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This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-
time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and
magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is
accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong
nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general
periodic space-time permittivity- and permeability-modulated media is proportional to the absolute
difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution
for investigation of wave propagation and scattering from general periodic space-time permittivity- and
permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two
adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-
varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We
study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by
analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media,
equilibrated space-time media exhibit different phase and group velocities for forward and backward
harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and
permeability-modulated media is presented, which is based on the finite-difference time-domain technique.
Our analytical and numerical results provide insights into general space-time refractive-index-modulated
media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic
frequency generators.
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I. INTRODUCTION

Reciprocity is a fundamental property of natural materi-
als which governs symmetric wave transmission from a
medium. To achieve nonreciprocity, one is required to
concurrently break the time-reversal and spatial inversion
symmetries. This may be accomplished by artificial struc-
tures, including magnetically biased media exhibiting
asymmetric permittivity and permeability tensors [1–4],
unidirectional transistors [5–7], and nonlinear materials
[8–12]. However, magnetically biased nonreciprocal
devices suffer from requiring bulky magnets and incom-
patibility with integrated circuit technology [13], and
transistor-based nonreciprocal devices are restricted to
low power signals and low frequencies given the limited
power handling and operation frequency of the transistors
[5,7,14]. Although nonlinear materials provide appropriate
nonreciprocity at optical frequencies to high power signals,
low-level signals may reciprocally pass through them [15].
Periodic space-time permittivity-modulated media

have been recently proposed for nonreciprocal wave trans-
mission and soon acquired a surge of scientific interest
thanks to their peculiar way of Lorentz reciprocity

breaking. Such media are endowed with nonreciprocal
periodic photonic transitions [16–18] and amplification
[19–27]. Unidirectional frequency generation is another
interesting property of space-time-modulated media
[18,28], where, in contrast to nonlinear harmonic gener-
ators, the amplitude of space-time harmonics is not
restricted by the classical Manley-Raw relations [24].
This property is due to the violation of energy conservation
in space-time-modulated media, where external energy is
pumped into the system for space-time modulation of the
structure [29–31]. The space-time-modulation technique
exhibits high isolation and compatibility with circuit
technology and integrated optical networks. It has been
recently utilized for the realization of microwave and
optical isolators [17,18,32–34], nonreciprocal metasurfaces
[35–38], nonreciprocal integrated components [30,31], and
pure frequency mixing [28].
The contributions of this study are as follows:
(1) This paper first describes the fundamental limita-

tions of conventional space-time permittivity-
modulated media and accordingly introduces
the equilibrated space-time permittivity- and per-
meability-modulated medium. The equilibrium is
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introduced between the electric and magnetic prop-
erties of the medium by identical spatiotemporal
modulation of its electric permittivity and magnetic
permeability. We show that such an equilibrium
results in quite a few unexplored phenomena which
may be leveraged for realization of a class of highly
efficient microwave and optical integrated compo-
nents. A rigorous analytical solution is derived for a
theoretical description of the scattering and
dispersion relation in space-time permittivity- and
permeability-modulated media.

(2) Previously reported space-time-modulated media
have focused on the periodic spatiotemporal
modulation of the electric permittivity to provide
a moderate nonreciprocal frequency generation,
mostly in the sonic regime. Here, we show that
an equilibrated space-time medium provides highly
enhanced nonreciprocity as well as an enhanced
sonic regime interval thanks to the stronger space-
time transitions to higher-order harmonics. This
highly enhanced nonreciprocal frequency generation
may be practically achieved at the cost of no more
pumped energy into the system, as the space-time
permeability modulation may be achieved via
the same pumped wave that is modulating the
permittivity.

(3) Conventional, nonequilibrated, space-time-
modulated media operate based on spatiotemporal
modulation of the electric permittivity, i.e., ϵðz; tÞ ¼
ϵ0fperðz; tÞ, whereas the magnetic permeability is
constant μ ¼ μ0. Such media, however, exhibit a
space- and time-varying local impedance, i.e.,
ηðz; tÞ ¼ η0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=fperðz; tÞ

p
, resulting in local imped-

ance mismatch in both space and time, which, in
turn, yields local reflections in an infinite number of
space and time interfaces. This paper shows that an
equilibrated space-time-modulated medium exhibits
zero space and time local reflections and operates as
a reflection-free medium in both the subsonic and
sonic regimes.

(4) In contrast to conventional spatially modulated
media, e.g., photonic crystals and Bragg structures,
which exhibit horizontal photonic band gaps,
conventional periodic space-time permittivity-
modulated media introduce asymmetric and oblique
photonic band gaps at the space-time synchroniza-
tion points. The width of these photonic band gaps is
proportional to the pumping strength [18,23]. These
space-time band gaps may occur at different
frequencies and result in significant attenuation
(reflection) of the incident wave [18,23,39]. It is
shown here that an equilibrated space-time medium
exhibits zero-width photonic band gaps. As a result,
the incident wave is transmitted through the
medium, regardless of its frequency.

(5) A numerical scheme is provided for deeper inves-
tigation of electromagnetic scattering for a general
space-time permittivity- and permeability-modulated
medium as well as the investigation of the space-
time permittivity- and permeability-modulated sonic
regime slab.

The paper is organized as follows. Section II characterizes
the media with periodic space-time-modulated permittivity
and permittivity. Section III first derives a rigorous analytical
solution for the electromagnetic fields inside an unbounded
medium with sinusoidally space-time-modulated permittiv-
ity and permeability. This section then drives the dispersion
relation for such a medium and provides the scattered
electromagnetic fields from a slab with sinusoidally space-
time-modulated permittivity and permeability. Section III
presents the numerical simulation of general space-time
permittivity- and permeability-modulated media based on
the finite-difference time-domain (FDTD) technique.
Section IV exhibits the dispersion diagrams of general
space-time-modulated media and investigates the effect of
the permeability modulation of zero band gaps. The numeri-
cal and analytical results for the scattered fields from a slab
with sinusoidally space-time-modulated permittivity and
permeability are presented in Sec. V, and then we investigate
the effect of equilibrium in the space-time modulations of
permittivity and permeability on the nonreciprocity and
reflection. Finally, we conclude the paper in Sec. VII.

II. CHARACTERIZATION OF EQUILIBRATED
SPACE-TIME-VARYING MEDIUM

Figure 1 depicts a generic representation of the periodic
space-time refractive-index-modulated medium with
thickness L, periodic unidirectional space-time-modulated
electric permittivity

ϵðz; tÞ ¼ ϵ0ϵr½1þ δϵ cosðβpz − ωptÞ�; ð1aÞ

and periodic unidirectional space-time-modulated magnetic
permeability

μðz; tÞ ¼ μ0μr½1þ δμ cosðβpz − ωptÞ� ð1bÞ

located between two semi-infinite unmodulated media.
In Eqs. (1a) and (1b), ϵr and μr denote the relative electric
permittivity of the unmodulated slab, δϵ and δμ, respec-
tively, represent the permittivity and permeability pumping
strengths, and ωp and βp are, respectively, the pump wave
temporal and spatial frequencies. The problem with the
incident wave propagating toward the þz direction shown
at the top of Fig. 1 is called the forward problem “F,”
whereas the problem with the incident wave propagating
toward the −z direction shown at the bottom of Fig. 1
is called the backward problem “B.” The modulation
phase velocity, i.e., vp ¼ ωp=βp, may be smaller or greater
than the phase velocity of the background medium
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vr ¼ c=
ffiffiffiffiffiffiffiffi
ϵrμr

p
with c ¼ 1=

ffiffiffiffiffiffiffiffiffi
μ0ϵ0

p
being the speed of light in

vacuum. The ratio between the modulation and background
phase velocities, i.e., γ ¼ vp=vr, represents the space-time
velocity ratio [18]. As a consequence, the pump wave
spatial frequency reads

βp ¼
ωp

ffiffiffiffiffiffiffiffi
ϵrμr

p
cγ

: ð2Þ

The intrinsic impedance of a space-time permittivity-
and permeability-modulated medium reads

ηðz; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
μðz; tÞ
ϵðz; tÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0μr½1þ δμ cosðβpz − ωptÞ�
ϵ0ϵr½1þ δϵ cosðβpz − ωptÞ�

s
; ð3Þ

which represents a space- and time-dependent intrinsic
impedance. For δμ ≠ δϵ, Eq. (3) corresponds to a non-
equilibrated space-time medium with local reflections in an
infinite number of space and time discretized interfaces,
i.e., Rðz0; tÞ ¼ ½ηðz0 þ Δz; tÞ − ηðz0; tÞ�=½ηðz0 þ Δz; tÞ þ
ηðz0; tÞ� and Rðz; t0Þ ¼ ½ηðz; t0 þ ΔtÞ − ηðz; t0Þ�=
½ηðz; t0 þ ΔtÞ þ ηðz; t0 þ ΔtÞ�.
Here, we consider an equilibrated space-time-varying

medium with identical space-time modulations for the
electric and magnetic properties of the medium, i.e.,
δμ ¼ δϵ. Therefore, the intrinsic impedance of an equili-
brated space-time medium in Eq. (3) with permittivity and
permeability functions in Eq. (1) reduces to

ηðz; tÞjδϵ¼δμ
¼ ηeq ¼ η0ηr; ð4Þ

which represents a space-time-independent intrinsic imped-
ance yielding zero local reflections in space and time. Such
an equilibrated space-time-modulated medium may be
represented by a space-time-varying refractive index as

nðz; tÞjδϵ¼δμ
¼ neq ¼ nr½1þ δϵ;μ cosðβpz − ωptÞ�; ð5Þ

where nr ¼ ffiffiffiffiffiffiffiffi
ϵrμr

p
.

To best investigate the effect of equilibration on the
nonreciprocity of the space-time-modulated slab, we
first derive the sonic regime interval for a general periodic
space-time permittivity- and permeability-modulated
medium. In the sonic and quasisonic regimes, where
γ → 1, the forward space-time modes strongly couple to
each other as they acquire close phase velocities and are,
hence, phase matched. In the middle of the sonic regime
interval, where vp ¼ vb and γ ¼ 1, all the forward space-
time modes unite into a single mode and yield a shock wave
by analogy with the sound-barrier breaking in acoustics
[18,22]. However, in the sonic and quasisonic regimes, the
backward space-time modes separate from each other.
Therefore, the space-time-modulated medium exhibits its
maximal nonreciprocity in the quasisonic and sonic
regimes. It may be shown that the sonic regime interval
is proportional to the nonreciprocity of the space-time-
modulated medium, where in a reciprocal space-time-
modulated medium with vanishingly small pumping
strength, the sonic regime interval tends to zero.
To derive the sonic regime interval of a space-time

permittivity- and permeability-modulated medium, we may
follow a similar procedure as in Ref. [18] yielding

γs;l ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ δϵÞð1þ δμÞ

p ≤ γ ≤
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − δϵÞð1 − δμÞ

p ¼ γs;u;

ð6Þ

with γs;l and γs;u being the lower and upper boundaries of
the sonic regime interval. Hence, the sonic regime of an
equilibrated space-time-modulated medium, i.e., δμ ¼ δϵ,
reads

1

ð1þ δϵ;μÞ
≤ γs;eq ≤

1

ð1 − δϵ;μÞ
: ð7Þ

It may be seen from Eq. (7) that the sonic regime interval
of an equilibrated space-time-varying medium is more that
twice the nonequilibrated space-time permittivity-modu-
lated medium with δμ ¼ 0 [18]. Such an enhanced sonic
regime interval represents a highly enhanced quasisonic
nonreciprocity, which we demonstrate later.
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FIG. 1. Schematic representation for electromagnetic scattering
from the space-time permittivity- and permeability-modulated slab.
Because of the unidirectional modulation of both the electric
permittivity an magnetic permeability, the system is nonreciprocal.
Considering identical space-time modulation of electric permit-
tivity and magnetic permeability, i.e., δμ ¼ δϵ, the slab is in space-
time equilibrium, where η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μðz; tÞ=ϵðz; tÞp ¼ η0ηr ¼ const.
Therefore, the forward and backward incident waves propagate
through the slab with zero space-time reflections.
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III. ANALYSIS OF SPACE-TIME PERMITTIVITY-
AND PERMEABILITY-MODULATED MEDIA

A. General field solution and dispersion relation

The electric and magnetic properties of the slab
assume periodic modulation in both space and time, with
spatial and temporal frequencies βp and ωp. Therefore,
considering TMx, Ex, and Hy polarization, the electric and
magnetic fields inside the slab may be expressed in the
form superposition of double-space-time Bloch-Floquet
harmonics as

ESðz; tÞ ¼ x̂e−iðβ0z−ω0tÞ
X∞
n¼−∞

Ene−inðβpz−ωptÞ; ð8aÞ

HSðz; tÞ ¼ ŷe−iðβ0z−ω0tÞ
X∞
n¼−∞

Hne−inðβpz−ωptÞ; ð8bÞ

where β0 and ω0 represent, respectively, the spatial and
temporal frequencies of the fundamental temporal and
spatial harmonics, i.e., n ¼ 0. Since the slab assumes no
variation in the x and y directions, ∂ES=∂x ¼ 0,
∂ES=∂y ¼ 0. Hence, ∇ × ES ¼ ŷ∂Exðz; tÞ=∂z and
∇ ×HS ¼ −x̂∂Hyðz; tÞ=∂z. As a result, the sourceless
Maxwell equations read

∂Exðz; tÞ
∂z ¼ −

∂½μðz; tÞHyðz; tÞ�
∂t ; ð9aÞ

∂Hyðz; tÞ
∂z ¼ −

∂½ϵðz; tÞExðz; tÞ�
∂t : ð9bÞ

We next inject Eqs. (1b), (8a), and (8b) into Eq. (9a) and
take the spatial and temporal derivatives. Afterwards, the
result will be truncated to 2N þ 1 terms, and may be cast in
the matrix form as

E ¼ ZðωÞH; ð10aÞ

H ¼ YðωÞE; ð10bÞ

where E¼ ½E−N � � �E0 � � �EN �T, H ¼ ½H−N � � �H0 � � �HN �,
and

ZðωÞ ¼ η0ηrγ

2
666666664

v−N
δμ
2
v−N 0 � � � 0

δμ
2
v−Nþ1 v−Nþ1

δμ
2
v−Nþ1 � � � 0

0
δμ
2
v−Nþ2 v−Nþ2 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � vN

3
777777775
;

ð10cÞ

YðωÞ ¼ γ

η0ηr

2
666666664

v−N
δϵ
2
v−N 0 � � � 0

δϵ
2
v−Nþ1 v−Nþ1

δϵ
2
v−Nþ1 � � � 0

0 δϵ
2
v−Nþ2 v−Nþ2 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � vN

3
777777775
;

ð10dÞ

where vn ¼ ðω0=ωp þ nÞ=ðβ0=βp þ nÞ. Injecting Eq. (10b)
into Eq. (10a) yields

KðωÞE ¼ 0; ð11aÞ

where

KðωÞ ¼ ½ZðωÞYðωÞ − I�; ð11bÞ

with I being a ð2N þ 1Þ × ð2N þ 1Þ identity matrix. The
eigenvalue problem in Eq. (11a) has nontrivial solutions if

det ½KðωÞ� ¼ 0: ð12Þ

Equation (12) represents the dispersion relation, which is
further studied in Sec. IV

B. Application of boundary conditions

The forward problem assumes a TMyz or Ex incident
electric field EF

I ðz; tÞ ¼ x̂E0 exp½−iðk0z − ω0tÞ�, where E0

represents the amplitude of the incident field and
k0 ¼ ω0=vr. The corresponding incident magnetic field
reads HF

I ðz; tÞ ¼ ŷE0=η1 exp½−iðk0z − ω0tÞ�, with η1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0μr=ðϵ0ϵrÞ

p
the intrinsic impedance of region 1. The

reflected electric field consists of an infinite number of
reflected space-time harmonics propagating in the −z
direction, as EF

Rðz; tÞ ¼ x̂
P

n E
F
rn exp½iðk0nzþ ωntÞ�, and

the corresponding magnetic fields read HF
Rðz; tÞ ¼

−ŷ
P

n E
F
rn=η1 exp½iðk0nzþ ωntÞ�, where k0n ¼ ðω0 þ

nωpÞ=vr. The transmitted electric and magnetic fields
outside the slab may be expressed as EF

Tðz; tÞ ¼
x̂
P

n E
F
tn exp½−iðk0nz − ωntÞ� and HF

Tðz; tÞ ¼ ŷ
P

n E
F
tn=

η3 exp½−iðk0nz − ωntÞ�, where η3 ¼ η1.
To find the unknown coefficients of the electric and

magnetic fields inside the slab, i.e., Enp and Hnp in Eq. (8)
and the unknown coefficients of the electric and magnetic
fields outside the slab EF

rn,HF
rn, EF

tn, andH
F
tn, we enforce the

continuity of the tangential components of the electromag-
netic fields at z ¼ 0 and z ¼ L. Considering the electric and
magnetic fields inside the slab given in Eqs. (8a) and (8b),
the electric field continuity condition between regions 1
and 2 at z ¼ 0, E1xð0; tÞ ¼ E2xð0; tÞ reduces to

SAJJAD TARAVATI PHYS. REV. APPLIED 9, 064012 (2018)

064012-4



δn0E0 þ EF
rn ¼

X∞
p¼−∞

EF
np; ð13aÞ

while the electric field continuity condition between
regions 2 and 3 at z ¼ L, E2xðL; tÞ ¼ E3xðL; tÞ reads

X∞
p¼−∞

EF
npe−jβnpL ¼ EF

tne
−jk0nL: ð13bÞ

Similarly, the magnetic field continuity condition
between regions 1 and 2 at z ¼ 0, H1yð0; tÞ ¼ H2yð0; tÞ
reduces to

ffiffiffiffiffiffiffiffiffi
ϵ0ϵr
μ0μr

r
δn0E0 −

ffiffiffiffiffiffiffiffiffi
ϵ0ϵr
μ0μr

r
EF
rn ¼

X∞
p¼−∞

HF
np; ð14aÞ

and the magnetic field continuity condition between
regions 2 and 3 at z ¼ L, H2yðL; tÞ ¼ H3yðL; tÞ sim-
plifies to

X∞
p¼−∞

HF
npe−jβnpL ¼

ffiffiffiffiffiffiffiffiffi
ϵ0ϵr
μ0μr

r
EF
tne

−jk0nL: ð14bÞ

Following the same procedure, the electric and magnetic
continuity conditions at z ¼ 0 and z ¼ L may be achieved
for the backward problem.

C. Numerical simulation

Figure 2 plots the implemented finite-difference time-
domain scheme for the numerical simulation of space-
time permittivity- and permeability-modulated media. The
medium is discretized to K þ 1 spatial samples and M þ 1
temporal samples with the steps of Δz and Δt, respectively.

We first expand the Maxwell equations in Eqs. (9a) and
(9b). Then, the finite-difference discretized forms for the
electric and magnetic fields may be simplified to

Hyjiþ1=2
jþ1=2 ¼

 
1 − Δt

μ0ji−1=2jþ1=2

μjijþ1=2

!
Hyji−1=2jþ1=2

−
Δt=Δz
μjijþ1=2

ðExjijþ1 − ExjijÞ; ð15aÞ

Exjiþ1
j ¼

 
1 −

Δtϵ0jij
ϵjiþ1=2

j

!
Exjij

−
Δt=Δz
ϵjiþ1=2

j

ðHyjiþ1=2
jþ1=2 −Hyjiþ1=2

j−1=2Þ; ð15bÞ

where μ0 ¼ ∂μðz; tÞ=∂t ¼ −ωpμ0μrδμ sinðβpz − ωptÞ and
ϵ0 ¼ ∂ϵðz; tÞ=∂t ¼ −ωpϵ0ϵrδϵ sinðβpz − ωptÞ.

IV. DISPERSION DIAGRAMS

This section studies the effect of equilibrium in the
electric and magnetic properties of spatiotemporally modu-
lated media. This may be best accomplished by analysis of
the dispersion diagrams of general space-time permittivity-
and permeability-modulated media. Following Ref. [18], it
may be shown that the analytical solution based on the
Bloch-Floquet decomposition of electromagnetic fields in
Sec. III converges everywhere except inside the sonic
regime interval in Eq. (6). Moreover, the accuracy of the
analytical results, i.e., for the dispersion relation in Eq. (12),
the electric field in Eq. (11a), and the magnetic field in
Eq. (10b), depends on the truncation error and is propor-
tional to the number of considered space-time harmonics N
in the analysis, where N → ∞ provides an accurate
solution for all harmonics. However, as it is always desired
to truncate the series in Eqs. (8a) and (8b) at the lowest
possible term, we must then ensure the accuracy of the
solution for the desired harmonics through the periodicity
of the dispersion diagram. Since the slab is periodically
modulated in space and time, its accurate dispersion
diagram will be constituted of an infinite set of periodic
forward straight lines with distancesΔβþ and an infinite set
of periodic backward straight lines with distances Δβ−
[18]. For a given N, the dispersion diagram of the desired
harmonics should be periodic, otherwise, one must increase
the N to achieve a more accurate result. Here, we consider
N ¼ 90 to achieve an accurate solution for at least the first
20 harmonics, i.e., for jnj < 20.
The KðωÞ in the dispersion relation in Eq. (12) is

constituted of ð2N þ 1Þ × ð2N þ 1Þ elements, where

Kn;n ¼ vn −
1

vnγ2
þ δϵδμ

4
ðvn−1 þ vnþ1Þ; ð16aÞ

z

z

z

zΔ z2Δ0 ( 1)K z+ Δ
1j = 2j = 3j = 1j K= +

0t =

t t= Δ

/ 2t t= Δ

0i =

1/2i =

1i =

xE
xE xE xE

xE
xE xE xE

yH yH yH yH

zi = 1M +

xE
xE xE xE

( 1)t M t= + Δ

FIG. 2. General representation of the finite-difference time-
domain scheme for numerical simulation of space-time permit-
tivity- and permeability-modulated media.
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Kn;n�1 ¼
δϵ
2
vn þ

δμ
2
vn�1; ð16bÞ

Kn;n�2 ¼
δϵδμ
4

vn�1; ð16cÞ

considering K1;1 ¼ vn þ δϵδμvnþ1=4 − 1=ðvnγ2Þ and
K2Nþ1;2Nþ1 ¼ vn þ δϵδμvn−1=4 − 1=ðvnγ2Þ. In Eq. (16),
vn−1 ¼ ðω0=ωp þ n − 1Þ=ðβ0=βp þ n − 1Þ and vnþ1 ¼
ðω0=ωp þ nþ 1Þ=ðβ0=βp þ nþ 1Þ. It may be seen from
Eq. (16) that in a space-time permittivity-modulated
medium, i.e., δμ ¼ 0 [18,23], the strength of the synchro-
nization and photonic transitions occurs from the mode n to
its two adjacent modes (lower and upper modes, i.e., n − 1
and nþ 1) and is governed by the term δϵ=2. As a
consequence, increasing the pumping strength δϵ yields
stronger transition between the adjacent space-time modes.
By contrast, as Eq. (16) reveals, in a space-time permit-
tivity- and permeability-modulated medium to any excited
mode n, it makes photonic transitions to its four adjacent
modes (two lower and two upper modes, i.e., n − 1, nþ 1,
n − 2, and nþ 2), leading to much stronger energy
transitions between an infinite number of propagating
modes. Moreover, it may be seen from Eq. (16) that for
a nonzero permeability pumping strength δμ > 0, the
medium provides enhanced coupling and energy transition
between the space-time modes. Furthermore, considering
an equilibrium in electric and magnetic properties of the
medium, i.e., δμ ¼ δϵ in Eq. (16b), photonic band gaps
disappear in the medium.
We first investigate the effect of equilibration on the

photonic band gaps in conventional nonequilibrated space-
time-modulated media. Figure 3 plots the normal incidence
dispersion diagram of a subsonic space-time-modulated
medium (γ ¼ 0.15) computed using Eq. (12) with the
electric permittivity in Eq. (1a) and magnetic permeability
in Eq. (1b). This diagram is formed by the infinite periodic
set of β0=βp − ω0=ωp straight lines labeled by n, p. For a
given frequency, ω0 corresponds an infinite number of
modes labeled by p, themselves composed of an infinite
number of forward and backward space-time harmonics
labeled by n, i.e., β�0p þ nβp;ω0 þ nωp. Each curve rep-
resents a mode excited at a given frequency ω0, where it
also represents the oblique space-time harmonic of another
mode excited at another frequency. For a homogeneous
nonperiodic (unmodulated) medium, δϵ ¼ δμ ¼ 0, n ¼ 0 is
the only remaining curve, and for a vanishingly small
pumping strength δϵ ¼ δμ → 0, the medium is quasihomo-
geneous, where most of the energy remains in p ¼ 0
forward and backward space-time modes.
Figure 3 compares the dispersion diagram of a non-

equilibrated space-time permittivity-modulated medium,
i.e., δϵ ¼ 0.5 and δμ ¼ 0, with the one of the equilib-
rated space-time permittivity- and permeability-modulated

medium, i.e., δϵ ¼ δμ ¼ 0.5. It may be seen in Fig. 3 that
for a nonzero velocity ratio (here, γ ¼ 0.15), the forward
and backward space-time harmonics acquire different dis-
tances, i.e., Δβ� ¼ β�nþ1 − β�n . Particularly, as γ increases,
Δβ− increases and Δβþ decreases. For a static medium,
vp ¼ 0 and both the forward and backward waves see the
static period pstat, and we have Δβ� ¼ Δβ ¼ 2π=pstat.
However, as vp increases, the forward and backward
harmonics acquire different velocities relative to the modu-
lating wave, i.e., vþ ¼ vr − vp and v− ¼ vr þ vp, respec-
tively. This asymmetry between the velocities of the
forward and backward harmonics represents two limits,
vþ ¼ 0 for vp ¼ vr and v− ¼ 2vr for vp ¼ vr, and
the corresponding relative periods read pþ

mov ¼ ∞ for
vp ¼ vr and p−

mov ¼ pstat=2 for vp ¼ vr, i.e.,
p�
mov ¼ pstatvr=ðvr ∓ vpÞ. As a result, at the limit of

γ ¼ 1, the forward harmonics acquire distances
Δβþmov=βp ¼ 0, and the backward harmonics acquire dis-
tances Δβ−mov=βp ¼ 2 [18]. In a conventional, nonequili-
brated, space-time-modulated medium, photonic band gaps
occur at the space-time synchronization points, i.e., at the
intersections of the forward and backward space-time
modes which lie on oblique lines. These photonic band
gaps of the nonequilibrated medium are highlighted with
magenta circles in Fig. 3. This band gap corresponds to
evanescent modes, where the incident wave experiences
high attenuation (reflection) as it propagates through the
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FIG. 3. Effect of equilibrium in electric and magnetic properties
of spatiotemporally modulated media, i.e., δϵ ¼ δμ ¼ 0.5, on the
photonic band gaps introduced by conventional nonequilibrated
space-time permittivity-modulated media (δϵ ¼ 0.5 and δμ ¼ 0)
in the subsonic regime, i.e., γ ¼ 0.15. The results are computed
using Eq. (12) considering the electric permittivity in Eq. (1a) and
magnetic permeability in Eq. (1b). Photonic band gaps of
nonequilibrated medium are highlighted with magenta circles.
It should be noted that the nonreciprocity of space-time-
modulated media is proportional to Δβ− > Δβþ, which is weak
in the subsonic regime.

SAJJAD TARAVATI PHYS. REV. APPLIED 9, 064012 (2018)

064012-6



medium. However, as we turn on the magnetic permeability
modulation with the same pumping strength (δμ ¼ δϵ ¼
0.5), as a result of the equilibrium in the electric and
magnetic properties of the medium, the photonic band gaps
disappear. This means, no matter what the frequency of
the incident wave is, it is allowed to pass through the
equilibrated medium unconditionally.
The effect of the equilibration on the closing of the

photonic band gaps has been highlighted in the dispersion
diagram of the subsonic space-time-varying medium in
Fig. 3. However, its effect on the nonreciprocity is not
apparent in the subsonic regime, as the equilibrated and
nonequilibratedmedia exhibit the samedistance between the
forward harmonics Δβþ and backward harmonics Δβ−.
Here,we aim to demonstrate the effect of equilibration on the
nonreciprocity enhancement of unidirectionally space-time-
modulated media. Figure 4(a) compares the results of the
normal incidence dispersion diagram of nonequilibrated
(δϵ ¼ 0.5 and δμ ¼ 0) and equilibrated (δϵ ¼ δμ ¼ 0.5)
space-time-modulated media in Fig. 3 except for the quasi-
sonic regime, i.e., γ ¼ 0.65. This figure explicitly shows that
increasing γ leads to a significant enhancement in the
nonreciprocity of both cases so that the forward modes have
become closer to each other (Δβþ → 0), whereas the back-
ward harmonics have separated from each other (Δβþ → 2).
However, in this regime, the equilibratedmedium introduces
much stronger nonreciprocity Δβ−=Δβþ as the distance
between the forward modesΔβþ of this medium is less than
twice the one of the nonequilibrated medium.
Figure 4(b) highlights the fundamental forward and

backward harmonics (n ¼ 0) in Fig. 4(a), revealing the
tilt of the forward wave dispersion curves in space-time
permittivity- and permeability-modulated medium for
γ → 1, δϵ > 0, and δμ > 0 (here, δϵ ¼ δμ ¼ 0.5). In con-
trast to the conventional space-time permittivity-modulated
medium, where forward and backward harmonics propa-
gate with the same phase and group velocities, a space-time
permittivity- and permeability-modulated medium exhibits
lower phase and group velocities, i.e., vPH ¼ ω=β and
vGR ¼ ∂ω=∂β, respectively, for forward harmonics. This is
due to the fact that for a given frequency, the momentum of
the space-time modulation (here, the space-time modula-
tion is traveling toward theþz forward direction) is injected
into the medium and couples to forward harmonic waves,
whereas no coupling of the space-time modulation momen-
tum occurs to the backward (opposite) harmonic waves,
and, hence, the backward dispersion curves are unaltered.
Apparently, for a backward −z-propagating space-time
modulation, the backward dispersion curves are tilted while
the forward dispersion curves are unaltered.
The pumping strength is one of the important parameters

of space-time-modulated media which may significantly
affect the dispersion diagram. Figures 5(a) and 5(b) plot the
dispersion diagrams of the nonequilibrated space-time
permittivity-modulated medium (δμ ¼ 0) and equilibrated

space-time-modulated medium (δϵ ¼ δμ) in the quasisonic
regime and for two different pumping strengths, i.e., δ ¼
0.1 and 0.5. It may be seen from Fig. 5(a) that in a non-
equilibrated space-time permittivity-modulated medium,
enhancing the modulation strength from δ ¼ 0.1 to 0.5
has no significant effect on the nonreciprocity; i.e., the ratio
of the distance between the forward and backward har-
monics Δβ−=Δβþ is almost constant for both cases. By
contrast, in an equilibrated space-time-modulated medium
[Fig. 5(b)], enhancing the modulation depth from δ ¼ 0.1
to 0.5 significantly increases the nonreciprocity, as the ratio
of the distance between the forward and backward modes
for δμ ¼ δϵ ¼ 0.5 is almost 3 times that of the one for the
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FIG. 4. Effect of equilibrium in the electric and magnetic
properties of space-time media on the nonreciprocity
(Δβ−=Δβþ) and the forward phase and group velocities in the
quasisonic regime, i.e., γ ¼ 0.65, with the permittivity in Eq. (1a)
and permeability in Eq. (1b) computed using Eq. (12). (a) Com-
parison of periodic dispersion diagrams of conventional non-
equilibrated periodic space-time-modulated medium, i.e.,
δϵ ¼ 0.5 and δμ ¼ 0 corresponding to γs;l ¼ 0.816, with equili-
brated periodic space-time-modulated medium, i.e., δϵ ¼ δμ ¼
0.5 corresponding to γs;l ¼ 0.666. Photonic band gaps of non-
equilibrated medium are highlighted with magenta circles. (b) Tilt
of the forward lines in the dispersion diagram of equilibrated
periodic space-time-modulated medium in (b) is highlighted.
Such an asymmetric tilt yields a decrease of the phase and group
velocities for the forward harmonics (different velocities for
forward and backward harmonics).
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same medium with δμ ¼ δϵ ¼ 0.1, and, hence, a substantial
number of forward space-time modes contribute to the
fields.
Finally, Figs. 6(a) and 6(b) show the photonic band gaps

of the nonequilibrated space-time permittivity-modulated
medium for two different pumping strengths and velocity
ratios, i.e., (δϵ ¼ 0.5, γ ¼ 0.65) and (δϵ ¼ 0.2, γ ¼ 0.8).
Clearly, no photonic band gap exists in the equilibrated
case. These figures explicitly demonstrate the design
flexibility of the equilibrated space-time-modulated
medium as follows. The equilibrated medium with low
pumping strength of δμ ¼ δϵ ¼ 0.2 with γ ¼ 0.8 introduces
the same amount of nonreciprocity (Δβþ, where Δβ− → 2
is almost constant for both cases) as δμ ¼ δϵ ¼ 0.5. This
property is very important, as it practically represents
saving an important amount of pumping wave energy.

V. TRANSMISSION AND REFLECTION

This section provides a comparison between the wave
scattering from equilibrated space-time-modulated and the
conventional space-time permittivity-modulated medium.
The electromagnetic scattering from such a slab is studied
using the FDTD simulations presented in Sec. III C.
We first investigate the scattering from the conventional,
nonequilibrated, space-time-modulated slab with δϵ > 0
and δμ ¼ 0. Next, we compare the results with those
of an equilibrated space-time-modulated slab, where
δϵ ¼ δμ > 0.
Consider a plane wave with frequency ω0 ¼ 2π ×

1.5 GHz impinging on a slab with conventional sinus-
oidally space-time-modulated permittivity in Eq. (1), with
δϵ ¼ 0.02 and δμ ¼ 0. The slab assumes ωp ¼ 2π ×
0.2 GHz, L ¼ 20λ0, and velocity ratio γ ¼ 1. Figure 7(a)
plots the FDTD numerical results for the forward problem
amplitude of the scattered electric fields from this slab. In
this scheme, a point source is located at z ¼ z0 and shines a
plane wave toward the þz direction at fundamental
frequency ω0 (n ¼ 0). As the wave impinges to the slab
interface at z ¼ 0 and propagates through it, part of the
wave passes through the slab while generating space-time
harmonic waves at n < 0 and n > 0. However, due to the
space-time reflections, part of the wave reflects back
toward the −z direction, travels toward the −z-direction,
passes the sources, and is absorbed at the left boundary of
the simulation domain.
Figure 7(b) plots the same FDTD numerical results but

for an equilibrated space-time permittivity- and permeabil-
ity-modulated slab in Fig. 1, with weak pumping strength
of δμ ¼ δϵ ¼ 0.02. The slab parameters are the same as in
Fig. 7(a) except for the nonzero permeability modulation of
δμ ¼ 0.02. As the incident wave propagates through the
slab, it generates strong space-time harmonics. By contrast
with the slab in Fig. 7(a), here none of the space-time
harmonics reflect back toward the −z direction due to the
equilibration in the space-time modulation of the electric
and magnetic properties of the medium. Negligible
reflection may be seen in Fig. 7(b), which is due to the
sampling error in the numerical simulation scheme, i.e.,
Δz ¼ λ0=60 ≠ 0 and Δt ¼ Δz=c ≠ 0.
Figure 7(c) compares the spectra of the transmitted

space-time harmonics (for the forward problem wave
incidence) for the conventional and equilibrated space-
time-modulated slabs with the time-domain response,
respectively, in Figs. 7(a) and 7(b). It may be seen from
this figure that the equilibrated slab provides the required
momentum for a strong transition of the energy from the
fundamental harmonic at n ¼ 0 to higher-order space-time
harmonics, i.e., at n ¼ � � � ;−2;−1;þ1;þ2; � � �, where the
amplitude of the fundamental harmonic is significantly
weakened, i.e., lower than −19 dB. In contrast, the conven-
tional slab does not provide the required momentum for
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FIG. 6. Comparison of the dispersion diagrams for the quasi-
sonic regime of nonequilibrated space-time-modulated medium
(δμ ¼ 0) and equilibrated space-time-modulated medium
(δμ ¼ δϵ), with the permittivity in Eq. (1a) and permeability in
Eq. (1b) computed using Eq. (12). (a) γ ¼ 0.65 (γs;l ¼ 0.816 for
nonequilibrated medium and γs;l ¼ 0.666 for the equilibrated
medium) with δμ ¼ 0.5 and δϵ ¼ 0.5. (b) γ ¼ 0.8 (γs;l ¼ 0.913
for nonequilibrated medium and γs;l ¼ 0.833 for equilibrated
medium) and δμ ¼ 0.2 and δϵ ¼ 0.2.
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FIG. 5. Effect of pumping strength enhancement on the
dispersion diagrams of periodically space-time-modulated media
with the electric permittivity in Eq. (1a) and magnetic permeabil-
ity in Eq. (1b) computed using Eq. (12) for γ ¼ 0.65. (a) Non-
equilibrated space-time-modulated medium (δμ ¼ 0) with the
modulation strengths of δϵ ¼ 0.1 and δϵ ¼ 0.5. (b) Equilibrated
space-time-modulated medium with pumping strengths of
δμ ¼ δϵ ¼ 0.1 and δμ ¼ δϵ ¼ 0.5.
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strong transition of the energy to higher-order space-time
harmonics, and most of the energy is still residing in the
fundamental harmonic.
We next compare the backward problem wave scattering

from the conventional and equilibrated space-time slabs in
Figs. 7(a) and 7(b), respectively. In Fig. 8(a), a plane wave

with frequency ω0 ¼ 2π × 1.5 GHz impinges on the con-
ventional space-time slab [same slab as in Fig. 7(a)] with
sinusoidally space-time-modulated permittivity in Eq. (1),
with δϵ ¼ 0.02 and δμ ¼ 0. Here, the point source is located
at z ¼ z0 and shines a plane wave toward the−z direction at
fundamental frequency ω0 (n ¼ 0). As the wave impinges
to the slab interface at z ¼ L, it propagates through the
slab and reaches to the left side while generating quite weak
and negligible space-time harmonic waves at n < 0 and
n > 0. However, due to the space and time local reflections,
part of the wave reflects back toward the þz direction and

1.5

−1

0.5

0

0.5

1

1.5

0 Lz 0z

(
)

EE

E
z

E

0 0,ε μ
0 0,ε μ ( , ),z tε ( , );z tμ

maxz

0μδ =        0.02εδ =,

(a)

1.5

−1

0.5

0

0.5

1

1.5

0 Lz 0z

B
(

)

EE

B

B
I

B
T

B
S

E
z

B
I

B
T

B
SE

0 0,ε μ
0 0,ε μ ( , ),z tε ( , );z tμ

maxz

μδ =        0.02εδ =

(b)

–4 –3 –2 –1 0 +1 +2 +3 +3
−30

−20

−10

0

T
(d

B
W

)
E

B

ConventionalEquilibrated

–4 –3 –2 –1 0 +1 +2 +3 +4
30

20

10

0

I
(d

B
W

)
E

n n(c)

FIG. 8. FDTD numerical simulation results for the backward
problem electromagnetic scattering from a sinusoidally space-
time modulated slab as in Fig. 7. (a) Time-domain response for
the scattering from the conventional permittivity-modulated slab
(δμ ¼ 0) showing the reflected wave on the right side before
z ¼ z0, and the wave passes through the slab with nearly no
alteration. (b) Time-domain response for the scattering from the
equilibrated permittivity- and permeability-modulated slab
(δμ ¼ δϵ ¼ 0.02) showing zero reflection on the right side, and
the wave passes through the slab with nearly no alteration.
(c) Comparison of the backward problem harmonic generation
in conventional and equilibrated space-time modulated media.
Frequency domain response for the incident wave (right side) and
transmitted wave (left side).
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FIG. 7. FDTD numerical simulation results for the forward
problem electromagnetic scattering from a sinusoidally space-
time-modulated slab with δϵ ¼ 0.02. The parameters of the
incident wave and the slab are ω0 ¼ 2π × 1.5 GHz, ωp ¼ 2π ×
0.2 GHz, L ¼ 20λ0, and γ ¼ 1. (a) Time-domain response for the
scattering from the conventional permittivity-modulated slab
(δμ ¼ 0) showing the reflected wave on the left side before
z ¼ z0, whereas the transmitted wave on the right side includes
weak space-time harmonics. (b) Time-domain response for the
scattering from equilibrated permittivity- and permeability-
modulated slab (δμ ¼ δϵ ¼ 0.02) showing the zero reflection
on the left side, whereas the transmitted wave on the right side is
composed of strong space-time harmonics. (c) Comparison of the
forward problem harmonic generation in conventional and
equilibrated space-time-modulated media. Frequency domain
response for the incident wave (left side) and transmitted wave
(right side). Particularly, n ¼ 0 corresponds to the fundamental
harmonic at ω0 ¼ 2π × 1.5 GHz, and n ¼ þ1 corresponds to the
first higher-order harmonic at ωþ1 ¼ ω0 þ ωp ¼ 2π × ð1.5þ
0.2Þ GHz.
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reaches to the right side of the simulation domain at zmax.
Figure 8(b) presents the backward wave scattering from the
equilibrated space-time slab [same slab as in Fig. 7(b)] with
sinusoidally space-time-modulated permittivity and per-
meability in Eq. (1), i.e., δμ ¼ δϵ ¼ 0.02. Here, similar to
the backward incidence to the conventional slab in
Fig. 8(a), the wave impinges to the slab interface at z ¼
L and propagates and passes through the slab while
generating very weak and negligible space-time harmonic
waves at n < 0 and n > 0. However, no space and time
reflections are seen on the right side of the figure.
Figure 8(c) plots the comparison of the backward

problem frequency domain spectra of the transmitted
space-time harmonics from the conventional and equili-
brated space-time-modulated slabs, with the time-domain
response, respectively, in Figs. 8(a) and 8(b). This figure
shows that both the equilibrated and conventional space-
time slabs provide nearly the same response for the back-
ward problem, where the fundamental harmonic at n ¼ 0 is
transmitted through these slabs with quite negligible
transition to higher-order harmonics with most of the
energy residing with the fundamental harmonic at n ¼ 0
(ω0 ¼ 2π × 1.5 GHz). Comparison of the wave transmis-
sions for forward and backward problems, respectively, in
Figs. 7 and 8, reveals the highly enhanced nonreciprocity of
the equilibrated space-time slab, as well as its zero space
and time reflections. Such reflection-free and strong non-
reciprocal frequency generation is expected to pave the way
for developing a class of integrated nonreciprocal devices
as in Refs. [17,30,31].
Figures 9(a) and 9(b) compare the isolation between the

forward and backward transmissions for each harmonic
through the conventional [Figs. 7(a) and 8(a)] and equili-
brated [Figs. 7(b) and 8(b)] space-time slabs. It may be seen
from Fig. 9 that equilibrium in the electric and magnetic

properties of the space-time-modulated slab has signifi-
cantly enhanced the nonreciprocity of the harmonics.
Particularly, the nonreciprocity of the fundamental har-
monic (which is the most important harmonic and desired
to be highly isolated [18,28,31]) is more than 360%
enhanced, where the nonreciprocity of most of the har-
monics is more than 220% enhanced. Nonreciprocal sub-
harmonic generation represents one of the most interesting
applications of space-time-modulated media to be further
studied [28], where the nonreciprocity of higher-order
harmonics, e.g., n ¼ þ6 and n ¼ þ7, is highly coveted.
To highlight the space and time reflections in conven-

tional space-time slabs and to best investigate the reflection
from equilibrated space-time slabs, we next increase the
pumping strength to δ ¼ 0.5. Figures 10(a) and 10(b) plot
the forward problem wave reflection, respectively, from
conventional and equilibrated slabs. It is obvious that the
conventional slab exhibits strong space and time local
reflections shown by ER, whereas the equilibrated slab
presents no space and time local reflections. Figures 10(c)
and 10(d) plot the backward problem wave reflection,
respectively, from the same conventional and equilibrated
slabs. It may be seen from this figure that backward
excitation of the conventional space-time slab yields space
and time reflections nearly similar and equal to those of the
forward problem.

VI. SPECULATION ON PRACTICAL
IMPLEMENTATION SCENARIOS

Practical implementation of the space-time permittivity-
and permeability-modulated slab in Fig. 1 represents an
interesting topic of research. Spatiotemporal modulation of
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FIG. 9. Comparison of the nonreciprocity in conventional
and equilibrated space-time-modulated slabs in Figs. 7 and 8.
(a) Isolation between forward and backward transmissions for
each harmonic, where n ¼ 0 represents the fundamental har-
monic at ω0 ¼ 2π × 1.5 GHz, n ¼ þ1 corresponds to the first
higher-order harmonic at ωþ1¼ω0þωp¼2π ×ð1.5þ0.2ÞGHz,
etc. (b) Nonreciprocity-enhanced equilibrated space-time slab in
comparison with the nonreciprocity provided by the conventional
space-time slab. This result is achieved by comparing the results
in (a), where the vertical axis is in logarithmic scale.
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FIG. 10. Electromagnetic wave incidence and reflection from
the same space-time-modulated slab in Figs. 7–9 only with
stronger modulation strength of δ ¼ 0.5. We consider such a
strong modulation strength only to highlight the space and time
reflections in conventional space-time media. (a) Forward in-
cidence to the conventional space-time slab with δμ ¼ 0 and
δϵ ¼ 0.5. (b) Forward incidence to the equilibrated space-time
slab with δμ ¼ δϵ ¼ 0.5. (c) Backward incidence to the conven-
tional space-time slab with δμ ¼ 0 and δϵ ¼ 0.5. (d) Backward
incidence to the equilibrated space-time slab with δμ ¼ δϵ ¼ 0.5.
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the permeability is experimentally demonstrated in
Ref. [21], and the one for permittivity is experimentally
demonstrated in Refs. [18,28,31,34,40,41]. Recently, in
Ref. [28], a slab with spatiotemporally varying permittivity
and spatially varying permeability was experimentally
implemented, yielding a quasiperfect frequency mixing.
Here, we provide some speculations about practical

implementation scenarios of spatiotemporally varying per-
mittivity- and permeability-modulated slabs. Even though
such a spatiotemporally varying medium may seem hard to
realize, the author believes that there exist quite a few ways
to accomplish it, especially with the advent of metamate-
rials and the fact that as shown in Sec. V, such a slab is
capable of providing giant nonreciprocity for a weak
modulation, e.g., δμ ¼ δϵ ¼ 0.02.
Figure 11 sketches a circuit model for the realization of

the sinusoidally space-time permittivity- and permeability-
modulated slab in Fig. 1. This circuit is formed by an array
of subwavelength-spaced unit cells, each of which is
composed of a variable inductor and a variable capacitor,
respectively, in series and parallel with the intrinsic
inductance and capacitance of the transmission line. A
sinusoidal harmonic wave, i.e., VP cosðωPtÞ is pumped into
the system and propagates toward the þz direction, yield-
ing VP cosðβPz − ωPtÞ and spatiotemporally modulates the
variable inductors and variable capacitances. As a conse-
quence, such a structure with highly enhanced nonreci-
procity shown in Sec. V requires the same pumped energy
as a conventional space-time permittivity-modulated struc-
ture [18,40,41]. The realization of a microwave and optical
version of this circuit may be accomplished by using
varactors or p-n junctions [18,40] (as variable capaci-
tances), and varactor- and thyristor-based variable induc-
tors [42–48].
Another interesting scheme for the realization of a

permeability- and permittivity-modulated slab consists
of an array of cascaded omega metamaterials [49] loaded
with varactors. Omega metamaterials interact with both
electric and magnetic components of light and represent a
class of metamaterials with tailored permittivity and
permeability.

Figure 12 shows another potential approach for the
realization of a space-time permittivity- and permeabil-
ity-modulated structure. This circuit model is composed of
a coupled transmission line with space-time-modulated
mutual inductance and mutual capacitance, i.e., Lmðz; tÞ
and Cmðz; tÞ, respectively. Such a structure may be realized
following the technique reported in Ref. [21] or using a
coupled microstrip transmission line and loaded with array
of subwavelength-spaced varactors in a way to provide
variable inductance and capacitances. In this scheme, one
may utilize varactor-loaded omega or ring particles for
achieving permeability modulation.
It should be noted that in a space-time-modulated

medium, the modulation frequency is usually set at low
radio frequencies, e.g., at the microwave regime or lower,
even if the operation frequency is at terahertz or optical
frequencies [18,40]. As a result, varactor diodes or other
semiconductors may represent the best choice for the
realization of the required variable permittivity and
permeability.

VII. CONCLUSIONS

We investigate the effect of equilibrium in the electric
and magnetic properties of periodic space-time-modulated
media. We show that a space-time permittivity- and
permeability-modulated medium with identical electric
and magnetic modulation strengths, i.e., an equilibrated
space-time-modulated medium, exhibits giant linear non-
reciprocity, zero space-time reflections, and zero photonic
band gap. Interestingly, such an enhanced nonreciprocity is
accompanied by a larger sonic regime interval which
provides extra design freedom for achieving strong non-
reciprocity by a weak pumping strength. A rigorous
analytical solution is derived for the investigation of wave
propagation and scattering from general periodic space-
time permittivity- and permeability-modulated media.
Moreover, highly enhanced nonreciprocity and zero band
gap in an equilibrated space-time-modulated medium are
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FIG. 11. Circuit model for a sinusoidally space-time permit-
tivity- and permeability-modulated transmission line in Fig. 1. In
this scheme, the pump wave spatiotemporally modulates both the
permittivity (variable capacitors) and permeability (variable
inductors) of the structure.
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FIG. 12. Circuit model for a sinusoidally space-time permit-
tivity- and permeability-modulated coupled transmission line. In
this scheme, the pump wave spatiotemporally modulates the
mutual permittivity and the mutual permeability of the coupled
transmission line represented by variable mutual capacitors and
variable mutual inductors, respectively.
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exhibited in the dispersion diagrams. Furthermore, a numeri-
cal simulation scheme is implemented providing more
insight into the wave scattering from general periodic
space-time permittivity- and permeability-modulated media.
This theoretical and numerical demonstration of reflection-
free enhanced-nonreciprocity space-time-modulated media
represents the first step in developing a class of nonrecip-
rocal devices.
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