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We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain
states and find their related high-efficiency energy-dissipation mechanism using finite-element micro-
magnetic simulations. We also make analytical derivations that provide deeper physical insights into the
magnetization dynamics associated with Gilbert damping parameters under applications of time-varying
rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we
find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes
remarkably with the strength of rotating fields and static fields for given damping constants. The associated
magnetization dynamics are well interpreted with the help of the numerical calculation of analytically
derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic
nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance
frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic
damping constant. We provide a better and more efficient means of achieving specific loss power that can
be implemented in magnetic hyperthermia applications.
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I. INTRODUCTION

Magnetic nanoparticles are of increasing interest
due to their unique physical properties, such as super-
paramagnetism [1,2], macroscopic quantum tunneling of
magnetizations [3,4], the exchange-bias effect [5], and
particle-size-dependent static and dynamic properties.
These characteristics of magnetic nanoparticles make them
very attractive for a rich variety of applications, such as
high-density data storage [6,7], spintronic devices [8–10],
and bioapplications including magnetic hyperthermia and
magnetic-resonance-imaging contrast agents [11–14]. As
an example, the magnetization dynamics of nanoparticles
with vortex spin spirals exhibit unique dynamic modes
such as resonant vortex-core precession motion [15] and
reversals [16]. Also, soft magnetic nanoparticles in single-
domain states exhibit collective Larmor precession of
individual spins. In cases where the frequency of time-
varying magnetic fields equals the Larmor precession
frequency, individual magnetic moments efficiently absorb
energies that are transferred from externally applied ac
magnetic fields, after which those energies dissipate into

other forms due to their intrinsic damping of given
materials. Such energy dissipations of magnetic nanopar-
ticles are of crucial importance in low-power-consumption
magnetization switching in magnetic memory devices, and
also in hyperthermia bioapplications for high specific loss
power (SLP) [11,12,17]. Externally applied magnetic fields
in the several-hundred-kilohertz range can be absorbed by
magnetic nanoparticles and then dissipated via Brownian
rotation of the nanoparticles and/or Néel relaxation [1] of
the magnetizations inside them [18,19]. It has been reported
that the SLP for the aforementioned mechanisms ranges
between 0.5 and 2 kW=g. Contrastingly, Larmor preces-
sion motions of individual spins in magnetic particles
excited by relatively high-frequency (several-hundred-
megahertz) ac magnetic fields can give rise to high-
efficiency energy dissipation into a different form of energy
(e.g., heat). Thus, their mechanism-related SLP would be
higher than those of other mechanisms.
In this work, we explore robust nonlinear magneti-

zation dynamics and the associated high-efficiency
energy-dissipation effect in soft magnetic nanospheres
in single-domain states, as excited by oscillating mag-
netic fields of different frequencies and amplitudes
under given static magnetic fields. We conduct micro-
magnetic simulations to explore the magnetization
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dynamics of soft magnetic particles and additional
analytical derivations of the energy-dissipation rate for
the steady-state regime by varying the frequency and
strength of rotating magnetic fields for different Gilbert
damping constants and static magnetic field strengths.
All of the simulation results and analytical calculations
agree well quantitatively. The dynamic origin of such a
high-efficiency energy-dissipation mechanism is com-
pletely different from those of the typical ones used in
bioapplications. We expect that this efficient, very high
energy-dissipation rate will prove implementable in
magnetic hyperthermia applications.
The paper is organized as follows. In Sec. II, we describe

our modeling and relevant micromagnetic simulations. The
dynamic characteristic motions of magnetizations and
magnetic torque terms numerically calculated from the
micromagnetic simulation data for nonresonant and reso-
nant cases are described in Sec. III, as are the corresponding
analytical calculations in Sec. IV. The energy-dissipation
rate of single-domain nanospheres obtained from the
micromagnetic simulations is given in Sec. V, and the
analytical derivations are provided in Sec. VI. The maxi-
mum value of the resonant energy-dissipation rate also is
calculated and compared to those obtained from other
models in terms of typical SLP in the field of magnetic
hyperthermia applications. We summarize our findings
in Sec. VII.

II. MICROMAGNETIC SIMULATIONS

In this paper, we conduct finite-element micromagnetic
simulations of soft magnetic permalloy (Py, Ni80Fe20)
nanospheres in single-domain states, the diameters of
which are set to 2R ¼ 10, 20, and 30 nm. To numerically
solve dynamic motions of magnetizations (M, a vector
quantity), we use the FEMME code (version 5.0.9) [20] that
utilizes the Landau-Lifshitz-Gilbert (LLG) equation

dM
dt

¼ −γ½M ×Heff � þ
α

Ms

�
M ×

dM
dt

�
; ð1Þ

where Heff is the effective field, Ms is the saturation
magnetization value, α is the dimensionless Gilbert damp-
ing constant, and γ is the gyromagnetic ratio. The effective
field consists of the exchange, the magnetostatic, the
magnetocrystaline anisotropy, and Zeeman fields. The
magnetic parameters corresponding to the Py material are
as follows: saturation magnetization Ms ¼ 860 emu=cm3,
exchange stiffness A ¼ 1.3 × 10−6 erg=cm, gyromagnetic
ratio γ ¼ 2π × 2.8 radMHz=Oe, and zero magnetocrystal-
line anisotropy. To avoid errors inherent to representation
of a spherical geometry with a set of polyhedron cells, we
discretize the surfaces of the nanospheres into triangles of
roughly equal area using hierachical triangular mesh [21],
and the inner volume into tetrahedron elements (mesh size
≤3 nm) [see Fig. 1(a)].

Through relaxation from initially saturated magnetiza-
tions oriented in the þz direction for the Py nanospheres,
we obtain uniformly magnetized single-domain ground
states for each diameter: 2R¼10, 20 [Fig. 1(b)], and 30 nm.
For the Py spheres, the single-domain states are maintained
up to 2R ¼ 35 nm as a result of competition between
strong exchange (short-range) and weak dipole-dipole
(long-range) interactions in such nanoscale geometrical
confinements. Because the spheres are magnetically iso-
tropic insofar as there are no other sources of anisotropy
[22], uniform magnetizations can reorient to the direction
of applied static magnetic fields. It is well known that such
single-domain magnetic particles exhibit collective Larmor
precession motions of individual spins around the axis of a
static magnetic field with characteristic frequency [15].
Ferromagnetic resonance [22,23] occurs in such a single-
domain magnetic particle as a collective precession motion
of individual spins around the static magnetic-field axis.
In a given isotropic system, the resonance frequency is
given as

fL ¼ ðγ=2πÞHdc; ð2Þ

where Hdc is the static field strength [15,23]. Note that the
resonance frequency of the magnetic thin film changes with
the axis about which the magnetizations precess, but the
resonance frequency of sphere model fL ¼ ðγ=2πÞHdc
does not change with the magnetization orientation because
the demagnetization field in the sphere model is the same

FIG. 1. (a) Finite-element sphere model of diameter
2R ¼ 10–30 nm. (b) Single-domain sphere model of diameter
2R ¼ 20 nm under a circular-rotating field and a static field.
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for all field directions and for the precession of the uniform
magnetizations [22].

III. CHARACTERISTIC DYNAMIC MOTIONS

To investigate the Py nanospheres’ characteristic modes
of coherent magnetization dynamics, we apply a static field
Hstat ¼ Hdcẑ in the þz direction, which allows for the
reorientation of the magnetizations in the þz direction.
Since the Larmor precession motion of magnetizations is
counterclockwise (CCW) in its rotation sense, we choose
the CCW basis of circular-rotating magnetic fields on the
x-y plane, as described by Hrot ¼ Hac cosð2πfCCWtÞx̂þ
Hac sinð2πfCCWtÞŷ, with the field strengthHac and the field
frequency fCCW [see Fig. 1(b)]. For 2R ¼ 20 nm under
Hdc ¼ 100 Oe, Fig. 2 shows the characteristic precession
motions’ unit vector m¼M=Ms of the uniform magneti-
zations excited by three different frequencies, fCCW¼200,
280, and 360 MHz, where Hac ¼ 4, 5, and 6 Oe, respec-
tively. Since the Larmor frequency for the Py sphere of

2R¼20nm under a given field strength of Hdc¼þ100Oe
is equal to fL ¼ 280 MHz, in accordance with Eq. (2), the
application of fCCW ¼ 200 and 360 MHz would lead to
nonresonant excitations, whereas the application of
fCCW ¼ 280 MHz leads to resonant excitations. At non-
resonance excitations [see Figs. 2(a) and 2(c)], the in-plane
mx and my components are small, while mz is almost close
to unity, indicating that the precession motions of the
magnetizations occur while keepingm in the þz direction.
On the other hand, at resonance excitations [see Fig. 2(b)],
the precession motions occur with relatively large in-plane
m components, even for the very small field strengths of
Hac ¼ 4, 5, and 6 Oe. All of the dynamic motions for the
individual cases finally reach their corresponding steady
states with specific mz values according to the given Hac
value. All of themz values in the steady states also decrease
with increasing Hac values until Hac ¼ 5 Oe. Beyond the
field magnitude Hac ¼ 5 Oe, the mz value becomes zero,
indicating that all of the final steady states are in the
precession motion ofm on the x-y plane, i.e., the equator of
the sphere. On the other hand, at Hac ¼ 6 Oe, for example,
them periodically oscillates (switches) between theþz and
−z directions before converging to the precession motion
exactly on the equator, i.e., keepingmz ¼ 0. It is interesting
to further examine the frequency of the m switching with
varying Hac values, as shown in Fig. 2(d). As evident from
the simulation results (the symbols), the periodic switching
of m starts when Hac reaches αHdc for given values of Hdc

and α. The existence of a threshold field strength Hth
ac ¼

αHdc is explained below according to the steady-state
torque balance. For the cases where Hac ≫ αHdc, the
dynamics are characterized by the fact that the reversal
frequency frev is proportional to Hac, as expressed by
frev ¼ ðγ=2πÞHac (indicated by the red solid line).

A. Torque balance interpretation

In order to understand the distinct dynamic motions
occurring for different Hac values, we take into account the
magnetic torque balance. As shown in Fig. 3(a), the static
field Hstat acting on m leads to the static field torque τstat
that allows for the precession of magnetizations around the
static field. The rotating field Hrot results in the torque τrot
that determines the direction of m with respect to the static
field direction in balance with the intrinsic damping torque
τdamp [see Fig. 3(a)]. The torque balance equation can be
derived from the LLG equation as

τstat ¼ −m ×Hstat;

τrot ¼ −m ×Hrot;

τdamp ¼
α

γ
m ×

dm
dt

: ð3Þ

Here, we consider only the external magnetic fields for
Heff because, for a single-domain spherical nanoparticle,
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FIG. 2. Temporal evolution of x, y, and z components of m
for different strengths of circular-rotating fields Hac ¼ 4, 5, and
6 Oe for (a) a nonresonant case (fCCW ¼ 200 MHz), (b) a
resonant case (fCCW ¼ 280 MHz), and (c) a nonresonant case
(fCCW ¼ 360 MHz). (d) frev obtained by a FFT of the simulation
results of mz as a function of Hac. The symbols with the black
solid line denote the micromagnetic simulation results, while the
red solid lines correspond to frev ¼ ðγ=2πÞHac. The static field
strength Hdc ¼ 100 Oe and damping constant α ¼ 0.05 are used
for all of the simulations shown in this figure.
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neither the exchange field nor the demagnetization field
varies with the orientation of m. The torque term τstat has
no effect in determining the z component torque balance
because it is always on the x-y plane; consequently, its z
component is absent. Therefore, the z-component torque
balance in the steady state always holds for the condition
τ̄rot;z þ τ̄damp;z ¼ 0. Hereafter, the bar over the symbols
indicates the value corresponding to the steady state of the
system. According to Eq. (3) and the temporal magneti-
zation variation obtained in the simulations, we calculate
[see Fig. 3(b)] the x, y, and z components of τrot and τdamp

as a function of time for different values of Hac ¼ 4, 5, and
6 Oe for the given values of 2R ¼ 20 nm, Hdc ¼ 100 Oe,
and α ¼ 0.05, and the resonance excitation fCCW ¼ fL ¼
280 MHz, under the same conditions as are shown in
Fig. 2(b). Hereafter, we focus on only the z-component
torques because they determine the mz values in the steady
states during their precession motions. The jτrot;zj value for
Hac ¼ 4 and 5 Oe continuously increases with time and
then reaches its steady-state value, jτ̄rot;zj. However, as for
Hac ¼ 6, jτrot;zj gradually increases and reaches its maxi-
mum value, then starts to oscillate with its large amplitude.
This large oscillation of τrot;z finally converges to its steady-
state value, τ̄rot;z. Also, τdamp;z shows similar behaviors as
τrot;z does, but the signs are opposites. In the case of steady-
state magnetization dynamics, τ̄rot;z and −τ̄damp;z balance
each other. Since jτrot;zj and jτ̄damp;zj vary with Hac, it is

worthwhile to plot their relation as in Fig. 3(d). jτ̄rot;zj
increases with Hac until Hac approaches the value of αHdc,
then reaches its saturation value even with a further increase
above the specific field strength Hth

ac ¼ αHdc. This thresh-
old field strength is already shown in the relation of frev
versus Hac [see Fig. 2(c)]. On the basis of the steady-state
torque balance, we obtain the angles θ̄ and ϕ̄ defined in
Fig. 3(e) as a function of Hac. In the cases where
Hac ≥ αHdc, θ̄ always is maintained at 90°, indicating
the processional motion of m on the x-y plane (the
equator). For Hac < αHdc, m and the rotating field vector
are not coplanar with respect to the plane ofm and the static
field, as shown in Fig. 3(a). However, as Hac is much larger
than the threshold field strength Hth

ac ¼ αHdc, m rotates
coherently with Hrot on the x-y plane.

IV. ANALYTICAL DERIVATION OF
MAGNETIZATION DYNAMICS

To understand the underlying physics of the magneti-
zation dynamics and associated torque behaviors obtained
from the micromagnetic simulations, we additionally
derive analytical forms from the LLG equation. By multi-
plying m on both sides of Eq. (1), we obtain

dm
dt

¼ −γ0½m ×Hext� þ γ0α½½m ×Hext� ×m�; ð4Þ

(a)

(d) (e)

(b)

(c)

-

de
g

FIG. 3. (a) Schematic illustration of dy-
namic relationship between the macrospin
(uniform magnetization) and the external
static field and time-varying circular-
rotating field. Hrot is always on the plane
perpendicular to the static field direction.
The spherical angles for magnetization vec-
torm are defined in the figure; θ ismeasured
in respect to Hstat and ϕ in respect to Hrot.
Thedirectionsof the principal torquevectors
τstat,τrot, andτdamp are also shown.Temporal
evolution of the x (black), y (red), and z
(blue) components of (b) τrot and (c) τdamp

for different strengths of circular-rotating
fields Hac ¼ 4, 5, and 6 Oe in a resonant
case (fCCW ¼ 280 MHz). (d) Steady-state
values of z components of jτrotj and jτdampj
as a function ofHac. (e) Steady-state values
of θ and ϕ as functions ofHac. The symbols
denote the micromagnetic simulation re-
sults, while the solid lines correspond to
the analytical calculation data. The static
field strength Hdc ¼ 100 Oe and damping
constant α ¼ 0.05 are used for all of the
simulations shown in this figure. The error
bars of the simulation values of the torques
and angles are plotted for possible �1%
errors that could occur in themicromagnetic
simulation.
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with γ0 ¼ γ=ð1þ α2Þ, where Hext is composed of the
rotating field on the x-y plane and the static field applied
in the þz direction. Since the m vector precesses about the
z axis, it is convenient to transform the time-varying m
vector into its time-independent counterpart u vector on the
same rotating frame on the x-y plane, as u ¼ Nm, with the
following transformation matrix [24–27]:

N ¼

0
B@

cosðωCCWtÞ sinðωCCWtÞ 0

− sinðωCCWtÞ cosðωCCWtÞ 0

0 0 1

1
CA: ð5Þ

By inserting the relation of u ¼ Nm into Eq. (4), the x, y,
and z components of the u vector are solved as

ux ¼
1 − uz2

γHacuz
ðωL − ωCCWÞ;

uy ¼ −αωCCW

γHac
ð1 − uz2Þ; ð6Þ

with ωCCW ¼ 2πfCCW and ωL ¼ 2πfL ¼ γHdc.
With ux2 þ uy2 þ ux2 ¼ 1, we get the relation

ðγHacÞ2 ¼
ð1 − uz2Þ

uz2
½ðωL − ωCCWÞ2 þ ðαωCCWuzÞ2�: ð7Þ

Then, finally, it becomes

u2z ¼
−½γ2Hac

2 − α2ωCCW
2 þ ðωL − ωCCWÞ2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½γ2Hac

2 − α2ωCCW
2 þ ðωL − ωCCWÞ2�2 þ ½2αωCCWðωL − ωCCWÞ�2

p
2α2ωCCW

2
:

ð8Þ

Under the resonance condition of fCCW ¼ fL, the uz
simply is given as the two different ranges of Hac:

uz2 ¼ 1 −
�

Hac

αHdc

�
2

; Hac < αHdc; ð9aÞ

uz2 ¼ 0; Hac ≥ αHdc: ð9bÞ

Through the relation u ¼ Nm, we obtain m̄x, m̄y, and m̄z
again as

m̄x ¼ ux cosðωCCWtÞ − uy sinðωCCWtÞ;
m̄y ¼ ux sinðωCCWtÞ þ uy cosðωCCWtÞ;
m̄z ¼ uz: ð10Þ

Accordingly, the z components of the toque terms
in the steady state at resonance are represented by τ̄rot;z ¼
−Hac sinðθ̄Þ sinðϕ̄Þ and τ̄damp;z ¼ αHdcsin2ðθ̄Þ; with θ̄ ¼
arccosðuzÞ and ϕ̄ ¼ arccos½ux= sinðθ̄Þ�. The analytical cal-
culations of the torques are in excellent agreement with the
micromagnetic simulation results (the symbols), as shown
in Fig. 3(e). We also plot the steady-state angles
of θ̄ and ϕ̄ as a function of Hac, as shown in Fig. 3(e).
In the range ofHac < αHdc, θ̄ increases with Hac up to 90°.
We note that θ̄ ¼ 90° corresponds to the precession of
uniform magnetizations on the x-y plane (the equator) with
mz ¼ 0. The above analytical forms (the solid lines) inform
us how the steady-state torques change with Hac and why
the torque has its maximum value of αHdc, which is
independent of Hac above the threshold field strength
Hac ¼ αHdc. In the case where Hac < Hth

ac ¼ αHdc, ϕ̄ is

almost 90°, and thus θ̄ is given by θ̄ ¼ arcsinðHac=αHdcÞ,
as indicated by the black solid line in Fig. 3(e). For the
cases where Hac ≥ αHdc, the torque balance leads to θ̄ ¼
90° and, consequently, to ϕ̄ ¼ arcsinðαHdc=HacÞ. This
means that, for the cases where Hac=Hth

ac ≫ 1, m rotates
coherently with the rotating field on the x-y plane. The
torque balance equations well explain the steady-state
dynamics observed in this paper. In Fig. 3(e), the micro-
magnetic simulation results of ϕ̄ and the corresponding
analytical calculation values show a large discrepancy
because ϕ̄ is very sensitive to small errors in other
parameters obtained from the simulation. Here, we note
that the analytical calculation of ϕ̄ coincides with the
corresponding simulation results within the error bars. The
error bars indicated in Fig. 3(e) are calculated assuming a
�1% error in the choice of resonant frequency fCCW
because a �1% error of fCCW can lead to a major error
in the numerical calculation of ϕ̄.

V. ENERGY DISSIPATION

Above, we explore both the nonresonant and resonant
dynamic motions of the magnetizations of Py nanospheres
in single-domain states. The robust dynamics of soft
magnetic nanoparticles in nonlinear dynamic regimes
can be implemented in magnetic hyperthermia applications.
In the research field of magnetic hyperthermia, SLP in the
form of watts per gram (W/g) is widely used to represent
heat (or temperature increase) from magnetic particles. On
the basis of energy conservation and fundamental Maxwell
equations, the power loss can be represented by the
magnetic energy-dissipation rate, and it can be expressed
as [28]
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Q ¼ − 1

ρV

Z
V
½dεG=dtþMðtÞ · dHextðtÞ=dt�dV; ð11Þ

where εG is the Gibbs energy density with the volume of
nanosphere V and the density of permalloy ρ¼8.72 g=cm3.
The first and second terms on the right side are the time
derivative of magnetic energy and the dual power of
external force, respectively (for further details, see
Ref. [28]). In the current research on magnetic hyper-
thermia, oscillating magnetic fields of a few hundred
kilohertz are typically applied; therefore, the SLP, as a
measurable quantity, is redefined toQ averaged over a time
period T0,

hQi ¼ − 1

ρVT0

Z
T0

0

Z
V
½dεG=dtþMðtÞ · dHextðtÞ=dt�dVdt

ð12Þ

Accordingly, from our micromagnetic simulation data,
we can directly obtain the quantities of Q and hQi versus a
given time for the nonlinear dynamic motions of a single-
domain nanosphere of 2R ¼ 20 nm for the specific cases of
Hdc ¼ 100 Oe and α ¼ 0.05, as excited by three different
frequencies, fCCW ¼ 200 and 360MHz (off resonance) and
280 MHz (resonance), for the values Hac ¼ 4, 5, and 6 Oe,
respectively. Whether at resonance or off resonance, the
two different quantities of Q and hQi display somewhat
distinct behaviors for most of the time, except for their
steady states, as shown in Fig. 4. For example, in the case of
off resonance, there are large differences between Q and
hQi, whereas those values became almost equal above
t ¼ 100 ns. In the case of resonance, the steady state
wherein both values become equal is achieved after a
rather long time, above 1500 ns. The reason for the equal
values of Q and hQi in the steady states is the fact that the
∂εG=∂t term in both Q and hQi becomes zero, so that Q
and hQi are the same. Although the hQi quantity typically
represents the measurable SLP, in this paper, we use the
quantity of Q because it can be calculated analytically for a
comparison with the corresponding simulation.
Related to the above issue regarding SLP, from now on,

we focus only on Q values that (1) can be numerically
calculated from the micromagnetic simulation data shown
in Fig. 4 using Eq. (11), and (2) can be analytically derived,
as we show later. Figure 5 compares the individual Q
values, as well as the negative derivative of energy density
−½1=ðρVÞ�R VðdεG=dtÞdV and the negative dual power
density −½1=ðρVÞ�R VðdHext=dt ·MÞdV calculated from
the simulation results for the nonresonant (fCCW ¼ 200
and 360 MHz) and resonant (fCCW ¼ fL ¼ 280 MHz)
conditions.
At nonresonance, those values largely fluctuate up to

10 ns, after which they reach their steady-state regime.
These large oscillations are associated with the initial large
perturbations of magnetizations, as shown in Figs. 2(a)

and 2(c). On the contrary, at resonance, the values ofQ and
−½1=ðρVÞ�R VðdHext=dt ·MÞdV slowly increase and then
converge to certain corresponding values due to the fact
that their dynamic motions reach their corresponding
steady states. For all of the cases, the −½1=ðρVÞ� ×R
VðdεG=dtÞdV (the black line) converges to zero in the

steady states, but −½1=ðρVÞ�R VðdHext=dt ·MÞdV (in red)
becomes equal to Q; hereafter, the Q quantity in the steady
state is noted as Q̄. Therefore, Q̄ is determined only by the
dual power density. Q̄ values for the nonresonant and
resonant cases contrast starkly. For the nonresonant con-
dition, those energy powers relatively quickly converge to
zero or low values after large initial fluctuations. As Hac
increases, the initial oscillations and steady-state values
increase. By contrast, at resonance, the initial oscillations
disappear, but the time derivatives of energy density and
dual power density converge to certain values after a longer
time (as late as 1000 ns). Also, using an Hac value larger
than 5 Oe—for example, 6 Oe—those energy powers
oscillate with large fluctuations before reaching the steady
state, whose oscillations are related to magnetization
switching between the þz and −z directions, as shown
in Fig. 2.
The quantities of Q̄ at resonance are much higher

than those at nonresonance. In order to compare Q̄ as a
function of fCCW, we conduct micromagnetic simulations

(a)

(b)

(c)

r

FIG. 4. Temporal evolution of energy-dissipation rate, Q (the
solid line), and its time average hQi (the dashed line) for
excitation of Py nanosphere of diameter 2R ¼ 20 nm by
Hac ¼ 4, 5, and 6 Oe, Hdc ¼ 100 Oe, and α ¼ 0.05, for (a) a
nonresonant case (fCCW ¼ 200 MHz), (b) a resonant case
(fCCW ¼ 280 MHz), and (c) a nonresonant case (fCCW ¼
360 MHz). The intervals between 0.1 and 100 ns are distin-
guished by the gray shading.
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by varying fCCW in the (20–540)-MHz range; then, from
the simulation results, we numerically calculate Q̄ versus
fCCW. As shown in Fig. 6, under the application of Hdc ¼
100 Oe and Hac ¼ 5 Oe, we plot Q̄ values versus fCCW for

the values of α ¼ 0.01, 0.03, 0.05, and 0.07, and for Py
nanospheres of 2R ¼ 10, 20, and 30 nm in single-domain
states. As is apparent, there are clear peaks when fCCW
reaches fL (¼280 MHz), independent of α. These results

(a)

(b)

(c)

FIG. 5. Temporal evolution of the energy-
dissipation rate (the blue lines), the negative
dual power density (the red lines), and the
negative time derivative of total energy
density (the black lines) for excitation of a
Py nanosphere of diameter 2R ¼ 20 nm by
Hac ¼ 4, 5, and 6 Oe, Hdc ¼ 100 Oe, and
α ¼ 0.05, for (a) a nonresonant case
(fCCW ¼ 200 MHz), (b) a resonant case
(fCCW ¼ 280 MHz), and (c) a nonresonant
case (fCCW ¼ 360 MHz).

FIG. 6. Energy-dissipation rate in the steady-state regime as a
function of frequency of circular-rotating fields for excitation of
Py nanospheres of diameter 2R ¼ 10, 20, and 30 nm with
Hac ¼ 5 Oe, Hdc ¼ 100 Oe, and α ¼ 0.01, 0.03, 0.05, and,
0.07. The symbols and lines represent the micromagnetic
simulation and analytical calculation results, respectively.

(a)

(b)

FIG. 7. (a) Steady-state energy-dissipation rate at correspond-
ing resonance frequencies as a function of Hac for 2R ¼ 20 nm
with different static field strengths (Hdc ¼ 50, 100, 150 Oe) for
given damping constants (α ¼ 0.03, 0.05, and 0.07). (b) Maxi-
mum energy-dissipation rate versus Hdc for given damping
constants. The symbols and lines indicate the micromagnetic
simulation and analytical calculation results, respectively.
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indicate that the energy forms of the applied magnetic fields
are transferred highly efficiently to nanoparticles and then
subsequently dissipate via nonlinear magnetization dynam-
ics due to intrinsic damping.
Such a high quantity of Q̄ at resonance is important in

terms of the efficient energy transfer of external magnetic-
field energy to a magnetic sphere and the subsequent
release into other energy forms such as heat via dynamic
magnetization dissipation. Also, since magnetic particles
can be applicable to hyperthermia bioapplications, it is
worth examining, for resonance cases, Q̄ versus Hac for
different Hdc fields and values of α. From further micro-
magnetic simulations, we obtain Q̄ at resonance (hereafter
noted as Q̄res) versus Hac for the three virtual cases of
α ¼ 0.03, 0.05, and 0.07, and for the values of Hdc ¼ 50,

100, and 150 Oe. For the given values of α, Q̄res increases
with Hac up to a certain value of Hac (noted as Hth

ac),
thereafter becoming saturated even with a further increase
of Hac beyond Hth

ac [Fig. 7(a)]. Quite interestingly, Hth
ac

varies with Hdc and α. Also, the saturated quantity of Q̄res,
Q̄max

res increases withHdc as well as α, as shown in Fig. 7(b).
The underlying physics of these micromagnetic simulation
results (the symbols) are now explained with the help of an
analytical derivation.

VI. ANALYTICAL DERIVATION OF Q̄

As shown by the simulation results (see Fig. 6), Q̄ can be
simply determined from the dual power in the steady state,
assuming dεG=dt ¼ 0:

Q̄¼MsHacωCCW

ρ
ð−uyÞ

¼ Ms

2ργα

h
ðγHacÞ2þðαωCCWÞ2þðωL−ωCCWÞ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðγHacÞ2− ðαωCCWÞ2þðωL−ωCCWÞ2�2þ½2αωCCWðωL−ωCCWÞ�2

q i
:

ð13Þ

From the analytical form of Q̄, it is clear that Q̄ is a
function of ωCCW ¼ 2πfCCW, Hac, Hdc, and α because of
ωL ¼ γHdc. Thus, for a given material, the external field
parameters of Hdc and Hac, as well as fCCW, determine
the value of Q̄. Using Eq. (13), we numerically calculate the
Q̄ versus fCCW behaviors (the solid lines) for single-
domain-state Py nanospheres of 2R ¼ 10, 20, and 30 nm
in the following cases: Hdc ¼ 100 Oe, Hac ¼ 5 Oe, and
α ¼ 0.01, 0.03, 0.05, and 0.07. As shown in Fig. 6, the
analytical derivations are in excellent agreement with the
micromagnetic simulation results (the symbols). Moreover,
the maximum values of Q̄ are found at fCCW ¼ 280 MHz,
which corresponds to the Py nanospheres’ Larmor fre-
quency expressed as fL ¼ ðγ=2πÞHdc. The Larmor fre-
quency in the case of single-domain-state nanoparticles
does not change with 2R, as reported in Ref. [15]. Note that
the largest quantity of Q̄ is obtained at resonance by tuning
fCCW to fL.
To gain deeper physical insight into the relations of Q̄res

with Hac, Hdc, and α, as observed from the micromagnetic
simulations shown in Fig. 7, we obtain the analytical forms
of Q̄res by inserting fCCW ¼ fL into Eq. (13):

Q̄res ¼
1

α
ðγMsHac

2=ρÞ; Hac < αHdc; ð14aÞ

Q̄res ¼ αðγMsHdc
2=ρÞ; Hac ≥ αHdc: ð14bÞ

The analytical calculations (the solid lines) of Eq. (14)
are in excellent agreement with the simulation results (the

symbols) shown in Fig. 7. As shown in Fig. 7(a), the
quantity of Q̄res increases with Hac in the form of Hac

2 in
the range of Hac < αHdc, but it becomes saturated to its
maximum value of Q̄max

res ¼ αðγMsHdc
2=ρÞ in the range

of Hac ≥ αHdc. This saturated quantity is independent of
Hac but increases with Hdc

2, as shown in Fig. 7(b).
Interestingly, at a certain critical value of Hac ¼ αHdc,
Eq. (14a) equals Eq. (14b). For Hac < αHdc, Q̄res is
inversely proportional to α, but for the case of
Hac ≥ αHdc, it proportionally increases with α and Hdc

2,
as shown in Fig. 7. According to the given values of Hac

and Hdc, Q̄res can vary proportionally or inversely propor-
tionally with α. Therefore, the quantity of Q̄res can be
readily manipulated by tuning Hac, Hdc, and α.
Equations (14a) and (14b)’s benefit is their informing us
why Q̄res increases with α up to 0.05 and then decreases
with α ¼ 0.07, as shown in Fig. 6. For the given condition
imparted byHac ¼ 5 Oe andHdc ¼ 100 Oe, Q̄res increases
with α for the cases where α ¼ 0.01, 0.03, and 0.05, but
decreases again when α ¼ 0.07, as shown in Fig. 6.
Also, it is indicated that the maximum value of Q̄max

res ¼
αðγMsHdc

2=ρÞ under the Hac ≥ αHdc condition is the
highest energy-dissipation rate at resonance for a given
nanosphere in the single-domain state with intrinsic damp-
ing parameter α and static field strength Hdc. This fact
informs us that Gilbert damping is not the only control
parameter, but rather that the Hac=Hdc ratio is another
important factor in obtaining the largest value of Q̄res. The
quantity of Q̄max

res for single-domain Py particles can reach
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104–105 W=g, which is 2 or 3 orders of magnitude larger
than the typical SLP values of 102–103 W=g for magnetic
hyperthermia based on other mechanisms (Table I). One
such mechanism is linear response theory (LRT), which
describes the dynamic response of an assembly of magnetic
nanoparticles using the Néel-Brown relaxation model. The
assumption of this model is that magnetic systems respond
linearly with an externally applied magnetic field, as in
M ¼ χ̃Hlinear, where χ̃ is the complex susceptibility given
by χ̃ ¼ χ0½1=ð1þ iωlinearτRÞ�, with χ0 being the static
susceptibility, ωlinear the angular frequency of linearly
oscillating magnetic field, and τR the relaxation time to
attainment of the equilibrium state. For aligned magnetic
nanoparticles of the zero magnetic anisotropy constant
(Keff ), the SLP is given as hQi¼ ½ðH2

linearMS
2Þ=ð6kBTρÞ�×

½ðωlinear
2τRÞ=ð1þωlinear

2τR
2Þ�, and for aligned magnetic

nanoparticles with a strong anisotropy, the SLP is
given as hQi ¼ ½ðH2

linearMS
2Þ=ð2kBTρÞ�½ðωlinear

2τRÞ=ð1þ
ωlinear

2τR
2Þ� for a given temperature T [29]. The LRT

model is valid for cases where magnetic nanoparticles
are under the superparamagnetic limit, assuming that
½ðMSVHlinearÞ=ðkBTÞ� ≪ 1 and ½ðHlinearÞ=ðHKÞ� ≪ 1, as
verified in a large number of experimental studies for
anisotropy field HK [19,29–32]. However, for cases where
nanoparticles are close to or over the superparamagnetic
limit, the LRT model does not work anymore. In cases
where the magnetic anisotropy energy barrier of a given
material is greater than the thermal fluctuation, i.e.,
½ðMSVHlinearÞ=ðkBTÞ� > 1, the Stoner-Wohlfarth model
(SWM) [33] is more valid for a description of the
field-dependent magnetic hysteresis loops and the
related SLP. Therefore, SLP can be described as hQi ¼
4flinearHKMS=ρ. The typical values of SLP are within the
range of several hundreds of W=g for the LRT model and

several thousands of W=g for the SWM model [29], as
shown in Table I.
The advantage of the resonant spin excitation (RSE)

model proposed in this paper is its utilization of resonant
magnetization excitations by externally controllable mag-
netic fields; the other models, contrastingly, are associated
with the intrinsic characteristics of materials (e.g., the
relaxation time and the magnetic anisotropy field) as key
factors in energy dissipation. In our RSE model, the
maximum energy-dissipation rate can be achieved and
readily controlled using only Hac and Hdc, whose strengths
are as small as 10−2—an order of magnitude smaller than
those of the other models—in order to obtain extremely
high values (up to 104–105 W=g) at resonance when tuning
the oscillating field frequency to the Larmor precession
frequency. The high energy-dissipation rate obtained in this
work opens up a promising line of further research;
certainly, if such behavior is confirmed experimentally, it
will mean that the use of a small-amplitude ac magnetic
field permits considerable energy-dissipation-rate improve-
ment. Also, the suggested RSE model can be extended for a
description of energy dissipation in nanoparticles exhibit-
ing superparamagnetic resonance [34,35].

VII. SUMMARY

Using both micromagnetic simulations and analytical
derivations, we study in this paper the magnetization
dynamics and related energy-dissipation rate of soft mag-
netic nanospheres in the single-domain state, as excited by
rotating magnetic fields under given static magnetic fields.
The energy-dissipation rate is found to have its maximum
value at resonance in cases where the frequency of the
rotating magnetic fields is equal to that of the Larmor
precession of uniform magnetizations for a given Gilbert

TABLE I. Comparison of characteristics of three models.

Model LRTa SWMa,b RSEc

Mechanism Thermal-fluctuation-dominated
relaxation

Magnetic anisotropy
energy barrier

Resonant precession
motion

Main factor τR HK α, Hdc
Particle size, D D < superparamagnetic limit Superparamagnetic limit <

D < single-domain limit
D < single-domain limit

Oscillating field
frequency (MHz)

0.01–1 0.01–1 100–1000

Oscillating field
amplitude (Oe)

100–1000 100–1000 1–10

SLP (eqs.) lim½ðKeffVÞ=ðkBTÞ�→0hQi ¼ ½ðH2
linearMS

2Þ=6kBTρ�
½ðωlinear

2τRÞ=ð1þ ωlinear
2τR

2Þ� or
hQi ¼ 4flinearHKMS=ρ Q̄res ¼ ð1=αÞðγMsHac

2=ρÞ
for Hac < αHdc or

lim½ðKeffVÞ=ðkBTÞ�→∞hQi ¼ ½ðH2
linearMS

2Þ=ð2kBTρÞ�
½ðωlinear

2τRÞ=ð1þ ωlinear
2τR

2Þ�
Q̄res ¼ αðγMsHdc

2=ρÞ
for Hac ≥ αHdc

Order of SLP (W/g) Approximately 100 About 1000 About 10 000–100 000
aReference [29].
bReference [19].
cThis work.
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damping constant. The resonant energy-dissipation rate in
the steady state, Q̄res, is simply given in terms of Hac and
Hdc for a given damping constant. For the cases where
Hac ≥ αHdc, the quantity of Q̄res reaches its maximum
value of Q̄max

res ¼ αðγMsHdc
2=ρÞ. This explicit form pro-

vides the highest SLP value, on the order of 104–105 W=g,
and enables ready controllability by externally applied
magnetic fields using single-domain magnetic particles
in magnetic hyperthermia applications.
This work provides further insights into the fundamen-

tals of magnetization dynamics in magnetic particles and
the associated energy-dissipation effect, and it suggests
a highly efficient means of magnetic-hyperthermia-
applicable energy dissipation.
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