¼1 αyzJðσyjσyjþ1 þ

σzjσ
z
jþ1Þg interaction. For instance, the final chosen

configuration of Jy ¼ 2Jx=3, Jz ¼ Jx=3 can be achieved
by choosing Jx ¼ J (can be different from Jsim), αxy ¼ 2=3,
αxz ¼ 1=3, and αyz ¼ 0, simplifying the gate sequence.
Finally, the UZ operation introduces an effective magnetic
field in the z direction which allows for annealing to the
ground state of the XYZ model. The linear schedule can
then be designed similarly to the nonstoquastic case
considered in Ref. [19]. While the sequence represented
in Fig. 11 works perfectly in the NTr → ∞ limit, we note
that the order of the unitaries fSg ¼ fUXY;UXZ;
UYZ; UZg, which form a Trotter step, alter the final
infidelity for the annealed state. Thus, for the digital
simulation procedure, we consider 24 permutations of
unitaries for the set S and choose the sequence of the step
which yields minimal infidelity.
We note that alternatively the XYZ model can be

simulated with controlled-phase (ZZ) gates as described
by Barends et al. [19].
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lations with ultracold quantum gases, Nat. Phys. 8, 267
(2012).

[28] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.
Greiner, Quantum simulation of antiferromagnetic spin
chains in an optical lattice, Nature (London) 472, 307 (2011).

[29] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards,
J. K. Freericks, G.-D. Lin, L.-M. Duan, and C. Monroe,
Quantum simulation of frustrated Ising spins with trapped
ions, Nature (London) 465, 590 (2010).

[30] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A.
Retzker, and C. Monroe, Realization of a Quantum Integer-
Spin Chain with Controllable Interactions, Phys. Rev. X 5,
021026 (2015).

[31] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe,
Observation of a many-body dynamical phase transition
with a 53-qubit quantum simulator, Nature (London) 551,
601 (2017).

OLEKSANDR KYRIIENKO and ANDERS S. SØRENSEN PHYS. REV. APPLIED 9, 064029 (2018)

064029-16

https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature10786
https://doi.org/10.1103/PhysRevApplied.6.044010
https://doi.org/10.1103/PhysRevApplied.6.044010
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1103/PhysRevLett.112.200501
https://doi.org/10.1103/PhysRevLett.112.200501
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.1038/nature17658
https://doi.org/10.1038/nature17658
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3930
https://doi.org/10.1103/PhysRevX.2.021007
https://doi.org/10.1103/PhysRevX.2.021007
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1103/PhysRevLett.115.240502
https://doi.org/10.1103/PhysRevLett.115.240502
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature09071
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654


[32] G. Wendin, Quantum information processing with super-
conducting circuits: A review, Rep. Prog. Phys. 80, 106001
(2017).

[33] L. Neumeier, M. Leib, and M. J. Hartmann, Single-Photon
Transistor in Circuit Quantum Electrodynamics, Phys. Rev.
Lett. 111, 063601 (2013).

[34] É. Dumur, B. Küng, A. K. Feofanov, T. Weissl, N. Roch, C.
Naud, W. Guichard, and O. Buisson, V-shaped supercon-
ducting artificial atom based on two inductively coupled
transmons, Phys. Rev. B 92, 020515(R) (2015).

[35] M. Sameti, A. Potocnik, D. E. Browne, A. Wallraff, and
M. J. Hartmann, Superconducting quantum simulator for
topological order and the toric code, Phys. Rev. A 95,
042330 (2017).

[36] Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu,
K. Xu, B. X. Xia, C.-Y. Lu, Siyuan Han, Jian-Wei Pan,
and H. Wang, Emulating Anyonic Fractional Statistical
Behavior in a Superconducting Quantum Circuit, Phys.
Rev. Lett. 117, 110501 (2016).

[37] Chao Song, Kai Xu, Wuxin Liu, Chuiping Yang, Shi-Biao
Zheng, Hui Deng, Qiwei Xie, Keqiang Huang, Qiujiang
Guo, Libo Zhang, Pengfei Zhang, Da Xu, Dongning Zheng,
Xiaobo Zhu, H. Wang, Y.-A. Chen, C.-Y. Lu, Siyuan Han,
and J.-W. Pan, 10-Qubit Entanglement and Parallel Logic
Operations with a Superconducting Circuit, Phys. Rev. Lett.
119, 180511 (2017).

[38] P. Bertet, C. J. P. M. Harmans, and J. E. Mooij, Parametric
coupling for superconducting qubits, Phys. Rev. B 73,
064512 (2006).

[39] A. Mezzacapo, L. Lamata, S. Filipp, and E. Solano,
Many-Body Interactions with Tunable-Coupling Transmon
Qubits, Phys. Rev. Lett. 113, 050501 (2014).

[40] E. Kapit, Universal two-qubit interactions, measurement,
and cooling for quantum simulation and computing, Phys.
Rev. A 92, 012302 (2015).

[41] M. Bukov, L. D’Alessio, and A. Polkovnikov, Universal
high-frequency behavior of periodically driven systems:
From dynamical stabilization to Floquet engineering, Adv.
Phys. 64, 139 (2015).

[42] T. Iadecola, L. H. Santos, and C. Chamon, Stroboscopic
symmetry-protected topological phases, Phys. Rev. B 92,
125107 (2015).

[43] N. Goldman and J. Dalibard, Periodically Driven Quantum
Systems: Effective Hamiltonians and Engineered Gauge
Fields, Phys. Rev. X 4, 031027 (2014).

[44] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin,
Anomalous Edge States and the Bulk-Edge Correspondence
for Periodically Driven Two-Dimensional Systems, Phys.
Rev. X 3, 031005 (2013).

[45] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D.
Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin,
and P. Zoller, Majorana Fermions in Equilibrium and in
Driven Cold-Atom Quantum Wires, Phys. Rev. Lett. 106,
220402 (2011).

[46] C. Deng, J.-L. Orgiazzi, F. Shen, S. Ashhab, and A.
Lupascu, Observation of Floquet States in a Strongly Driven
Artificial Atom, Phys. Rev. Lett. 115, 133601 (2015).

[47] Yu Chen, C. Neill, P. Roushan, N. Leung, M. Fang,
R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro,

A. Dunsworth, E. Jeffrey, A. Megrant, J. Y. Mutus,
P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, Michael R. Geller, A. N. Cleland,
and J. M. Martinis, Qubit Architecture with High Coherence
and Fast Tunable Coupling, Phys. Rev. Lett. 113, 220502
(2014).

[48] L. Casparis, T. W. Larsen, M. S. Olsen, F. Kuemmeth, P.
Krogstrup, J. Nygård, K. D. Petersson, and C. M. Marcus,
Gatemon Benchmarking and Two-Qubit Operations, Phys.
Rev. Lett. 116, 150505 (2016).

[49] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y.
Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P.
Roushan, J. Wenner, T. C. White, A. N. Cleland, and John
M. Martinis, Coherent Josephson Qubit Suitable for Scal-
able Quantum Integrated Circuits, Phys. Rev. Lett. 111,
080502 (2013).

[50] T. Kadowaki and H. Nishimori, Quantum annealing in the
transverse Ising model, Phys. Rev. E 58, 5355 (1998).

[51] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,
Quantum computation by adiabatic evolution, arXiv:
quant-ph/0001106.

[52] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren,
and D. Preda, A quantum adiabatic evolution algorithm
applied to random instances of an NP-complete problem,
Science 292, 472 (2001).

[53] M. A. Rol, C. C. Bultink, T. E. O’Brien, S. R. de Jong, L. S.
Theis, X. Fu, F. Luthi, R. F. L. Vermeulen, J. C. de Sterke,
A. Bruno, D. Deurloo, R. N. Schouten, F. K. Wilhelm, and
L. DiCarlo, Restless Tuneup of High-Fidelity Qubit Gates,
Phys. Rev. Applied 7, 041001 (2017).

[54] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K.
Wilhelm, Simple Pulses for Elimination of Leakage in
Weakly Nonlinear Qubits, Phys. Rev. Lett. 103, 110501
(2009).

[55] J. M. Martinis and M. R. Geller, Fast adiabatic qubit gates
using only σz control, Phys. Rev. A 90, 022307 (2014).
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