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Surface acoustic waves (SAWs) propagating in a piezoelectric substrate covered with a thin
ferromagnetic–heavy-metal bilayer are found to exhibit a substantial degree of nonreciprocity, i.e., the
frequencies of these waves are nondegenerate with respect to the inversion of the SAW propagation
direction. The simultaneous action of the magnetoelastic interaction in the ferromagnetic layer and the
interfacial Dzyaloshinskii-Moriya interaction in the ferromagnetic–heavy-metal interface results in the
openings of magnetoelastic band gaps in the SAW spectrum, and the frequency position of these band gaps
is different for opposite SAW propagation directions. The band-gap widths and the frequency separation
between them can be controlled by a proper selection of the magnetization angle and the thickness of the
ferromagnetic layer. Using numerical simulations, we demonstrate that the isolation between SAWs
propagating in opposite directions in such a system can exceed the direct SAW propagation losses by more
than 1 order of magnitude.
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I. INTRODUCTION

Surface acoustic wave (SAW) transmission lines, based
on high-quality piezoelectric single crystals, found appli-
cations as frequency filters, sensors, and other signal
processing devices [1–4]. SAWs have very low propagation
losses at frequencies ranging from a megahertz to several
gigahertz. They can be excited with a very high efficiency
in piezoelectric crystals, and the use of unidirectional
transducers [3,4] can reduce the insertion losses of SAW
transmission lines to just several decibels. Moreover,
typical propagation speeds (and therefore wavelengths)
of SAWs in crystals are several orders of magnitude less
than the speed of electromagnetic waves, thus allowing a
miniaturization of SAW signal processing devices com-
pared to their electromagnetic counterparts.
A typical frequency spectrum ωk of a SAW is reciprocal,

i.e., it is degenerate for SAWs having opposite wave vectors
k and −k: ωk ¼ ω−k. This degeneracy is a result of a
fundamental time-reversal symmetry in the laws of
mechanics. However, frequency nonreciprocity (when
ωk ≠ ω−k) is extremely important for applications: it allows
us to isolate signals traveling in opposite directions [5,6].

From a practical point of view, a good isolator should
demonstrate high rejection; i.e., it should block most of the
power traveling in one direction (say, from port 2 to port 1).
Simultaneously, it should have low insertion loss, i.e.
transmit nearly all of the power traveling in the opposite
direction (from port 1 to port 2). It is known that
SAW-based devices demonstrate very low transmission
losses—and therefore should be useful as isolators—if a
nonreciprocal propagation SAW propagation in these
devices can be demonstrated.
Unfortunately, a nonreciprocal propagation of a SAW is

not easy to achieve. Thus far, the nonreciprocal propagation
of a SAW has been found in devices with moving or
rotating elements [7,8], where the effect of the summation
of velocities of sound and moving media was used. An
alternative way to achieve acoustic nonreciprocity is to use
nonlinear effects in high-power acoustic waves, where the
acoustic wave loss or gain are power dependent [9–12].
Unfortunately, neither of these ways have led to the
development of practical nonreciprocal devices based on
acoustic waves.
In contrast to acoustic waves, the frequency nonreciproc-

ity of spin waves (SWs) propagating in ferromagnetic media
is not an exotic phenomenon. The SW nonreciprocity is
a consequence of the intrinsic breaking of time-reversal*ivan.lisenkov@phystech.edu
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symmetry in magnetized magnetic materials, where mag-
netization precesses only clockwise around its equilibrium
direction. The frequency nonreciprocity for SWs can be
achieved in multiple ways, e.g., by nonsymmetric boundary
conditions [13–15], by patterning of a ferromagnet [16–18],
or by a bulk or interfacial Dzyaloshinskii-Moriya interaction
[19–22]. It should be noted that the application of the SWs
themselves for the development of compact nonreciprocal
microwave devices is a challenging task, as the magnetic
field bias is needed, and the problem of a relatively high SW
propagation losses should be solved.
Fortunately, owing to the magnetoelastic interaction in

magnetostrictive materials, the SWs and acoustic waves
can interact with each other, and SWs can act as a “source”
of nonreciprocity for acoustic waves. The nonreciprocity of
magnetoelastic waves [23–25], as well as the magnetoe-
lastic interaction itself [26–28], have been studied for a
long time in the case of bulk samples. The bulk materials,
however, typically do not show good acoustic, magnetic,
magnetoelastic, and piezoelectric properties simultane-
ously, which hinders their practical applications in nonre-
ciprocal devices. For example, many papers have been
devoted to the study of magnetoelastic waves in yttrium
iron garnet (YIG), which has nice magnetic properties, but
the magnetoelastic interaction in YIG is weak, and this
material has no piezoelectricity at all. At the same time,
metallic ferromagnets (such as Ni, Co, and Fe) have rather
large magnetostriction (3 to 4 orders larger than in YIG),
but prohibitively bad acoustic properties.
Rather promising recent experiments [29–32] have

demonstrated that the propagation of SAWs in piezoelectric
substrates can be controlled by a thin magnetic layer placed
atop the substrate. The use of such heterostructures allows
one to combine in a single device a high-quality piezo-
electric substrate (like LiNbO3) and a ferromagnet with
large magnetostriction (e.g., Ni). Moreover, it has been
shown that SAWs propagating in a LiNbO3 substrate
covered by a thin Ni film indeed demonstrate some degree
of nonreciprocity [32], although the observed nonreciproc-
ity effect was small. In such a case, the SWs are generally
reciprocal, and the small transmission nonreciprocity
comes from the slightly different widths of the magne-
toelastic band gaps having the same central frequency in
the SAW spectrum for waves with opposite wave vectors.
As a result, the nonreciprocal transmission appears on a
background of large propagation (insertion) losses.
In this work, we propose a way to substantially enhance

the nonreciprocal properties of SAW in piezoelectric-
ferromagnetic heterostructures using the materials with
the interfacial Dzyaloshinskii-Moriya interaction (IDMI).
We show that the IDMI results in a nondegeneracy of the
central frequencies of the magnetoelastic band gaps with
respect to the inversion of the SAW propagation direction.
Since the central frequencies of the band gaps are different

for the two counterpropagating waves, a wave traveling in
one direction falls within the band gap, while the wave
traveling in the opposite direction does not “feel” the band
gap at all. Therefore, the damping of the wave propagating
in one direction is tremendously increased, while that for
the wave propagating in the opposite direction is practically
unaffected, resulting in the simultaneously high isolation
and low insertion losses. In our numerical simulations,
we use the parameters of a transmission line based on a
LiNbO3 substrate covered by a thin Ni=Pt bilayer, and we
show that, using a high-quality Ni film, one can achieve
an isolation of up to 45 dB with insertion losses of about
20 dB.
The article is organized as follows. In Sec. II, we present

a general formalism for the magnetoelastic coupling
between the linear SWs and SAWs in the framework of
a perturbation theory. Then we consider the conditions for
the appearance of nonreciprocal magnetoelastic band gaps
in the wave spectrum (Sec. III B), and the ways for the
optimization of the nonreciprocal properties (Sec. III C).
Finally, Sec. III D is devoted to the calculation of the SAW
line transmission characteristics in the presence of the
IDMI and the SAW coupling to SWs.

II. THEORY OF WEAKLY COUPLED LINEAR
MAGNETOELASTIC WAVES

In this section, we revisit the theory of magnetoelastic
interactions in ferromagnetic samples, and we develop an
analytical formalism for magnetoelastic coupling between
the spin waves and acoustic waves suitable for the systems
having arbitrary wave profiles (e.g., suitable for surface
magnetoelastic waves), limiting ourselves to the case of
linear coupling between SWs and SAWs.
The dynamics of the magnetoelastic waves is governed by

the coupled Landau-Lifshitz equation for SWs and elastic
mechanical equations [2,5] for acoustic waves. Simulations
solution of these equations is complicated and is often
possible only numerically [33–36]. However, in almost all
of the practically important situations, themagnetostriction is
weak in comparison to the other interactions in a ferromag-
net, which allows us to consider the magnetoelastic inter-
action in the framework of perturbation theory.
For the consideration of linear excitations, the magneti-

zation vector M can be represented as a sum of static and
dynamic components,Mðr; tÞ ¼ Ms½μðrÞ þmðr; tÞ�, where
Ms is the saturation magnetization, μ is the unit vector
pointing in the direction of the static magnetization, and m
is a dimensionless dynamic magnetization (jmj ≪ 1). Then
the equations describing the coupled magnetoelastic
dynamics can be written as

1

γ
Ĵ ·

dmðr; tÞ
dt

−
Z

Ω̂ ·mðr0; tÞdr0 ¼ bmeðr; tÞ; ð1Þ

ROMAN VERBA et al. PHYS. REV. APPLIED 9, 064014 (2018)

064014-2



ρ
∂2

∂t2 ξiðr; tÞ − cijln
∂2

∂xj∂xl ξnðr; tÞ ¼ fme
i ðr; tÞ: ð2Þ

Here, Ĵ ¼ ê · μ is the operator of the angular momentum, ê
is the Levi-Cività antisymmetric tensor, Ω̂ ¼ Ω̂ðr; r0Þ is the
operator of magnetic interactions (see Refs. [37–39] for
additional details), ξðr; tÞ is the elastic displacement, ρ is
the density, and cijlm represents the components of the
elastic stiffness tensor. The magnetoelastic coupling is
given by the terms on the right-hand side of the equation,
where bmeðr; tÞ is the effective magnetic field generated by
the acoustic deformations via the inverse magnetostriction,
and fme is the effective force generated by the magnetiza-
tion dynamics and acting on the sample via the direct
magnetostriction effect. In Eq. (1), we skip another cou-
pling term of the form mðμ · bmeÞ, as it is of the second
order of smallness and cannot result in a linear coupling
between the waves. In Eq. (2) and below, the repeating
indices ði; j; l; mÞ ¼ ðx; y; zÞ are assumed to be summed.
The magnetoelastic coupling can be obtained from the

following magnetoelastic energy density

Wme ¼ 1

M2
s
bijlnuijMlMn; ð3Þ

where b̂ is the tensor of magnetostriction [40] and ûðr; tÞ is
the tensor defining the strain created by the displacement
ξðr; tÞ [2]

uij ¼
1

2

�∂ξi
∂rj þ

∂ξj
∂ri

�
: ð4Þ

The values of the field bme and the force fme can be
calculated using Eq. (3) as

bme
n ðr; tÞ ¼ −

∂Wme

∂M ≈ −
2

Ms
bijlnuijðr; tÞμlðrÞ; ð5Þ

fme
i ðr; tÞ ¼ ∂

∂xi
∂

∂uij W
me ≈ 2

∂
∂xj bijlnμlðrÞmnðr; tÞ; ð6Þ

where we leave only the terms that are linear in the dynamic
magnetization m or displacement ξ, as they are responsible
for the linear coupling between the waves. The other terms,
corresponding, e.g., to the parametric coupling between the
waves, are disregarded.
Equations (1) and (2) can be solved within a standard

framework of an eigenmode expansion:

mðr; tÞ ¼
X
ν

cνðtÞmνðrÞ þ c:c:; ð7Þ

ξðr; tÞ ¼
X
λ

qλðtÞξλðrÞ þ c:c:; ð8Þ

wheremνðrÞ and ξλðrÞ are the profiles of the linear SWs and
acoustic modes, while cνðtÞ and qλðtÞ are the unknown
complex amplitudes of the eigenmodes. The spatial profiles
of the eigenmodes and their eigenfrequencies, ων and ω̃λ,
respectively, are the solutions of Eqs. (1) and (2) with zero
right-hand-side parts in the form mðr; tÞ ¼ mνðrÞe−iωνt,
while ξðr; tÞ ¼ ξλðrÞe−iω̃λt.
The linear SW modes satisfy the following orthogonality

relation [37,38]

Ms

γ

Z
m�

ν0 ðrÞ · μðrÞ ×mνðrÞdr ¼ −iAνδν;ν0 ; ð9Þ

where Aν > 0 is the spin-wave normalization constant
having the dimensionality of action [41]. A similar ortho-
gonality condition can be written for the acoustic modes
[2,42]

2ωλ

Z
ρðrÞξ�λðrÞ · ξλ0 ðrÞdr ¼ Qλδλλ0 ; ð10Þ

where Qλ > 0 is a positive normalization constant having
the same dimensionality as Aν.
Substituting the expansion equations (7) and (8) for

mðr; tÞ and ξðr; tÞ into Eqs. (1) and (2) and using the
orthogonality relations, we get the following final equations
for the amplitudes of the coupled spin and acoustic waves:

dcν
dt

þ iωνcν þ Γνcν ¼ i
X
λ

ffiffiffiffiffiffi
Qλ

Aν

s
κν;λqλ;

dqλ
dt

þ iω̃λqλ þ Γ̃λqλ ¼ i
X
ν

ffiffiffiffiffiffi
Aν

Qλ

s
κ�ν;λcν; ð11Þ

where we also introduce in a common way [8,38] the
damping rates of the spin and acoustic modes Γν and Γ̃λ,
respectively. The coupling coefficient is equal to

κν;λ ¼
2ffiffiffiffiffiffiffiffiffiffiffi
AνQλ

p
Z

μðrÞ · ½b̂ · ûλðrÞ� ·m�
νðrÞdr: ð12Þ

This expression is the central result of the above-developed
theory. The coupling coefficient can be calculated for the
arbitrary spatial profiles of the acoustic and SW modes.
The exact profiles of the SWand acoustic modes, as well as
the mode eigenfrequencies ων and ω̃λ, in simple cases can
be found analytically or, otherwise, can be extracted from
numeric simulations.
In the case of propagating waves, characterized by a

wave vector k, the solution of Eq. (11) can be easily
obtained. In the equations above, we change mν →
mkðρÞeik·r and ξλ → ξk0 ðρÞeik0·r, where ρ is two-dimensional
radius vector, perpendicular to the wave propagation
direction, defined by k. Then Eq. (12) is transformed to
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κk;k0 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

AkQk0
p

Z
μðrÞ · ½b̂ · ûk0 ðρÞ� ·m�

kðρÞeiðk
0−kÞ·rdr:

ð13Þ

It is clear that, in the case when the static magnetization is
uniform along the wave propagation direction, the expo-
nent under the integral gives a zero integration result until
k ≠ k0. Therefore, in this case, the spin and acoustic waves
can interact only if they have the same wave vector k. Note
that the length L of the sample in the wave propagation
direction, which appears after the integration in Eq. (13), is
canceled out by the same term in the normalization
constants of the SW and the SAW. The dispersion relation
for the interacting waves can be written as

ωk ¼
ωSW þ ωAW

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ωSW − ωAW

2

�
2

þ jκkj2
s

; ð14Þ

where ωSW ¼ ωSW;k and ωAW ¼ ωAW;k are the dispersion
relations of the noninteracting SWs and acoustic waves,
respectively.

III. NONRECIPROCAL SURFACE
MAGNETOELASTIC WAVES

A. Spin-wave modes in a ferromagnetic
film with the IDMI

In this section, we apply the above-presented general
theory to the study of the surface magnetoelastic waves in a
magnetic-nonmagnetic heterostructure. A sketch of a con-
sidered heterostructure is shown in Fig. 1. It consists of a
nonmagnetic substrate which supports the propagation of a
SAW. Typically, this substrate is a piezoelectric single
crystal, like LiNbO3, LiTaO3 or quartz. The piezoelectric
substrate is covered with a thin ferromagnetic film having a
large magnetostriction (e.g., Ni), and then by a thin heavy-
metal layer (typically Pt), which induces the IDMI at the
ferromagnetic–heavy-metal interface. The ferromagnetic
layer is biased by an external magnetic field Be applied
in the film plane at the angle ϕ with respect to the wave
propagation direction. The value of the bias field should be
sufficient to saturate the ferromagnetic film in its plane,
thus overcoming the effect of the surface perpendicular

magnetic anisotropy, which can exist at the ferromagnetic–
heavy-metal interface.
Since the IDMI is an interface effect, the thickness of a

ferromagnetic film necessary to produce a significant SW
nonreciprocity should be sufficiently small. As has become
clear from the results of our numerical simulations, the
ferromagnetic film thickness should not exceed several tens
of nanometers. In this case, we can use the assumption of a
uniform SW profile across the thickness of a ferromagnetic
layer,mk ∉ fðzÞ. The dispersion of SWs propagating along
the x axis (see Fig. 1) can be expressed as [20,43]

ωSW;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩzzΩIP

p
− ωMD̃k sinϕ; ð15Þ

where

ΩIP ¼ ωH þ ωM½λ2exk2 þ fðktÞsin2ϕ�;
Ωzz ¼ ωH − ωan þ ωM½λ2exk2 þ 1 − fðktÞ�: ð16Þ

In these equations, ωH ¼ γBe, ωM ¼ γμ0Ms, and ωan ¼
2γKs=ðMstFMÞ, where Ks is the constant of the surface
perpendicular anisotropy, k¼ kx, fðxÞ¼ 1− ð1−e−jxjÞ=jxj
is a function describing the dynamic demagnetization, and
the effect of the IDMI is described by the expression
D̃ ¼ 2Db=ðμ0M2

stFMÞ, where D is the IDMI constant, tFM
is a thickness of the ferromagnetic layer, and b is the
thickness of an atomic monolayer of the ferromagnet
[21,44]. From Eq. (15), it is clear that the SW dispersion
is nonreciprocal: ωSW;k ≠ ωSW;−k if ϕ ≠ 0; π. Because of
the symmetry of the effective field, produced by the IDMI,
the vector structure of the SW mode does not depend
on the IDMI [43], and it can be expressed as
mk ¼ ½−mIP sinϕ; mIP cosϕ; imz�, wheremIP is the in-plane
dynamic component of magnetization, and the relation
between the magnetization dynamic components is
mz=mIP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩIP=Ωzz

p
.

B. Analysis of the coupling of surface acoustic
waves with spin waves

The calculation of a dispersion relation and mode profile
of SAWs in a layered structure consisting of a piezoelectric
substrate and a metallic layer is, in itself, not a simple task.
Thus, to simplify our analytical analysis, we use several
approximations. First, we consider the substrate as isotropic
and nonpiezoelectric and use the Poisson ratio as an
adjustable parameter, as is often done in analytical calcu-
lations [1]. Within this approximation, it is not possible to
answer the question on the SAW stability, but it is possible
to adequately describe the profile of the SAW mode and,
therefore, to evaluate the main characteristics of the
magnetoelastic coupling of the SAWs and SWs.
Second, we neglect the influence of the thin metallic

layer on the SAW properties. In general, shear acoustic
waves in sputtered metals are slower than the shear acoustic
waves in piezoelectric single crystals. Thus, in such a

FIG. 1. A layout of the heterostructure under study, a piezo-
electric substrate covered by a ferromagnetic–heavy-metal bilayer.
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system, the substrate is loaded by the metal layer, and the
surface acoustic wave does not have any cutoff wave
numbers [2,45,46]. In reality, the thickness of the ferro-
magnetic layer is on the order of tNi ≈ 10 nm, and the layer
of the heavy metal can be as thin as 2 to 3 nm because the
further increase of the heavy-metal thickness does not
affect the strength of the IDMI [47]. The SAW wave
number for the considered range of frequencies (1–5 GHz)
is on the order of kx < 10 μm−1. Thus, we can work in an
approximation in which kxðtNi þ tPtÞ ≪ 1, and we assume
that the SAW is only weakly affected mechanically by the
bilayer. Therefore, we can use the wave dispersion and the
wave mode profiles calculated for a free substrate [2,45]. It
should be noted that the above-presented formalism
(Sec. II) remains valid if one considers the exact values
of both the acoustic field distribution and the SAW
dispersion. This property could be useful in the future
for making more-accurate calculations of the coupling
parameter κ.
Taking into account the above-described approximations,

we consider a Rayleigh surface acoustic wave [48]. The in-
plane component of the displacement perpendicular to the
SAW propagation direction is absent, ξy ¼ 0, so the strain
tensor components uxy ¼ uyz ¼ uyy ¼ 0. The oscillations in
the x and z directions are shifted in phase by π=2, resulting in
an effective rotation in themedium over an elliptic trajectory.
The only nonzero components of the SAW strain tensor

are uxx, uzz, and uxz. At the surface (z ¼ 0 in Fig. 1), the
off-diagonal strain component vanishes, uxzðz ¼ 0Þ ¼ 0,
while the components uxx and uzz remain nonzero. The
dispersion of the SAW is linear, ωSAW;k ¼ cSAWjkj, where
cSAW is the SAW velocity.
The magnetoelastic coupling tensor b̂ in the case of a

cubic crystal (Ni, Fe, or Co) has only two independent
components [5]: biiii ¼ b1 and bijij ¼ b2 (for i ≠ j), while
all of the other components are zero (in the case of an
isotropic media b1 ¼ b2). Noting the symmetry of the
magnetoelastic tensor, we calculate the coupling coefficient
κk for a SW in the ferromagnet and a Rayleigh SAW using
Eq. (12):

κk ¼
2tFMffiffiffiffiffiffiffiffiffiffiffi
AkQk

p ½−b1ūxx;km�
IP;k sinϕþ b2ūxz;km�

z;k� cosϕ;

ð17Þ

where ūij represents the strain components, averaged over
the ferromagnetic film thickness, and, in the definition
of the normalization constants Ak and Qk [Eqs. (9)
and (10)], the integration over the volume is replaced by
the integration over the z coordinate.
It is clear from Eq. (17) that the magnetoelastic inter-

action between the SW and SAW vanishes for ϕ ¼ π=2,
while this angle corresponds to the maximum IDMI-
induced SW nonreciprocity; see Eq. (15). As was pointed
out earlier, at the free surface, the strain component

uxz ¼ 0, so the averaged value jūxzj ≪ jūxxj, and the
coupling coefficient is determined mainly by the first term
in brackets in Eq. (17). Therefore, the coupling coefficient
is approximately proportional to the function κk ∼ sin 2ϕ,
which reaches its maximum at ϕ ¼ π=4. Consequently, the
maximal coupling of SW and SAW is realized for the
magnetization angle close to ϕ ¼ π=4. This feature has
been already observed in Refs. [29,32].
We also note that the SW eigenmode does not change

with the reversal of the propagation direction m ¼ m−k. At
the same time, the SAW strain tensor transforms as
uxx;−k ¼ −uxx;k, uxz;−k ¼ uxz;k [48]. Therefore, the cou-
pling between the SW and the SAW is nonreciprocal even
without the IDMI, κk ≠ κ−k (if ϕ ≠ 0; π=2), and this non-
reciprocity becomes more pronounced for thicker ferro-
magnetic film due to an increase in the ūxz component.
Unequal coupling results in different propagation losses of
SAW in opposite directions, which was observed in
Ref. [32]. However, to achieve a good isolation, while
maintaining a low insertion loss, one should have
jκkj ≪ jκ−kj. A simple analysis from Eq. (17) reveals that
this requirement leads to the requirement on the stain
distribution that ūxx ≈ ūxz, which can be realized if ferro-
magnetic film thickness becomes of the order of the SAW
penetration depth. For metallic layers, this requirement is
difficult to fulfill because a thick ferromagnetic layer
significantly affects the mechanical properties of the sub-
strate and increases the acoustic loss. However, this regime
may possibly be implemented in dielectric single-crystal
ferromagnets, such as YIG.

C. Wave spectrum and magnetoelastic band gaps

For our numerical example demonstrating nonreciprocal
surface magnetoelastic waves, we choose a LiNbO3=Ni=Pt
heterostructure. LiNbO3=Ni heterostructures have already
been fabricated and studied in Refs. [29,32], and they have
demonstrated good magnetoelastic coupling. LiNbO3 is
one of the best piezoelectric materials supporting SAW
propagation in a frequency range of up to 10 GHz [49],
while Ni shows large magnetostriction, and the combina-
tion Ni=Pt gives the largest IDMI among the studied
combinations of Ni with other heavy metals. We use the
Y cut of LiNbO3 having the density ρ ¼ 4650 kg=m3 as a
substrate, and the SAW propagates along the Z axis. The
substrate had the following material parameters: longi-
tudinal and transversal sound velocities cl ¼ 7350 m=s and
ct ¼ 3600 m=s [50], and the corresponding SAW velocity
is cSAW ¼ 3361 m=s. For the Ni layer, we use the following
parameters: saturation magnetization μ0Ms ¼ 0.66 T,
exchange stiffness A¼9.5×10−12 J=m3 (λex¼ 7.4 nm), sur-
face perpendicular anisotropy energy Ks¼6×10−4 J=m2,
g factor g ¼ 2.21, magnetoelastic coupling coefficients
b1 ¼ 9.38 MJ=m3, b2 ¼ 10 MJ=m3 [51,52]. The IDMI
energy at the Pt-Ni interface is equal to
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D ¼ −2.7 × 10−3 J=m2, while the lattice constant is
b ¼ 0.352 nm [53].
An example of the spectra of SW and SAW in the

heterostructure is shown in Fig. 2. By selection of the
magnitude of Be and the angle ϕ of the bias magnetic field,
it is possible to achieve a crossing between the spectra of
the noninteracting SW and SAW in a desirable frequency
range. The interaction between the SAW and the SW
leads to the opening of band gaps in the spectrum of a
magnetoelastic surface wave. The widths of the band gaps
are determined by the coupling coefficient κk: Δω ¼
2πΔf ¼ 2jκkj. Since the SW spectrum is nonreciprocal,
the crossing of the SW dispersion curves with the SAW
spectrum takes place at different points, and the magne-
toelastic band gaps open at different frequencies and wave
numbers for waves propagating in opposite directions. This
feature is clearly visible in Fig. 2(b), where the central
frequencies of the band gaps are shifted by 170 MHz with
respect to each other. Therefore, within the frequency range
of one of the band gaps, the SAW propagating in one
direction is strongly coupled to the SW, forming a slow and
dissipative magnetoelastic wave, while the wave traveling
in the opposite direction is almost unaffected by the
magnetoelastic interaction. This property exists due only
to the SW frequency nonreciprocity induced by the IDMI in
our case.
The widths of the band gaps and the separation between

their central frequencies depend on the thickness of the
ferromagnetic layer. The width Δf of a band gap increases
with the thickness of the Ni layer tNi because the coupling
coefficient between the SWand the SAW is proportional to
tNi; see Eq. (17). However, because of the interfacial nature
of the IDMI, the nonreciprocity of the SWs—and, there-
fore, the frequency separation between the band gaps

corresponding to the opposite propagation directions—
decreases with an increase in Ni thickness. These tendencies
are clearly illustrated in Fig. 3, where the positions and the
widths of the band gaps are plotted as functions of tNi. The
bias field at each value of tNi is chosen in such a way that
the average frequency position of the band gaps is kept
constant [3 GHz in Fig. 3(a) and 5 GHz in Fig. 3(b),
respectively]. For applications, it is desirable to have the
widest possible band gaps, which, however, should be well
separated from one another, at least by a frequency interval
on the order of theband-gapwidth. Thus, there is an optimum
range of ferromagnetic film thickness in which it is possible
to achieve the best nonreciprocal properties of the magne-
toelastic surface waves propagating in opposite directions.
For example, in the above-described heterostructure
LiNbO3=Ni=Pt, the optimum thickness of the Ni layer is
tNi ≈ 8 to 9 nm for average frequencies of both 3 and 5 GHz
(see Fig. 2). For higher average frequencies, the optimumNi
thickness remains almost the same, at least up to a frequency
of 10 GHz, at which the SAWexcitation and propagation in
LiNbO3 were observed experimentally in Ref. [49].
It should be noted that the crossing and hybridization of

the dispersion curves of the SW and the SAW at any

(a) (b)

FIG. 2. (a) Spectra of surface magnetoelastic waves in the
LiNbO3=Ni=Pt heterostructure that, away from the points of
wave hybridization, look like independent crossing spectra of the
SAW and the SW, respectively. (b) Close-up of the spectra near
the hybridization points [marked by dashed rectangles in (a)],
where the magnetoelastic band gaps are clearly seen. Ni thick-
ness, tNi ¼ 10 nm; magnetization angle, ϕ ¼ π=4; bias field,
Be ¼ 41 mT.

(a)

(b)

FIG. 3. Positions and widths of the magnetoelastic band gaps in
a spectrum of surface magnetoelastic waves for opposite propa-
gation directions. (a) Average frequency of 3 GHz. (b) Average
frequency of 5 GHz. The magnetization angle is optimum,
ϕ ¼ π=4.
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desirable frequency cannot always be satisfied for the
optimum magnetization angle of ϕ ¼ π=4. For example,
for tNi > 19 nm, the crossing cannot be achieved at a
frequency below 3 GHz for any value of the bias field.
This property is related to the increase of SW group
velocity at k → 0 taking place with the increase of film
thickness. A solution of this problem is to use a smaller
magnetization angle, ϕ < π=4, which decreases the SW
group velocity, and even changes its sign for sin2 ϕ < ωH=
ðωH þ ωM − ωanÞ. At such a magnetization angle, one can
achieve the formation of magnetoelastic band gaps at
almost any desirable frequency. However, the widths of
the band gaps, as well as the separations between them,
become smaller [see Eqs. (15) and (17)]. This feature limits
the applicability of the IDMI-induced nonreciprocity of
surface magnetoelastic waves in a relatively low-frequency
range (below 2 GHz).

D. Transmission characteristics

In this section, we consider how the appearance of the
magnetoelastic band gaps affects the transmission character-
istics of a SAW line. In general, the appearance of the band
gaps leads to a variation in the wave group velocity vgr ¼∂ωk=∂k (the slope of the dispersion curve), and to a variation
in the wave damping rate in the vicinity of the band gaps.
Both of these factors contribute to the variation of a trans-
mission rate in a magnetoacoustic transmission line.
It should be noted that common methods of SAW

transmission calculations (see, e.g., Refs. [1,54]) are not
applicable in our case. These methods use the assumption
of a negligibly small resonance linewidth so that the wave
group velocity and the efficiency of interdigital transducers
(IDTs) can be calculated locally, at the point k ¼ kðωÞ.
This assumption is natural for SAWs, which typically have
a very small linewidth (for example, for LiNbO3, this
linewidth is only 500 kHz at the 5-GHz frequency [55]).
However, the SW damping rate—and, consequently, the
damping rate of magnetoelastic waves in the vicinity of the
band gaps—can be comparable to (or larger than) the band-
gap width. In such a case, the nonresonant wave excitation
becomes important, and one should integrate contributions
from all of the excited waves within the resonance line.
To calculate the transmission characteristics, we need to

introduce into Eq. (11) an external harmonic force which
describes the excitation of SAWs by an IDT. The appli-
cation to an IDTof a microwave voltage VðtÞ ¼ V ine−iωt of
the frequency ω results in the appearance of a mechanical
force in the LiNbO3 substrate, and this force has a certain
spatial profile which depends on the IDT geometry. The
efficiency of the coupling of IDT to a SAW having a certain
wave vector k ¼ kex can be decomposed into two terms.
The first of these terms is the normalized Fourier

transform Fk of the force spatial profile in the x direction,
which determines the k dependence of the excitation
efficiency. This term is often approximated by a function

Fk ¼ sinc½πNfðk − k0Þ=k�, where Nf is the number of
fingers in the IDTand ω0 ¼ cSAWk0 is the central frequency
of the IDT [54].
The second term describes all of the other effects:

piezoelectric coupling, overlap of the mechanical force
with SAWs (in the z direction), etc. A detailed consid-
eration of this second term lies beyond the scope of this
article, and the influence of this second term is described
below by a coefficient C1. The coefficient C1 can also be k
dependent, but this dependence is much weaker than that of
the term Fk and therefore is neglected below. Thus, the
excitation force, which appears on the right-hand side of the
equation for the SAW amplitudes qk in the system
equation (11), is expressed as feðtÞ ¼ C1V inFke−iωt. The
solution of Eq. (11) with the excitation term gives the
amplitudes of the excited SAWs qk in the form

qk ¼ −iC1V inFk
ω − ðωSW − iΓSWÞ
ðω − ω1Þðω − ω2Þ

; ð18Þ

where

ω1;2 ¼
ωSW − iΓSW þ ωSAW − iΓSAW

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðωSW − iΓSWÞ − ðωSAW − iΓSAWÞ

2

�
2

þ jκkj2
s

;

ð19Þ

and the obtained frequencies of the coupled waves are
complex because damping is taken into account.
At the receiving IDT, the displacement created by a SAW

ξðxÞ ¼ ð1=2πÞ R ξkqkeikxdk is transformed into the output
voltage via the piezoelectric effect. Similar to the excitation
efficiency, the efficiency of detection of a SAW having the
wave vector k can be decomposed into two terms and then,
similar to the description of the efficiency at the input IDT,
represented as C2Fk. The total output microwave voltage
is obtained by the integration over all of the SAW wave
vectors, Vout ¼ ðC2=2πÞ

R
FkqkeikLdk, where L is the dis-

tance between the input and output IDTs. Thus, the
transmission parameters S12 and S21, which are defined
as ratios of the output voltage to the input one for the two
opposite directions of the signal propagation (from port 1 to
port 2, and vice versa) are equal to

S12;21 ¼
C1C2

2πi

Z
ω − ðωSW − iΓSWÞ
ðω − ω1Þðω − ω2Þ

F2
ke

�ikLdk; ð20Þ

where S12 differs from S21 by the sign in front of the length
L of the SAW line, and both IDTs are assumed to be the
same. In a general case, this expression cannot be further
simplified because the widths of the magnetoelastic band
gaps, the SW damping rate, and the characteristic width of
the function Fk can be on the same order of magnitude. In
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the limiting case of the absence of magnetoelastic coupling
and a sufficiently wide spectrum of the IDT (i.e., in the case
where the range of variation of the function Fk is much
larger than ΓSAW=cSAW), Eq. (20) simplifies to the form
S12;21 ¼ ðC1C2=cSAWÞ exp½−ΓSAWL=cSAW�. The calcula-
tion of the coefficients C1 and C2 requires an accurate
accounting of the piezoelectric coupling and impedance
matching between the SAW line and the external circuit and
lies beyond the scope of this article. Below, we use the
normalization C1C2=cSAW ¼ 1; i.e., we consider only the
effects of the propagation losses of magnetoelastic waves
and the spatial spectra of IDTs, given by Fk.
As was pointed out above, the widths of the magne-

toelastic band gaps Δω ¼ 2jκkj are several orders of
magnitude larger than the SAW linewidth, ΓSAW ≪ Δω,
and, at the same time, the SW linewidth is typically larger
than the width of the magnetoacoustic band gap,
ΓSW > Δω. An example of the transmission characteristics
calculated for this case is given in Fig. 4. For these
calculations, we use the thickness of a polycrystalline Ni
layer of tNi ¼ 5 nm, which is smaller than the optimum
thickness, in order to demonstrate that a significant

nonreciprocity of the transmission characteristic cannot
be achieved only in the unique optimum case. We choose a
central frequency of the band gaps of 5 GHz, and the
Gilbert damping parameter of the nickel layer is chosen to
be αG ¼ 0.045, which is a typical value for polycrystalline
Ni films [51]. For these parameters, the spectral widths
are ΓSAW=ð2πÞ ¼ 500 kHz, ΓSW=ð2πÞ ¼ 360 MHz, and
Δω ¼ 2jκkj=ð2πÞ ¼ 60 MHz.
The parameters of the SAW line transmission character-

istics can be adjusted by the selection of the IDT central
frequency f0 and the number of IDT fingers. For example,
if the IDT central frequency f0 lies between the magne-
toelastic band gaps and the spectrum of the IDT is wide
enough to cover both band gaps (a small number of
fingers), then the transmission characteristic contains two
nonreciprocal bands where the transmission reaches a
maximum value at different frequencies for the opposite
wave propagation directions [see Fig. 4(a)]. By contrast, if
f0 lies within one of the band gaps and the IDT spectrum is
narrow (a large number of fingers), there is one main
unidirectional transmission band, as shown in Fig. 4(b).
The isolation in both cases is close to 10 dB, while the
propagation losses at the transmission maximum do not
exceed 10 dB. We note that these values of the isolation are
much larger than the ones that were observed for a single Ni
film on a LiNbO3 substrate (without Pt) [32], and they can
be easily measured and, possibly, used in applications.
The isolation of the SAW line with magnetoelastic

coupling can be substantially improved if a high-quality
ferromagnetic film is used. As one can show from Eq. (19),
the damping of the magnetoelastic waves at the crossing
point depends on the relative values of the magnetoelastic
coupling coefficient jκkj and the SW linewidth ΓSW. If
jκkj > ðΓSW þ ΓSAWÞ=2, the damping rate of the hybrid-
ized waves is Γ1;2 ¼ ðΓSW − ΓSAWÞ=2. Otherwise, for
jκkj < ðΓSW þ ΓSAWÞ=2, the damping rate of the magneto-
acoustic waves is equal to Γ1;2 ¼ ðΓSW þ ΓSAWÞ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓSW − ΓSAWÞ2=4 − jκkj2

p
, i.e., the damping rate of one

of the hybridized magnetoacoustic waves decreases with
the increase of ΓSW, and, in the limit ΓSW ≫ jκkj, it is
reduced to Γ1 → ΓSAW. Naturally, this low-damping
hybridized wave makes a dominant contribution to the
signal transmission rate, and the isolation in the trans-
mission line decreases in spite of the fact that the signal
frequency lies within a magnetoacoustic band gap.
Thus, to maximize the influence of the magnetoelastic

coupling on the signal transmission, the SW damping rate
should be ΓSW < 2jκkj, while the use of ferromagnetic
materials with high magnetic damping leaves SAW trans-
mission almost unaffected.
For the studied heterostructure LiNbO3=Ni=Pt, such an

optimum case can be realized if high-quality monocrystal-
line Ni film is used. In our numerical example illustrated in
Fig. 5, we use a high-quality Ni film with a Gilbert damping
constant of αG ¼ 0.014 [56]. Here, we choose a Ni layer

(a)

(b)

FIG. 4. Transmission characteristics of the SAW lines with a
polycrystalline Ni film (αG ¼ 0.045) having different IDTs for
the opposite directions of wave propagation [S12 (the dashed line)
and S21 (the solid line)]. (a) IDT1 with central frequency
f0 ¼ 5 GHz, number of fingers Nf ¼ 10. (b) IDT2 with
f0 ¼ 5.16 GHz, Nf ¼ 20. The thickness of the Ni layer is
tNi ¼ 5 nm, the SAW line length L ¼ 250 μm, and the bias
magnetic field Be ¼ 82 mT is applied at the angle ϕ ¼ π=4 to the
line axis.

ROMAN VERBA et al. PHYS. REV. APPLIED 9, 064014 (2018)

064014-8



thickness of tNi ¼ 9 nm, for which 2κk=ð2πÞ ¼ 105 MHz
and ΓSW ¼ 104 MHz. As is clear from Fig. 5, the isolation
in this case is increased remarkably, up to 45 dB, and this
isolation also exists in a rather wide frequency band.
It follows from Eq. (20) that the maximum achievable

isolation in such a SAW transmission line is on the order of
S12 − S21 ∼ exp½ðΓmin − ΓSAWÞL=cSAW�, where Γmin ¼
min Im½ω1;2� is the smallest damping rate of the hybridized
magnetoelastic waves. This maximum isolation is achieved
at the frequency in the center of one of the magnetoelastic
band gaps, provided that the excitation spectra of the used
IDT is sufficiently narrow compared to the band-gap width.
The desired IDT bandwidth can be achieved using an IDT
with a sufficiently large number of “fingers” Nf.
As was pointed out previously, if the magnetoelastic

coupling is relatively weak, jκkj<ðΓSWþΓSAWÞ=2, we get
Γmin ¼ ðΓSW þ ΓSAWÞ=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓSW − ΓSAWÞ2=4 − jκkj2

p
. In

this case, a weak damping of one of the hybridized magne-
toelastic waves strongly limits the maximum achievable
isolation, and an increase of the number Nf of the IDT
fingers does not lead to a significant improvement in the
isolation. For example, for the parameters used in Fig. 4(b),
the increase of Nf from Nf ¼ 20 to Nf ¼ 100 gives only
1 dB of the isolation enhancement.
By contrast, in the optimum case of a strong coupling

and a high-quality ferromagnetic layer, when
jκkj > ðΓSW þ ΓSAWÞ=2, the maximum isolation can be
very high, so the signal level in one direction can be below
the level of a thermal noise. For example, it follows from
Fig. 5 that, at the frequency 5.09 GHz, the isolation is
84 dB and can be made even higher for the increased
number Nf of IDT fingers. A large number of fingers,
however, leads to a severe limitation in the frequency band
of the transmitted signal.

Thus, we show here that, by using a well-known acoustic
and magnetic material such as LiNbO3 in combination with
a Ni film covered by a thin layer of Pt, it is possible to
achieve the transmission of hybridized magnetoacoustic
waves with quite a large level of nonreciprocal isolation.
The characteristics of such a nonreciprocal magnetoacous-
tic isolator could be further improved by using ferromag-
netic materials with lower damping. Promising materials
for this purpose could be CoFe alloys, which, at a certain
composition, show ultralow magnetic damping of αG ¼
0.0014 [57]. Unfortunately, the magnetoelastic properties
and the DMI of these alloys have not been studied yet.

IV. CONCLUSION

In this work, we present a general theory of linear
magnetoelastic coupling between the spin and acoustic
waves propagating in an arbitrary magnetic-nonmagnetic
layered structure and having arbitrary mode profiles. The
developed theory uses the relative weakness of the mag-
netoelastic interaction and reduces the problem to a
standard form of equations for coupled oscillators. The
theory provides a simple method for the calculation of the
magnetoelastic wave dispersion and the damping param-
eters of the coupled waves, as well as for the determination
of the condition of the nonzero magnetoelastic interaction
between the acoustic and spin waves.
Using the developed theory, we demonstrate that the SW

nonreciprocity induced by the IDMI can be “transferred”
to the “hybridized SAWs” existing in piezoelectric–
ferromagnetic–heavy-metal heterostructures. The magne-
toelastic interaction results in the appearance of band gaps
in the spectra of magnetoelastic surface waves, and,
because of the IDMI-induced SW nonreciprocity, these
band gaps exist at different frequency and wave-number
positions for the opposite wave propagation directions. The
widths of these band gaps and the frequency separation
between them can be optimized by a proper selection of the
in-plane magnetization angle (ϕ ≈ π=4 relative to the direc-
tion of the SAW propagation) and the thickness of a
ferromagnetic layer (about 8 to 9 nm for the studied
LiNbO3=Ni=Pt heterostructure), while the central frequency
of the bandgaps can be tunedbyvarying themagnitude of the
bias magnetic field.
We demonstrate in this paper that the transmission

characteristics of the surface magnetoelastic waves can
be substantially nonreciprocal while having relatively low
direct insertion losses. Our calculations show that, for
LiNbO3 covered by a think Ni/Pt layer, it is possible
to achieve an isolation of 10–45 dB while maintaining
the SAW propagation losses below 10–20 dB. The
isolation could be further improved by a selection
of a proper ferromagnetic material having large values
for the magnetostriction and the IDMI, but low magnetic
losses.

FIG. 5. Transmission characteristics of a SAW line with a
monocrystalline Ni film (αG ¼ 0.014) for the opposite directions
of wave propagation [S12 (the dashed line) and S21 (the solid
line)]. The thickness of the Ni layer is tNi ¼ 9 nm, the SAW line
length L ¼ 250 μm, the IDT central frequency f0 ¼ 5.095 GHz,
the number of fingers Nf ¼ 30, and the bias magnetic field Be ¼
45 mT is applied at the angle ϕ ¼ π=4 to the line axis.
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