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A rigorous analytical approach is proposed based on the Bergman spectral representation and the Milton
spectral representation of the effective permittivity for a composite system in order to design the anisotropic
broadband ε-near-zero metamaterials. According to the Bergman and Milton spectral representations, the
inverse problem for the anisotropic broadband ε-near-zero metamaterials is analytically established and
solved by introducing the exactly proved identities. Meanwhile, the introduced identities theoretically
reveal the identity of the Bergman andMilton spectral representations in mathematics and physics. With the
precise solutions to the inverse problem, the conditions for designing the anisotropic broadband ε-near-zero
metamaterials are clarified and demonstrated by the specific anisotropic broadband ε-near-zero meta-atoms
of the lamination and the Hashin-Shtrikman coated-sphere microstructures through a theoretical analysis
and a computational full-wave simulation.
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I. INTRODUCTION

Metamaterials, artificially structured materials with sub-
wavelength components, have come into focus during
explorations in both fundamental scientific research and
engineering applications in recent decades because of their
extraordinary macroscopic electromagnetic properties,
which do not exist in nature [1–13]. Among all kinds of
metamaterials, the ones with near-zero permittivity [ε near
zero (ENZ)], coming into view due to their unique
electromagnetic features, are of great importance in many
applications at microwave and optical frequencies [14–29].
In fact, it is possible to obtain ENZ metamaterials at a
single operating frequency. However, regarding the prac-
tical implementations, ENZ metamaterials over a broad-
band operating frequency range are required, which is a
challenge in both science and technology. Concerning this
problem, a straightforward solution is similar to a brute-
force attack made by optimizing an objective function
mapping the effective permittivity onto the component
properties of the ENZ metamaterials [30–34]. In principle,
the objective-function-optimization approach is straightfor-
ward, but it is cumbersome for practical applications.
Theoretically, the broadband ENZ metamaterials design
is just an inverse problem of effective-medium theory
(EMT) [35]. On these grounds, the authors suggest an
efficient approach [36–40] by numerically solving the EMT

inverse problem based on the spectral representations
that were established by Bergman [41,42] and Milton
[43–46] and mathematically elaborated on by Golden and
Papanicolaou [47] for the effective permittivity. Although it
reveals the tip of the iceberg, the approach is still very
insufficient because it only numerically solves the problem
without analytically clarifying thephysical andmathematical
fundamentals.
In regard to the insufficiency, a type of anisotropic

broadband metal-dielectric ENZ metamaterials of the
lamination and the Hashin-Shtrikman coated-sphere micro-
structures [48] is designed according to the Bergman and
Milton spectral representations by rigorously solving the
EMT inverse problem analytically. During the design
progress, the existence and the stability of the EMT inverse
problem are fully discussed based on the exactly proved
identities, while the identities of the Bergman and Milton
spectral representation are also revealed. Furthermore, the
full-wave simulation based on the finite-element method
(FEM) numerically confirms the correctness of the theo-
retical design. For convenience, this work is organized as
follows. Section II provides analytical studies about the
EMT inverse problem for the broadband ENZ metamate-
rials, and the general solutions to the inverse problem are
obtained. Section III provides a specific solution to the
inverse problem which indicates a practicable method to
design broadband ENZ metamaterials, and it demonstrates
an exact example with respect to the specific solution of the
inverse problem. Finally, Sec. IV provides a full-wave
simulation about the theoretically designed anisotropic

*Corresponding author.
gpwang@szu.edu.cn

PHYSICAL REVIEW APPLIED 9, 064020 (2018)

2331-7019=18=9(6)=064020(8) 064020-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.9.064020&domain=pdf&date_stamp=2018-06-14
https://doi.org/10.1103/PhysRevApplied.9.064020
https://doi.org/10.1103/PhysRevApplied.9.064020
https://doi.org/10.1103/PhysRevApplied.9.064020
https://doi.org/10.1103/PhysRevApplied.9.064020


broadband ENZ metamaterials, which verifies the correct-
ness of the design. It is worth mentioning that all important
derivations in this work are thoroughly discussed in the
Supplemental Material [49].

II. THE INVERSE PROBLEM FOR THE
BROADBAND ENZ METAMATERIALS

Anisotropic broadband ENZ metamaterials are periodi-
cally constructed with identical broadband ENZ meta-
atoms (unit cells) schematically displayed in Fig. 1 as an
N-layer stack. In general, the meta-atom is a two-phase (of
permittivities ε1 and ε2, respectively) composite system
with scales less than the wavelength of the electromagnetic
wave in the operating frequency range. The two compo-
nents in each layer take the Hashin-Shtrikman coated-
sphere microstructure. The thickness of each layer di is
normalized by the thickness of the meta-atom, which
implies that 0 < di < 1 and

P
N
i¼1 di ≡ 1 (the thickness

summation rule). The volume fractions of the two compo-

nents in each layer are denoted as fðiÞ1 and fðiÞ2 , with the

conditions 0 < fðiÞ1 , fðiÞ2 < 1, and fðiÞ1 þ fðiÞ2 ≡ 1. The
structures of the meta-atom are chosen based on the fact
that the effective permittivities for the Hashin-Shtrikman
coated-sphere microstructure and the N-layer stack can be
exactly obtained. According to the Maxwell-Garnett
approximation [50,51], the effective permittivity of each
layer reads

εðiÞe − ε1

εðiÞe þ 2ε1
¼ ð1 − fðiÞ1 Þ ε2 − ε1

ε2 þ 2ε1
: ð1Þ

By introducing the s parameter s ¼ ε2=ðε2 − ε1Þ, Eq. (1)
can be rewritten as

εðiÞe ¼ ε2
s − 1

s
s − 2fðiÞ1 =3

s − ð3 − fðiÞ1 Þ=3
ð2Þ

in terms of the Milton spectral representation format [49].
In addition, the effective permittivity of the meta-atom can
be determined as

εe ¼
�XN
i¼1

di

εðiÞe

�−1
; ð3Þ

which can be expressed as

ε2
εe

¼ s
s − 1

�
1 −

XN
i¼1

ð1 − fðiÞ1 Þdi
s − 2fðiÞ1 =3

�
; ð4Þ

according to Eq. (2) and the thickness summation rule.
Alternatively, the effective permittivity of the meta-atom
can be directly obtain based on the Milton spectral
representation as

ε2
εe
¼ s
s−1

YN
i¼1

s− s0i
s− z0i

¼ s
s−1

�
1−

XN
i¼1

Q
N
j¼1 ðs0j− z0iÞ

ðs− z0iÞ
Q

N
j≠i ðz0j−z0iÞ

�
;

ð5Þ

which implies the identity between the Milton spectral
representation and the Bergman spectral representation
[49]. Note that, because of the constant pole s� ≡ 0 and
the constant zero z� ≡ 1 in Eq. (2), the pole-zero series rule
for Eq. (5) should be modified as

s�≡0<z01<s01< ���<z0i <s0i < ���<z0N <s0N <z�≡1; ð6Þ

in accordance with the request of the Milton spectral
representation.
For the same meta-atom, Eqs. (4) and (5) must provide

the same results; thus, the inverse problem is set up as

XN
i¼1

ð1 − fðiÞ1 Þdi
s − 2fðiÞ1 =3

¼
XN
i¼1

Q
N
j¼1 ðs0j − z0iÞ

ðs − z0iÞ
Q

N
j≠i ðz0j − z0iÞ

; ð7Þ

and the corresponding solutions can be straightforwardly
obtained as

fðiÞ1 ¼ 3z0i=2; ð8Þ

di ¼
Q

N
j¼1 ðs0j − z0iÞ

ð1 − 3z0i=2Þ
Q

N
j≠i ðz0j − z0iÞ

; ð9Þ

with the confinement of

0 < z0i < 2=3; ð10Þ

ε2

ε1

εe
(N)

εe dN

d

d

2

d

E
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y z
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FIG. 1. Schematic of the meta-atom of the broadband ENZ
metamaterials with the lamination and the Hashin-Shtrikman
coated-sphere microstructures.
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YN
i¼1

1 − 3s0i=2
1 − 3z0i=2

≡ −
1

2
; ð11Þ

according to the physical restrictions of the thicknesses and
the volume fractions [49].

III. THE SPECIFIC ANISOTROPIC METAL-
DIELECTRIC BROADBAND ENZ META-ATOMS

According to the solution, the design of the meta-atoms
of the anisotropic broadband ENZmetamaterials is flexible.
For instance, an N-layered broadband ENZ meta-atom can
be constructed, based on the following pole-zero series, as

z0i ¼ z01 þ ði− 1ÞΔ ð0 < z0i < 2=3 and i ¼ 1; 2; 3;…; NÞ;
ð12Þ

s0i¼
�
z0iþðϱ−1Þð2−3z0iÞ=ð3ϱÞ ði¼ 1;2;3;…;N−1Þ
2=3þρð2−3z0NÞ=3 ði¼NÞ ;

ð13Þ

with the parameter Δ ¼ ðz0N − z01Þ=ðN − 1Þ and the param-
eter ϱ ¼ ffiffiffiffiffi

2ρN−1
p

, under the confinement of

1

2
¼ ρmin < ρ< ρmax ¼

1

2

�
1þ 3Δ

ð2− 3z01Þ−3Δ

�
N−1

: ð14Þ

A detailed analysis of the specific design above is shown in
the Supplemental Material [49].
As an exact example, consider the broadband ENZ meta-

atom composed of the noble metal Au (gold) as the host
component (ε1) and the dielectric material SiO2 (fused
silica) as the inclusion (ε2). For mathematical convenience,
the permittivity of Au is described by the Drude model as

ε1ðωÞ ¼ ε∞ −
ω2
p

ωðωþ iγÞ ; ð15Þ

with the offset constant ε∞ ¼ 9, the plasma frequency
ωp ¼ 13.8 × 1015 rad=s, and the damping constant γ ¼
0.11 × 1015 rad=s [52]. The Drude model in Eq. (15)
shows good agreement with the experimental result of
Ref. [53] in the frequency range from approximately
0.07ωp (154.772 THz) to 0.273ωp (600.0 THz).
Meanwhile, the permittivity of SiO2 is set at ε2 ¼ 1.452

according to the experimental results of Ref. [54].

For the sake of convenience, the lossless case (the
material loss of Au is ignored) is explored at first. In such
a case, according to the Milton spectral representation in
Eq. (5) and the pole-zero series rule in Eq. (6), it is clear that
the possible operating frequency range for the broadband
ENZ meta-atoms is confined in the frequency range, where
the s parameter is confined as 0 < s < 1. In other words,
the operating frequency range is determined by the per-
mittivities of the two individual components since the s
parameter is directly related to the components’ permittiv-
ities. With respect to the permittivity of Au and the
permittivity of SiO2, it is found that the possible operating
frequency range lies in the whole frequency range, where
the Drude model in Eq. (15) works properly. Without
loss of generality, the operating frequency range is set at
0.1ωp (219.634 THz) to 0.15ωp (329.451 THz), while the
number of layers in one meta-atom is set at N ¼ 4.
Correspondingly, the zero series can be determined by
Eq. (12), with z01 ¼ sð0.1ωpÞ and z0N¼4 ¼ sð0.15ωpÞ based
on the dimensional analysis about the Miltion spectral
representation, while the related poles series can be
determined via Eq. (13). Table I lists all values of the
pole-zero series. It is clear that the pole-zero series list in
Table I satisfies the pole-zero series rule in Eq. (6).
Associated with the above pole-zero series, the thicknesses
and the volume fractions read as Table II based on Eqs. (8)
and (9). Note that the thickness summation rule is satisfied.
Regarding the effective permittivity, Fig. 2(a) displays the
variation of the effective permittivity as a function of the s
parameter based on the Milton spectral representation. It is
obvious that, without material loss, the effective permittivity
reaches a zero value when the s parameter meets all zeros,
and it extends to infinity when the s parameter approaches all
poles, which coincides with the prediction of the Milton
spectral representation. Similar variations of the effective
permittivity can also be observed when the s parameter is
mapped onto frequency space, as depicted in Fig. 2(b).
Regarding the case in which the material loss is taken

into account, the s parameter is a complex function with
respect to the frequency. Therefore, the possible operating

TABLE I. Values of the pole-zero series in the lossless case.

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

s0i s� ≡ 0 0.028 248 8 0.039 288 8 0.050 327 8 0.980 204
z0i 0.022 582 6 0.033 720 6 0.044 858 6 0.055 996 6 z� ≡ 1

TABLE II. Values of thicknesses and volume fractions in the
lossless case.

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

di 0.314 017 0.182 546 0.183 647 0.319 790

fðiÞ1 0.033 874 0.050 580 9 0.067 287 9 0.083 994 9
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frequency range may lie in the confined frequency range,
where 0 < ReðsÞ < 1. Meanwhile, the boundaries of the
pole-zero series can be determined with z01 ¼ Re½sð0.1ωpÞ�
and z0N¼4 ¼ Re½sð0.15ωpÞ�, as listed in Table III with
respect to a meta-atom design similar to the one discussed
above. Repeating the same procedure, the microstructures
of the meta-atom can be obtained as in Table IV. Associated
with the thicknesses and the volume fractions in Table IV,
the corresponding effective permittivity is displayed in
Fig. 3(a). Clearly, the real part of the effective permittivity
oscillates around the value of zero with a small fluctuation
in the operating frequency range, and it leads to a vibration
of the imaginary part of the effective permittivity due to the
Kramers-Kronig relations [55–57]. Further calculations
indicate that the mean value of the real part of the effective
permittivity is about hReðεeÞi ¼

R
ReðεeÞωdω=Δω ¼

0.012 766 9 in the operating frequency range. It is worth
noting that, due to the material loss, the real part of the
effective permittivity will not be exactly zero at all zeros,

while the oscillation may not always be around the zero
value with respect to the increase of the frequency, as
marked by the arrow in Fig. 3(a). In previous studies, the
zero-variation method is numerically proposed to improve
the quality of the results [37]. However, unlike previous
studies, the pole-zero series are strongly tangled through
Eq. (11); thus, the zero-variation method cannot be applied
here. With respect to this problem, the iteration method is
proposed and performed as follows. First, according to the
obtained pole-zero series (e.g., the pole-zero series in
Table III), solve the equation Re½εeðs0i; z00i Þ� ¼ 0 with all
poles being fixed, which produces a new zero series
denoted as z00i . Second, according to the new zero series
z00i and Eq. (13), a new pole series denoted as s00i can be
obtained. Finally, the new pole-zero series can yield revised
thicknesses and revised volume fractions based on Eqs. (8)
and (9). Figure 3(b) shows the effective permittivity
obtained from the iterative method, which makes it clear
that the deviation in Fig. 3(a) is amended (marked by the
arrow). Correspondingly, the mean value of the real part of
the effective permittivity is about hReðεeÞi ¼ 0.007 184 1,
which is almost half of the previous result.
Besides the iteration method, there are also other

efficient approaches to reduce the fluctuation of the
effective permittivity. For example, a moderate increase
in the layer number of the meta-atom can efficiently reduce
the fluctuation. Figure 4(a) demonstrates the effective
permittivity of the broadband ENZ meta-atom with
N ¼ 6 layers in the same operating frequency range studied
previously. Obviously, the fluctuation in the effective
permittivity is notably reduced, and the mean value of
the real part of the effective permittivity decreases to about
hReðεeÞi ¼ −3.9 × 10−4. In addition, since the permittiv-
ities of the individual components in the broadband ENZ
meta-atom are the key points in the design of the broadband
ENZ meta-atom, a proper choice on the components can
also improve the quality of the broadband ENZ meta-atom.
As an example, Fig. 4(b) shows the effective permittivity of
the broadband ENZ meta-atom composed with Au and air
(permittivity ε2 ¼ 1), e.g., metal host with microscale air

(a) Spectral space

Frequency space

Δω

N = 4

N = 4

S* S1́

Z1́ Z2́ Z3́ Z4́

S2́ S3́

Au-SiO2
lossless

meta-atom

Au-SiO2
lossless

meta-atom

(b)

FIG. 2. The effective permittivity of the N ¼ 4 layer Au-SiO2

broadband ENZ meta-atom without material loss in (a) the
spectral space with the poles marked as crosses with circles
and the zeros marked as solid dots, and (b) the corresponding
frequency space with the operating frequency range Δω of 0.1ωp

to 0.15ωp.

TABLE III. Values of the pole-zero series in the lossy case.

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

s0i s� ≡ 0 0.028 233 4 0.039 265 9 0.050 298 3 0.980 216
z0i 0.022 571 2 0.033 701 5 0.044 831 9 0.055 962 2 z� ≡ 1

TABLE IV. Values of thicknesses and volume fractions in the
lossy case.

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

di 0.314 016 0.182 549 0.183 649 0.319 786

fðiÞ1 0.033 856 8 0.050 552 3 0.067 247 8 0.083 943 3
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bubbles as inclusions, with the number of layers N ¼ 6 and
the same operating frequency range as previously used. It is
clear that by reducing the permittivity of the dielectric
component in the meta-atom, the fluctuation in the effective
permittivity can be significantly reduced, and the calcu-
lation result indicates that the mean value of the real part of
the effective permittivity of the Au-air broadband ENZ
meta-atom is about hReðεeÞi ¼ −7.4 × 10−5, i.e., almost 1
order fewer than the Au-SiO2 broadband ENZ meta-atom.

IV. FULL-WAVE SIMULATION

The Bergman and Milton spectral representations of the
effective permittivity are under the quasistatic approxima-
tion, which implies that the theoretical design procedure
discussed above is also limited in the long-wavelength
condition. Regarding the practical applications, the full-
wave condition must be taken into account. Therefore, a
FEM computational full-wave simulation is performed with
respect to the specific broadband ENZ meta-atom, and the
results are displayed in Fig. 5.
As depicted in Fig. 5(a), the simulation model is carried

out in three-dimensional space with an N ¼ 4 layer broad-
band ENZ meta-atom sandwiched between two identical
layers of air. A plane electromagnetic wave of the electric
field Ex is stimulated at the bottom (port 1) of the model
and received at the top (port 2). Besides, all other outer
surfaces of the model are regarded as periodic boundaries.
The broadband ENZ meta-atom is of the fixed length
dz ¼ 50 nm, but it has a variable cross section dx × dy. For
comparison, two different cross sections are considered,
i.e., 20 × 10 nm (case I) and 40 × 20 nm (case II). As in
Fig. 1, the layers of the broadband ENZ meta-atom are
arranged along the x direction with the thickness and the
volume fraction given in Table IV. Furthermore, the outer
diameter of the Au-SiO2 Hashin-Shtrikman coated-sphere
particle is set at ð3=4Þdi for each layer. In general, the
simulation directly calculates the complex scattering
parameters S11 and S21, which are related to the reflection
coefficient and the transmission coefficient of the broad-
band ENZ meta-atom, respectively, including the distribu-
tion of the electric field and the electric displacement field
in the broadband ENZ meta-atom. Regarding the complex
scattering parameter, Figs. 5(b) and 5(c) individually
demonstrate the absolute values and the arguments (in
terms of the principal values) for the broadband ENZ meta-
atom with the two different cross sections. It is obvious that
both the absolute values and the arguments of the complex
scattering parameters possess a particular oscillation in the
designed operating frequency range of the broadband ENZ
meta-atom, which implies the broadband ENZ properties.
On the other hand, the effective permittivities of the

broadband ENZ meta-atom can be retrieved from the
simulated complex scattering parameters according to
the retrieved algorithm [58], as illustrated in Figs. 5(d)
and 5(e) by solid curves. It is clear that the retrieved

(a)

(b)

NoniterationAu-SiO2
lossy

meta-atom

Au-SiO2
lossy

meta-atom

Iteration

N = 4

N = 4

Im(ee)

Im(ee)

Δw

Δw

Re(ee)

Re(ee)

FIG. 3. The effective permittivity of the N ¼ 4 layer Au-SiO2

broadband ENZ meta-atom with material loss in the operating
frequency range Δω of 0.1ωp to 0.15ωp determined by the
inverse problem (a) without the iteration modification and (b) with
the iteration modification, respectively.

(a)

(b)

Au-SiO2
lossy

meta-atom

Au-Air
lossy

meta-atom

N = 6

N = 6

Im(ee)

Im(ee)

Δw

Δw

Re(ee)

Re(ee)

FIG. 4. The effective permittivity of the N ¼ 6 layer
(a) Au-SiO2 broadband ENZ meta-atom and (b) Au-air broad-
band ENZ meta-atom with material loss in the operating
frequency range Δω of 0.1ωp to 0.15ωp.
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effective permittivities possess a broadband ENZ proper-
ties in the designed operating frequency range, which
coincides with the theoretical prediction [Fig. 3(a)].
However, it is still worth stressing that, although the
broadband ENZ meta-atom is of the subwavelength size,
the optical nonlocality in the meta-atom in the full-wave
condition cannot be fully neglected. Especially when the
size of the broadband ENZ meta-atom increases, the
inevitable optical nonlocality leads to more fluctuations
in the effective permittivity compared with the theoretical
prediction, which can be observed from the result in
Fig. 5(e). Furthermore, besides the scattering-parameter-
retrieval algorithm, the effective permittivity can also be
obtained according to the definition εe ¼ hDxi=hExi, in
which the mean value of the electric displacement field
and the electric field can both be achieved from the
simulation directly. For comparison, the effective permit-
tivities based on the definition are also displayed in
Figs. 5(d) and 5(e), as circles. Clearly, both methods
show the same results for the effective permittivities.
Therefore, we have evidence that the theoretical design
procedure is accurate with respect to the practical appli-
cations in the full-wave condition.
Finally, the computational full-wave simulation also

reveals the physics behind the anisotropic broadband
ENZ metamaterial design. Generally, the broadband
ENZ meta-atom can be regarded as a coupled waveguide
system. Each layer of the broadband ENZ meta-atom can
be considered as a single waveguide of the ENZ property at
a single operating frequency, while the ENZ frequency is

determined by the properties of the components according
to the Maxwell-Garnett approximation. Meanwhile, the
thickness of each layer, which is obtained through the EMT
inverse problem, tunes only the coupling strength between
each layer. Therefore, the whole meta-atom, working as a
well-tuned coupled waveguide system, performs the broad-
band ENZ properties.

V. CONCLUSIONS

To conclude, based on the compact format of the Milton
spectral representation, the rigorous analytical solutions
to the EMT inverse problem regarding the design of
the anisotropic broadband ENZ metamaterials is obtained
by introducing the exactly proved identities. According to
the analytical solutions, the anisotropic broadband metal-
dielectric ENZ metamaterials of the lamination and the
Hashin-Shtrikman coated-spheremicrostructures is designed
and demonstrated through theoretical analysis and full-wave
simulation. In addition, the existence and the stability of the
solutions to the inverse problem are studied in detail.
Furthermore, regarding practical applications, improvements
in design strategy are also suggested, including the iteration
method on the microstructure modification and the choice of
the individual component materials. Finally, it is worth
stressing that the method discussed above indicates an
inevitable high imaginary part in the effective permittivity
over the designedoperating frequency range.Therefore, there
is still a long way to go to achieve the ideal broadband ENZ
response.

(a)

Air

Air
max

min

Ein0

ENZ

(b)

(d) (e)

(c)

dx × dy = 20 × 10 nm
dx × dy = 40 × 20 nm

dx × dy = 20 × 10 nm

dx × dy = 40 × 20 nm

dx × dy = 20 × 10 nm dx × dy = 40 × 20 nm

abs(S21)

arg(S21)

abs(S11)

arg(S11)

Δω

Δω Δω

Δω

Re(ee) Re(ee)

Im(ee) Im(ee)

x

Eout
x

z

xy

dxdy

dz

FIG. 5. (a) The three-dimensional full-wave simulation model of the N ¼ 4 layer Au-SiO2 broadband ENZ meta-atom with the fixed
length dz ¼ 50 nm and the variable cross sections dx × dy. An x-polarized plane electromagnetic wave is stimulated at the bottom and
received at the top. All other outer surfaces of the model are set to be periodic. (b) The absolutely values and (c) the arguments in
principal values of the complex scattering parameters are displayed in solid curves for a meta-atom with a cross section of 20 × 10 nm,
and in dashed curves for a meta-atom with a cross section of 40 × 20 nm. The retrieved effective permittivities based on the
complex scattering parameters (the solid curves) and the definition (the circles) of the meta-atom are indicated, respectively, for (d) the
(20 × 10)-nm cross section and (e) the (40 × 20)-nm cross section.
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