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We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal
“tree-network” dielectric waveguide geometry. This system replaces experimentally demanding free-space
manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication,
enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these
miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery
system is estimated to provide 21 keVof energy gain over an acceleration length of 192 μm with a single
laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeVof energy
gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings
are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a
discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser
coupling for dielectric laser accelerators.
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I. INTRODUCTION

In recent years, dielectric laser accelerators (DLAs) have
demonstrated acceleration gradients (energy gain per unit
length) approaching 1 GV=m [1–9], several orders of
magnitude higher than those attainable by conventional
linear accelerator systems based on microwave-driven
metallic waveguide structures [10]. This breakthrough is
made possible by the advent of advanced nanofabrication
techniques [11–15] combined with the fact that dielectric
materials may sustain electric fields close to 10 GV=m
when illuminated by ultrafast near-infrared laser pulses
[16–18]. High acceleration gradients may allow DLAs to
accomplish significant energy gains in very short lengths,
which would enable numerous opportunities in fields
where compact and low-cost accelerators would be useful,
such as medical imaging, radiation therapy, and industrial
applications [19–21].
Since DLA structures are already driven at their damage

thresholds, apart from finding methods to increase material
damage thresholds, achieving high total energy gain from
a DLA fundamentally requires extending the interaction

length between the incoming laser pulse and the particle
beam. This interaction length is limited not only by the
longitudinal and transverse stability of the electron beam
[22,23] but also by the laser delivery system, which is the
focus of this work. Several proof-of-principle DLA experi-
ments [1,24] have demonstrated high acceleration gradients
using free-space manipulation of the laser pulse, including
lensing, pulse-front tilting [25–27], and multiple driving
lasers [28,29]. However, these techniques require extensive
experimental effort to perform and the system is exceed-
ingly sensitive to angular alignment, thermal fluctuations,
and mechanical noise. By replacing free-space manipula-
tion with precise nanofabrication techniques, an on-chip
laser-power delivery system would allow for orders-of-
magnitude increases in the achievable interaction lengths
and energy gains from a DLA.
In designing any laser-power delivery system for a

DLA, there are a few major requirements to consider.
(1) The optical-power spatial profile must have good
overlap with the electron-beam side profile. (2) The laser
pulses must be appropriately delayed along the length of
the accelerator to arrive at the same time as the moving
electron bunches. (3) The optical fields along each section
of the accelerator must, ideally, be of the correct phase to
avoid dephasing between the electrons and the incoming
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laser fields. To accomplish all three of these requirements,
we introduce a method for on-chip power delivery which
is based on the fractal “tree-network” geometry intro-
duced in Fig. 1. In this paper, we provide a systematic
study of the structure’s operating principles, the optimal
range of the operating parameters, and the fundamental
trade-offs that must be considered for any on-chip laser
coupling strategy of the same class. Through detailed
numerical modeling of this design, we estimate that the
proposed structure may achieve 1 MeV of energy gain
over a distance less than 1 cm by sequentially illuminating
49 identical structures.
The paper is organized as follows: In Sec. II, we introduce

the working principles and components of the proposed
laser coupling system. In Sec. III, we make an overview of
themain constraints facing this system. In Sec. IV,wepresent
the findings of a parameter study investigating the structure.
In Sec. V, we discuss the limitations and benefits of the
proposed structure. In Sec. VI, we propose future directions
for this work before concluding in Sec. VII. The assumptions
and values used in the parameter study are validated by
discussion in the appendixes.

II. SYSTEM MODEL

We first introduce the proposed tree-network waveguide
geometry, which is diagramed in Fig. 1. The electron
beam to be accelerated is propagating along the z axis in
the central accelerator gap. We first couple the laser pulses
to the on-chip dielectric waveguides by use of input
couplers. The optical power is then split a series of times

and directed by waveguide bends to illuminate the entire
length of the accelerator gap. Integrated phase shifters are
used to tune the phase of each pulse upon exiting the
waveguides and may be optimized for maximum accel-
eration. The accelerating structures are placed adjacent to
the waveguide outputs. In this work, we choose to
investigate silicon dual-pillar accelerator structures similar
to those used in Ref. [3]. The entire device is mirrored
over the center plane and is driven by laser inputs on each
side. Two stages of the structure are shown in Fig. 1,
although several more may be implemented in series,
assuming the availability of several phase-locked laser
sources. Electron-beam focusing elements may be imple-
mented between stages as needed. For more information, a
detailed overview of the individual components, such as
input couplers, waveguide bends, phase shifters, and DLA
structures is given in Appendix A.
A fractal waveguide geometry is chosen as it evenly

illuminates the accelerator gap with minimal use of 50∶50
beam splitters. Furthermore, the waveguide bends are
designed such that the laser pulse arrival at the accelerator
gap is delayed to coincide with the arrival of the electron
bunch as it propagates through the structure. This require-
ment sets strict conditions on the bending radius required at
each section, which is derived in Appendix B.

III. CONSTRAINTS

In the analysis of our system, we consider four main
factors that will ultimately limit the acceleration gradients
and make energy gains attainable.
(a) Laser-induced damage of the DLA and waveguide

materials. To avoid damage of the structure, the electric
fields in the system may never exceed the damage
thresholds of the dielectrics used. The laser damage
threshold for dielectric materials is highly favorable at
short pulse durations, with sustainable peak powers that
scale roughly as τ−1=2 for τ > 1 ps and approach τ−1

scaling for femtosecond pulses [16,31]. Amongst the
materials considered in this work, SiO2 has the highest
damage fluence threshold, 2.5 J=cm2, at a 800-nm
wavelength, followed by Si3N4, at 0.65 J=cm2, and
Si, at 0.18 J=cm2 [32]. For a 100-fs pulse propagating in
vacuum, these damage fluence numbers correspond to
peak fields of 13.7, 7.0, and 3.7 GV=m, respectively.

(b) Optical nonlinearities in the materials. Optical non-
linear effects are encountered when the optical pulse
propagates through the waveguides and may cause
significant pulse distortion, resulting in either damage
or a dramatic reduction of the acceleration gradient.
Through a full treatment given in Appendix C, we find
that the most prominent nonlinear effect in our
structure is self-phase modulation (SPM). For a pulse
with a given peak power, the effects of SPM scale in
proportion to the lengths of the waveguide sections.

Input couplers

Optical phase shifters Accelerator structures

e- bunch

Dielectric waveguide
network

Input 
laser pulses

Pulse delay 
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e- velocity
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x

z

FIG. 1. Two stages of the DLA laser coupling tree-network
structure. The electron beam travels along the z axis through the
center of this structure. The laser pulses are side coupled with
optical power, shown in red. Black regions define the on-chip
waveguide network. Blue circles represent the optical phase
shifters used to tune the phase of the laser pulse. This geometry
serves to reproduce the pulse-front-tilt laser delivery system
outlined in Ref. [27] in an integrated optics platform (Supple-
mental Material Ref. [30]).
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(c) Power loss. The tree-network structure introduces
several sources of power loss: (1) input coupling loss,
(2) splitting loss, (3) bending loss, and (4) waveguide
scattering loss. Waveguide power loss due to scatter-
ing must be considered for structures with stage
lengths greater than the centimeter scale [33]. How-
ever, we neglect these effects in this work because we
focus on millimeter or shorter waveguide segments.

(d) DLA structure resonance characteristics versus input
pulse bandwidth. The DLA structures are designed to
resonantly enhance the optical fields. The field en-
hancement is proportional to the square root of the
quality factor of the DLA structures (similar to an
optical cavity), which can be approximated by a
Lorentzian spectrum. This resonance is used to in-
crease the acceleration gradient while avoiding dam-
age at the input facet. However, if the pulse bandwidth
is large with respect to the bandwidth of the accel-
erator, the pulse does not efficiently couple to the DLA
structure.

IV. PARAMETER STUDY

With the system components and constraints introduced,
we now present a parameter study to understand the
fundamental trade-offs and optimal working parameters
of an on-chip optical-power delivery system for a DLA
of this class. A software package [34] was written to
separately simulate each component and combine the
results to generate an estimate for the acceleration gradient
and energy gain assuming a set of parameters which are
outlined in Table I. The values of these parameters are
validated in Appendix A, where we go into detail about the
individual components of this design.
For a given pulse duration (τ) and DLA quality factor

(Q), the minimum peak electric field of the input pulse (E0)
required to encounter each damage or nonlinearity con-
straint is modeled using approximations, which are derived
fully in Appendix D and summarized below:

(1) The input electric-field amplitude must be smaller
than the damage threshold EdðτÞ of the input-coupler
material,

E0 < EdðτÞ: ð1Þ
(2) The input electric-field amplitude must be small

enough to not damage the accelerator structure, with
damage threshold EdðτÞ,

E0 < EdðτÞ
2Ns=2

fm
ffiffiffiffi
Q

p ðηcηNs
s ηNs

b Þ−1=2: ð2Þ

(3) The input electric-field amplitude must be small
enough to avoid SPM effects in the waveguides,

E0 <

�
2λ

nðeffÞ2 nc0ϵ0ηc

XNs

i¼0

2i

ηisη
i
bLi

�
1=2

: ð3Þ

Here, fm is the field enhancement factor in the DLA

structure, Q is the DLA quality factor, nðeffÞ2 is an effective
nonlinear refractive index that takes into account the
proportions of each material in the waveguide geometry,
as defined in Appendix D, Li values are the waveguide
segment lengths for the longest path from input coupler to
accelerator, and n is the refractive index of the waveguide
core. We model the input coupling simply by multiplying
the optical power by the input-coupler efficiency. After the
pulse is coupled and encounters losses from splitting and
losses at each section, the peak electric field that reaches the
accelerator structure (Eout) is given by

Eout ¼ E0ð2−Nsηcη
Ns
s ηNs

b Þ1=2: ð4Þ

We note that the presence of power splits concentrates the
optical power at the input facet of the structure relative to
the output facet.
To model the DLA structures and estimate the accel-

eration gradient achievable in this geometry, we use a two-
dimensional finite-difference frequency-domain (FDFD)
method [35] to simulate a waveguide feeding Si dual-pillar
structures. The pillars are assumed to have infinite extent
out of the plane, neglecting fringing effects. The phase at
each output waveguide is assumed to be at its optimal value
for maximum acceleration through the entire section. To
compute the acceleration gradient, we must do the follow-
ing: (1) Use the FDFD method to compute the acceleration
gradient over a discrete range of frequencies. (2) Fit a
Lorentzian to the frequency response of the DLA structure,
following the discussion in Appendix E. (3) Using the
parameters extracted from this fit, scale the response to the
Q factor of interest. (4) Use the input pulse spectrum and fit
parameters to compute the acceleration gradient, following
the derivation in Appendix F.
We first examine a single “stage”with a length of 192 μm.

In this work, we define a stage as an accelerator section with

TABLE I. Parameters assumed in the paper.

Parameter Symbol Value Units

Wavelength λ 2 μm
Electron speed/speed of light β 1 � � �
DLA periods per waveguide M 3 � � �
Input-coupler efficiency ηc 0.6 � � �
Splitting efficiency ηs 0.95 � � �
Bending efficiency ηb 0.95 � � �
Accelerating gradient at Q ¼ 1 GQ¼1 0.0357 E0

Input coupler—First split length L0 10 μm
DLA pillar radius Rpillar 981 nm
DLA acceleration gap d 400 nm
Material or gap field enhancement
factor

fm 2 � � �
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a single input laser. This number is chosen as it gives a
reasonable balance between acceleration gradient and energy
gain. Over a range of pulse durations (τ) and Q factors (Q),
we first compute theminimumpeak electric field at input that
will cause either damage or nonlinear pulse distortion using
Eqs. (1)–(4). Then, for relativistic electrons, we use the
assumed parameters to compute the achievable acceleration
gradient and energy gain. In Fig. 2, we show the limiting
constraints for each τ andQ, aswell as the energy gain from a
single stage. This information is presented separately for
waveguide core materials of Si and Si3N4.
From Fig. 2, we see that, for a given geometry, there is an

optimal combination of τ andQwhere the energy gains and
acceleration gradients are maximized. For a structure with
a stage length of 192 μm, this point is at τ ¼ 341=322 fs
and Q ¼ 157=154 for waveguide cores made of Si=Si3N4.
A full list of the results are displayed in Table II. Using a
SiN waveguide system, we may expect to achieve 1 MeVof
energy gain at 108 MV=m gradients by running 49 stages
in series. However, these are conservative values based
upon a few well-established waveguide approaches and
materials, and they therefore represent a lower bound on the
achievable gradient.

V. DISCUSSION

There are several competing effects that lead to the
existence of this optimal point. First, for a given pulse peak
power, shorter pulse durations generally lead to higher
acceleration gradients because the materials exhibit higher
electric-field damage thresholds. However, this effect is
limited by the occurrence of SPM at a certain input field.
Furthermore, if the pulse is too short with respect to the Q
factor of the DLA structures, the pulse does not couple
efficiently to the accelerator gap due to the pulse bandwidth
being larger than the structural bandwidth. Second, higher
Q factors lead to resonantly enhanced fields inside of the
DLA structure and higher acceleration gradients as a result
[36]. However, if the Q factor is too high, these enhanced
fields cause the accelerator structures to damage.
To investigate how these results depend on the stage

length, we run several of these simulations over a range of
structures with different numbers of splits, keeping track
of the optimal τ, Q, acceleration gradient, and energy gain
of each structure. The results are presented in Fig. 3.
From Fig. 3(a), we note that, as the stage lengths become

longer, the achievable acceleration gradients decrease due
to the increased losses introduced by the greater number
of splits, combined with the increased nonlinearities and
concentration of optical power at the input facet. On the
other hand, the energy gain increases with greater stage
length. Thus, there is an intrinsic trade-off between having
a high acceleration gradient and a large energy gain per
laser input, suggesting that the choice of stage length
should be determined by the acceleration gradients and
energy gains required by the application. For instances
where a high acceleration gradient is preferred, a smaller
stage length per laser is optimal, meaning fewer splits.
However, for applications where high total energy gain is a
more important figure of merit, it may be beneficial to use a
coupling structure with many splits and long stage length,
but a lower acceleration gradient. These metrics will also
depend on the availability of several phase-locked laser
sources and the experimental difficulties associated with
coupling them to several input couplers. Because of the
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FIG. 2. Results from the parameter study. A single stage of
the tree-network structure is simulated, with a stage length of
192 μm, corresponding to five power splits and 25 ¼ 32 output
ports. In (a) and (b), silicon-on-insulator (SOI) waveguides are
assumed. In (c) and (d), Si3N4=SiO2 waveguides are assumed.
For each Q factor and pulse duration, we compute the maximum
input field achievable before damage or nonlinearity occurs. The
different-colored regimes in (a) and (c) correspond to different
limiting constraints, as labeled in the plots. The dotted line
corresponds to the minimum pulse duration before the pulse
bandwidth exceeds the DLA resonator bandwidth. The energy
gain from one section is plotted in (b) and (d).

TABLE II. Optimal results from the parameter study, for
waveguides with material platforms of SOI and SiN.

Metric Value (SOI) Value (SiN) Units

Acceleration gradient 45.3 107.5 MV/m
Energy gain per stage 8.7 20.6 keV
Input peak electric field 1.0 2.4 GV/m
Pulse duration 341 322 fs
DLA Q factor 156.7 154.0 � � �
Pulse energy at input coupler 0.36 11.3 nJ
Number of stages for 1 MeV 116 49 � � �
Stage length 192 192 μm
Waveguide core width 0.78 2 μm
Waveguide core height 220 400 nm
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challenges introduced by concentrating the optical power at
a single input facet, there would be a significant improve-
ment on these results by considering input schemes that
may couple a single beam directly to several waveguides.
While this is outside of the scope of this paper, it is a
promising avenue to explore for these systems.
From inspecting Fig. 3(b), we see that the optimal τ and

Q increases as the structure becomes larger. Thus, the
longer the stage length we wish to supply with this tree-
network geometry, the more resonance we require in the
DLA structures. For a longer stage length, more splits must
be performed, which puts an additional burden on the input
facet relative to the DLA structure. This fact, in turn,
requires greater resonant enhancement at the accelerator
gap to offset, and a subsequently larger τ to match the
structural bandwidth.

VI. OUTLOOK

We now discuss the outlook of the results of this
parameter study and present some methods for improving
on the findings. First, we notice that SiN waveguide
systems may supply much higher acceleration gradients
than SOI systems. This observation is due to the favorable

damage and nonlinear properties of Si3N4 compared to Si.
However, as we show in Appendix A, SiN waveguides
have high bending loss at bend radii below 50 μm due to
the low refractive index of Si3N4 compared to Si.
Therefore, to mitigate the effects of damage and non-
linearities in our waveguide system while maintaining the
bending radii required for pulse delay, one solution is to
implement a hybrid system comprising a laser-power
delivery system optimized for high power handling to feed
a series of smaller tree-network structures optimized for
tight bends. A diagram of this setup is given in Fig. 4.
Waveguiding systems for this high-power-handling

region may be based on hollow-core photonic crystals,
high-damage-threshold materials, such as silica or silicon
nitride, or weakly guided waveguide modes. The section
closer to the DLA can then be implemented in silicon-on-
insulator (SOI) structures, allowing for tight bending radii,
compact waveguide networks, and fine phase control. The
DLA structures may also be integrated directly on the same
chip as the inner power delivery system. Multiple of these
hybrid systems may be driven in series, each with an
individual driving laser. The relative merits of large-stage-
length power delivery systems vs multiple driving lasers
depends on their respective engineering challenges, such as
chip-to-chip coupling [37,38], the alignment and stability
of input coupling multiple lasers, and the availability of
these sources.
Furthermore, based on the presented geometry, there is a

clear need for resonant DLA structures to enhance the fields
at the accelerator gap. For the parameters discussed, the
optimal Q factors are shown to be around 150. Previous
work on optimizing DLA structures for a high acceleration
gradient has shown that periodic dielectric mirrors may be
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FIG. 3. Scaling of optimal parameters as a function of the stage
length. The red dotted line corresponds to a stage length of
192 μm, which is the length used in Fig. 2. (a) The optimal
energy gains and acceleration gradients as a function of stage
length for both SOI and SiN structures. (b) The optimal set of
pulse duration and the Q factor corresponding to the highest
energy gain and acceleration gradient at each stage length.
The curves for the SOI and SiN materials are overlaid.
(c) The number of stages required to reach 1 MeV of total
energy gain as a function of individual stage length.
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FIG. 4. Schematic of a hybrid structure for DLA laser coupling.
(Center) A SOI tree-network–DLA geometry optimized for tight
bends and compact waveguides. This section is fed by a
Si3N4=SiO2 waveguide section with a relatively higher damage
threshold, and lower nonlinearities. This section is then fed by an
all-SiO2 power delivery section, as described in the discussion
section. Coarse and fine phase shifters are used in different
splitting sections.
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useful in raising quality factors and field enhancement in
DLA structures [39–42]. However, achieving DLA struc-
tures with these Q factors may be difficult with current
fabrication tolerances. Furthermore, even slight deforma-
tion due to both electron collision with the DLA structure
and the presence of high-power optical pulses would
degrade the Q factors of fabricated structures. Therefore,
experimental verification is required to determine whether
such resonant structures can survive operation in a DLA.
One final set of attractive options for further improving

the acceleration gradients and energy gains achievable
with an on-chip waveguide power delivery system involve
engineering the group-velocity dispersion (GVD) of the
waveguides. One strategy involves prechirping the input
pulse to compensate for the GVD. Then, the optical power
may be initially spread in the temporal domain, mitigating
damage bottlenecks near the input facet. Later, with the
presence of the GVD, the structure may be designed such
that the pulse recompresses at the accelerator structure.
Additionally, we may use the GVD to balance out SPM
effects in our waveguides. With the proper amount of
GVD, a temporal soliton may be formed for a given power,
which propagates without distortion, potentially allowing
for higher operating powers and acceleration gradients.
A similar technique was recently demonstrated to com-
pensate for the SPM effects in short DLA structures [7].
These are promising avenues for exploration, but they are

not considered in this work with the intention of establishing
a conservative baseline for the merits of on-chip laser
coupling. The next stage of this work will involve exper-
imentally verifying the parameters assumed, including the
waveguide damage thresholds, input coupling loss, splitting
loss, bending loss, and acceleration gradients. An additional
explorationof othermaterial systems, such asTa2O5 [43] and
Ga2O3, may offer waveguides and components with loss,
nonlinearity, and damage-threshold characteristics superior
to the material systems assumed in this work. With these
issues investigated, a proof-of-principle optical test will be
performed on a simple system before acceleration experi-
ments with electron beams are performed.

VII. CONCLUSION

In this paper, we present a method for accomplishing
chip-based, optical laser-power delivery for DLA applica-
tions along with a systematic study investigating the
damage and nonlinearity constraints and the trade-off
between pulse characteristics and DLA resonance. For a
stage length of 192 μm, our method predicts acceleration
gradients greater than 100 MV=m, and 1 MeV of energy
gain in less than 1 cmwith 49 structures integrated in series.
We conclude that an on-chip laser coupling system is a

promising avenue of exploration for DLA technology.
Using the known parameters of existing waveguide tech-
nology, we may couple laser sources to an accelerator on a
chip with a reasonable acceleration gradient. Additionally,

our proposal has a major advantage over free-space laser
coupling techniques in that it provides an on-chip solution
for scalable stage length, which enables access to longer
interaction lengths, better integration with DLA structures,
and greater total energy gains. These findings are a crucial
and necessary step towards bringing DLA from the proof-
of-principle to the application stage.
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APPENDIX A: STRUCTURE COMPONENTS

To validate the assumptions made in the parameter study,
we now discuss the individual components involved in the
on-chip laser coupling system.

1. Input coupling

The proposed structure first requires a strategy to couple
light from the pump laser to the on-chip optical waveguides.
We focus on free-space coupling to the input facet via a
surface grating, eliminating the need for single-mode-fiber
delivery. Our laser and macroscopic optical components are
capable of handling pulse energies far beyond that which
would cause damage to the structure. Bare single-mode
fibers also have damage thresholds high enough towithstand
these laser pulses, but the large amount of dispersion
introduced (associated with the relatively long length of
>1 mm) makes them unsuitable for delivery to the chip.
In general, couplers must have (1) high coupling

efficiency, (2) a bandwidth large enough to couple to the
entire pulse spectrum, and (3) high power handling and
minimized hot spots. Input coupling may be accomplished
by the use of end coupling, focusing the laser beam directly
onto the waveguide cross section, or vertical coupling
schemes, such as grating couplers. In SOI systems, end
coupling can achieve insertion losses as low as 0.66 dB
(85.9%) over a bandwidth of roughly 10 THz [44], but it is
cumbersome to perform experimentally for a large number
of inputs and constrains the input and output coupling ports
to be located on the edges of the chip. Vertical couplers
provide the benefit of relative flexibility in alignment and
positioning on chip. The coupling efficiency of these
devices varies drastically depending on the complexity
of the grating-coupler design, from an efficiency of >30%
to >90% [45]. However, highly efficient broadband cou-
plers capable of sustaining large bandwidths still provide
design challenges, with the state-of-the-art fully etched
structures able to provide 67% coupling efficiency with a
3-dB bandwidth of 60 nm at 1550 nm [46]. In this paper,
we assume a coupling power efficiency of 60% with a
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substantially wide bandwidth to accommodate that of our
pulse (up to about 117 nm for a 50-fs pulse), which is
reasonably achievable with end coupling. Additional inves-
tigation into the design of ultrabroadband vertical couplers
must be considered to guarantee coupling of the femto-
second pulsed lasers.

2. Waveguides

Waveguides are a critical component of laser coupling.
Schematics of the waveguide cross sections and their
field distributions are shown in Fig. 5. We explore two
general classes of waveguiding systems: (1) tightly con-
fined systems and (2) weakly confined systems. Weakly
confined waveguide modes have a small difference
between mode effective index and cladding index, which
results in the optical power being spread over a larger area
and into the cladding material, which generally has
preferable damage and nonlinearity properties. However,
as we discuss in the next section, our simulations show that
weakly confined modes, with neff − ncore values of about
0.1, have almost 0% power transmission for bend radii less
than 10 μm. In our tree-network structure, we require bend
radii of this order to achieve the required pulse delay to
matching to the electron bunch; therefore, weakly guided
waveguides are not considered for the particular tree-
network structure in this parameter study.
We explore material systems of SOI and Si3N4=SiO2

structures due to their common use as waveguide core
materials. SOI-based waveguides would be simpler to

integrate with the silicon DLA structure and electron
gun and there exists a much larger body of previous work
on fabrication of silicon material systems for applications
such as phase control, especially in the LIDAR community
[48,49]. However, Si3N4=SiO2 waveguides have favorable
nonlinear and damage properties compared to those made
from SOI. As mentioned, there are several other material
systems that could also be explored for low loss, low
nonlinearity, and high damage thresholds. Ta2O5 [43] and
Ga2O3 are promising candidates that will be investigated in
future studies.

3. Splitters

After the initial input coupling step, splitters are used to
distribute the laser power along the DLA structure. Splitters
further contribute to insertion loss. An experimental char-
acterization of Y splitters indicates losses on the order of
1 dB [50]. However, recent advances in topology optimi-
zation techniques have allowed for alternative designs with
much higher efficiencies. Using “particle swarm optimi-
zation” [51], devices have been produced with theoretical
insertion losses of 0.13 dB and an experimentally deter-
mined value of 0.28� 0.02 dB [50]. As even more
sophisticated techniques of optimization have been devel-
oped, the insertion loss of simulated designs has reached
0.07 dB [52]. Adjoint-based optimization methods have
been further expanded to enforce fabrication constraints on
the permitted designs, thus allowing one to expect greater
agreement between simulated and fabricated structures
[53]. As a consequence of the rapid progress made in this
field and the efforts to ensure robustness of the device to
fabrication tolerance, we use an insertion loss per splitter of
0.22 dB, or 95% efficiency, for the parameter study.

4. Bends

The bending radius is uniquely chosen to give enough
extra propagation distance to provide a delay of the pulse
between different output ports, which is matched to the
electron velocity. We derive conditions on the radius of
curvature required for each bend for the particular tree-
network structure in Appendix B. The required radius
depends on the electron velocity (βc0) and group index of
the waveguide mode (ng), and it becomes smaller as the
waveguides approach the DLA structure. Assuming the tree-
network geometry used in this work, there is a condition on
the group index of the waveguide system that may achieve
the required delay given an electron speed,

ngβ ≥ 1: ðA1Þ
Thus, for subrelativistic electrons (β < 1), higher-index
materials are required for the waveguides. For example,
for a β value of 1=3, a group index of ng > 3 is required,
which may not be satisfied by a standard SiN waveguide
geometry. Thus, in subrelativistic regimes, SOI waveguides
are the optimal choice.
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FIG. 5. Waveguide geometries and corresponding horizontal
electric-field components [47]. (a),(b) Strongly confined modes.
(c),(d) Weakly confined modes. (a) and (c) are SOI material
platforms, whereas (b) and (d) are Si3N4=SiO2 materials. Wave-
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Figure 6 shows the optical-power transmission through a
series of bends and waveguide geometries using the FDFD
method [35] and an established two-dimensional approxi-
mation to the three-dimensional structure [54]. For tightly
confined SOI waveguide modes, the bending radius can
reach as low as 2 μm before there is significant loss.
However, for weakly confined SOI modes and strongly
confined SiN modes, the power transmission is less than
50% until the radius exceeds 20 μm. For our purposes, this
kind of bending loss is unacceptable, as radii on the order of
10 μm are required close to the DLA structure to perfectly
match the electron velocity. However, if we relax the delay
requirement in favor of larger bend radii, we may still use
strongly confined SiN modes. Based on a calculation
followingAppendixB, ifwewish to keep all SiNwaveguides
above a 40-μm radius of curvature, we will experience a
25-fs mismatch in peak pulse arrival to electron arrival. For a
pulse duration of 250 fs, this mismatch has a negligible effect
on the acceleration gradient. Therefore, in our parameter
study, we assume strongly confined waveguide modes and
bends that are large enough to achieve a transmission of 95%.
Many of these issuesmay be reconciled by choosing a hybrid
waveguide system, as shown in Fig. 4, in which different
materials and waveguide modes are used at different dis-
tances from the central DLA structure. We do not consider
these options directly in our parameter study.

5. Phase shifters

Phase shifters are an essential component in the DLA
system for ensuring proper phase matching between the
electrons and photons. While it is simple to do phase tuning
in free space for a single-stage DLA with macroscopic
delay stages, waveguide-integrated phase shifters for long
interaction or multistage DLAs will be experimentally

complicated. To achieve a sizable energy gain and gradient
over a given interaction length, high levels of precision and
stability in the phase of each section are required.
To illuminate the importance of precision phase shifters, a

Monte Carlo simulation is performed in which the output
phase of each waveguide is perturbed from its optimal value
by a random amount. This work finds that, for a stage length
of 1 mm, phase stability and precision of greater than 1=100
of a radian (0.16% of a cycle) is required to achieve a
sustained energy gain within 90% of the maximum achiev-
able amount.
There are a few strategies to implement integrated

phase shifters, including the use of (1) the thermal or
thermal-optic effect [49,55], (2) the electro-optic effect,
and (3) mechanical techniques, such as piezoelectric
controlled elements [56]. For this application, we require
a full 2π range of phase control of each output port with
a resolution of 1=100 of a radian, and a modulation
bandwidth of approximately 1 kHz to correct for envi-
ronmental perturbations.
Rather than supplying each waveguide output port with

a phase shifter with these properties, it may be possible to
have dedicated “fine” and “coarse” phase shifters aswemove
through the splitting structure. Furthermore, some degree of
a relatively fixed phase between output ports may be
accomplished by precision fabrication.
To further mitigate the challenges associated with

operating these multiple phase shifters during acceleration,
we may implement a feedback control loop, which is
described in Fig. 7. In this setup, the quantity of interest,
such as electron energy gain, can be measured at the end
of a section and optimized with respect to the individual
phase shifters in the power delivery system without explicit
knowledge of the electron-beam dynamics.
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FIG. 6. (a) Electric-field amplitude for a strongly guiding SOI
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waveguide. (c) Comparison of bending loss as a function of bend
radius for the four waveguides from Fig. 5.
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FIG. 7. Idealized schematic of a feedback system for automatic
phase control. A dedicated light extraction section is added to the
accelerator. Light is radiated from the electron beam that is
transverse to the DLA structures, and the frequency content and/
or timing of the light is sent to a controller. The phase shifts of
each waveguide are optimized with respect to either the fre-
quency or the delay of the signal.
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6. DLA structures

We assume silicon dual-pillar DLA structures in the
parameter study, but the choice is arbitrary and can be
changed to other materials or designs depending on the
fabrication constraints. In Fig. 8, we show an example of
the setup considered in the parameter study, simulated with
the FDFD method. The pillar radius is 981 nm and the gap
width is 400 nm. Three periods of DLA are powered by a
single waveguide and periodic boundary conditions are
used in the z direction. Wakefields and transverse deflec-
tions are ignored for simplicity, as these simulations are
intended to provide an estimate of the resonant enhance-
ment, acceleration gradient, and accelerator damage thresh-
old. The waveguide refractive index is approximated using
Ref. [54]. To model the frequency response of our structure,
following the discussion in Appendix E, a frequency scan is
performed and fit to a Lorentzian.
Resonant enhancement in the dual pillars is clearly

visible and can be accomplished by optimizing the spacing
and radius parameters. It is also clear that the two
surrounding DLA cells are slightly out of phase with the
center cell. This effect is caused by the lack of translational
symmetry in the input optical beam in the z direction and
will lower the acceleration gradient. From our Lorentzian
fit, a Q value of 152� 29 is determined.
Coupling efficiently from waveguides to DLA structures

may be done by optimizing the structure parameters. For an
optimized structure, back reflection may be minimized.
It will be of great importance in future experiments to
integrate the waveguide system and the DLA structure on
the same chip. Thus, the height of the pillar structure may
be constrained to be equal to that of the waveguide core,
and 500-nm-thick SOI platforms may be a good starting
point for testing these integrated systems.

One waveguide is able to serve multiple DLA periods.
However, simulations suggest that additional periods of
the DLA per waveguide do not significantly increase the
total energy gain achievable from a single waveguide.
Thus, the spacing between waveguides must be large
enough to eliminate cross talk, but small enough to ensure
high acceleration gradients.

7. Beam loading and longitudinal wakes

The fundamental unit cell of the proposed accelerator
design, depicted in Fig. 8, consists of a structure segment
of three periods Δz ¼ 3λ fed by a single laser pulse of the
multibranch network with the duration τ ¼ 250 fs. It is
shown in Ref. [6] that the coupling efficiency of the laser
field to a point charge q for the side-coupled geometry used
here is analogous to Eq. (7) of Ref. [57], which considers a
traveling-wave mode in a cylindrical structure with group
velocity βgc, under the substitution βg=ð1 − βgÞ → Δz=τc,
which gives a coupling efficiency ηq ¼ qGΔz=Pτ. Here, P
is the laser mode power and G ¼ G0 − GH is the loaded
gradient, where G0 is the unloaded value and GH is a
retarding field that accounts for the longitudinal wake
induced in the structure by the beam. These quantities may
be written

G0 ¼
ffiffiffiffiffiffiffiffiffi
ZCP
λ2

r
; GH ¼ qcZH

λ2
; ðA2Þ

where ZC is the characteristic impedance and ZH is the
Cherenkov wake impedance. A conservative approxima-
tion for the latter, ZH ≈ πZ0λ

2=ð16a2Þ, is provided by
Ref. [58] for the case of a flat (2D) geometry with a beam
charge q in a narrow channel, where Z0 is the impedance of
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free space and we take a ¼ 200 nm to be the half-width of
the accelerating channel. The resulting efficiency ηq is then
quadratic in the charge q. Solving for the maximal value
gives optimal bunch charge and efficiency,

qopt ¼
G0λ

2

2cZH
; ηqopt ¼

1

4

Δz
cτ

ZC

ZH
: ðA3Þ

For the present case, with ZC ¼ 149 Ω, ZH ¼ 7402 Ω, and
G0¼108MV=m, we obtain qopt≈0.1 fC and ηqopt ≈ 0.04%,
corresponding to a retarding gradient GH ¼ 54 MV=m
and thus a beam-loaded gradient G ¼ G0=2. The optimal
charge corresponds to 608 electrons, which is consistent
with achieved laser-triggered emission from nanotip elec-
tron sources. As shown in Ref. [59], under multibunch
operation with structures designed for higher gradients,
efficiencies can theoretically be in the tens of percent. The
structure design considered here is intended to illustrate the
basic principles of constructing a multiguided wave system
and is not optimized for efficient beam coupling. Even so,
efficiencies of this order are still acceptable for possible
near-term applications, such as a 1-MeV to 10-MeV
medical linear accelerator, where the requisite beam powers
are less than 1 W.

8. Heat dissipation

The laser input pulse energy at each stage of length
L ¼ 192 μm is Ep ¼ 11 nJ for the SiN case in Table II.
We assume a repetition rate frep ¼ 10 MHz, which is
consistent with commercially available solid-state fiber
lasers at microjoule pulse energies. Given that there are
two input laser couplings per stage of length L in the
configuration of Fig. 1, the average laser power per unit
length of accelerator is dP=dz ≈ 11 W=cm. Making a
conservative assumption that all of this power passes
through solid silicon, which has an absorption coefficient
of αSi ¼ 0.027 cm−1 at λ ¼ 2 μm, the corresponding
absorbed power is on the order of 6 mW=cm2. This power
is more than 5 orders of magnitude lower than the
technological limit for heat dissipation from planar surfaces,
where 1 kW=cm2 is typical [60,61]. Prior work has shown
that near-critical coupling to silicon dielectric accelerator
structures using SOI waveguides is possible with the
appropriate phase adjustment to produce a traveling-wave
match between the input and output couplers [62]. The last
work was for a structure design based on a 3D photonic
crystal, but it illustrates the principle that more sophisticated
power-handling techniques can potentially be employed in
future designs to remove laser power from the wafer and
safely dump it away from the accelerator.

APPENDIX B: TREE-NETWORK STRUCTURE—
VELOCITY MATCHING TO ELECTRON BEAM

Using the circular bending geometry as described in
Fig. 9, we calculate a delay to the pulse to match the

electron velocity in the DLA structure. For a given vertical
distance h and waveguide group index ng, we seek to set a
condition on R to accomplish this delay. First, we may
establish the value of the bend angle θ as

θ ¼
�
cos−1ð1 − h=2RÞ if h < 2R

π=2 if h ≥ 2R
: ðB1Þ

When h ≥ 2R, we use two 90° bends and extend the
intermittent length with a vertical waveguide section. From
this expression, we can express the horizontal distance d as

d ¼ 2R sinðθÞ; ðB2Þ

and the total length of the bent waveguide as

L ¼
�
2Rθ if h < 2R

hþ ðπ − 2ÞR if h ≥ 2R
: ðB3Þ

To now set a condition on R, we insist that the pulse
timing delay between the curved waveguide and the straight
waveguide is equal to the time needed for the electron to
travel a distance h. The difference in length between the
curved waveguide and the straight waveguide is simply
L − d; thus, the timing delay of the pulse is given by

Δtpulse ¼
ng
c0

ðL − dÞ

¼ ng
c0

�
2R½θ − sinðθÞ� if h < 2R

hþ Rðπ − 4Þ if h ≥ 2R
: ðB4Þ

The electron has a velocity of βc0, so its timing delay is
given by

FIG. 9. Diagram of a single bend in the tree-network structure
with an optical pulse incident from the left. The bend has radius R
and accomplishes a vertical climb of h over a horizontal distance
d. The total length of the bent section is L. The electron travels
from bottom to top in this configuration. We wish to find an R
such that an optical pulse traveling through the bent section is
delayed by the same amount of time for the electron to travel the
vertical distance h.
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Δte− ¼ h
βc0

: ðB5Þ

Setting these two expressions equal and solving for R, we
find that

R ¼ h
βng

�
2½θ − sinðθÞ�−1 if h < 2R
βng−1
4−π if h ≥ 2R

: ðB6Þ

Thus, for extended interaction lengths where h ≫ 2R, we
require that βng > 1 for a positive (and physical) solution for
R. Equivalently, for low β values, we require large ng values
in order to sufficiently delay the pulse in order to match the
low electron velocity.

APPENDIX C: WAVEGUIDE NONLINEARITIES

To study waveguide nonlinearity, we solve a version of
the nonlinear Schrödinger equation (NLSE), which is
typically used for describing nonlinear propagation of a
pulse with a duration between 10 fs and 10 ns. In this
particular treatment, the solution for the electric field is
assumed to be of the form of Eq. (C1), where the slowly
varying envelope approximation and separation of varia-
bles of the modal distribution Fðx; yÞ and envelope Aðz; tÞ
are used [63].

Eðr; tÞ ¼ x̂
2
fFðx; yÞAðz; tÞ exp½iðβ0z − ω0tÞ� þ c:c:g;

ðC1Þ
where x and y are the transverse directions, z is the
propagation direction, β0 is the propagation constant,
and ω0 is the optical frequency.
The slowly varying envelop Aðz; tÞ obeys the form of

the NLSE given in Eq. (C2), which can be solved by the
split-step method [64],

∂A
∂z þ α

2
Aþ iβ2

2

∂2A
∂T2

−
β3
6

∂3A
∂T3

¼ iγ

�
jAj2Aþ i

ω0

∂
∂T ðjAj2AÞ − TRA

∂jAj2
∂T

�
; ðC2Þ

where T ¼ t − z=vg is the time in the retarded frame, with
vg being the group velocity, γ ¼ 2πn2=ðλAeffÞ is the non-
linear parameter per unit length and power, and Aeff is the
effective modal area. TR is the Raman time constant and
has an approximated value of 3 fs [65]. On the left-hand
side of this equation, the loss is incorporated into the
second term, with α being the loss of the waveguide in units
of m−1. The third and fourth terms indicate second- and
third-order dispersion, with β2 and β3 being the respective
dispersion coefficients. On the right-hand side of the
equation, the first term is SPM, the second term is self-
steepening, and the third term is Raman scattering.
For our proposed structure, the overall length of the

waveguide is short (≪ 1 m); hence, material loss α can be

neglected. The dispersion terms come from both the material
dispersion and the waveguide dispersion. These terms, β2;wg
and β3;wg, can be obtained by numerically solving for the
effective refractive index as a function of wavelength neffðλÞ,
and they are explicitly given as

β2;wg ¼
λ3

2πc2
d2neff
dλ2

; ðC3Þ

β3;wg ¼ −
3λ4

4π2c3
d2neff
dλ2

−
λ5

4π2c
d3neff
dλ3

: ðC4Þ

We note that the contribution of dispersion and SPM is
generally compared through the N2 parameter [63]:

N2 ¼ LD

LNL
¼ γP0τ

2

jβ2j
; ðC5Þ

where τ is the pulse duration. When the dispersion length,
LD, is larger than the nonlinear length, LNL, SPM is
dominant over dispersion and N2 > 1. SPM is typically
large in strongly guiding and high n2 materials, such as the
strongly guiding SOI waveguide. For the weakly guiding,
lower n2 SiN waveguides, SPM is less prominent, yet still
larger than dispersive effects for the range of peak powers
we consider. Using typical experimental parameters and
examining the material considered in this paper with
the lowest nonlinearity ðSiO2Þ, we have n2ðSiO2Þ ¼
2.6 m2=W, Aeff ∼ 7 μm2, jβ2j ¼ 76 fs2=mm, and a peak
power of P0 ¼ 80 kW, with the corresponding N2 ¼ 758,
indicating that SPM is highly dominant over dispersion.
Alternatively, by turning on and off each term in Eq. (C2)

to investigate its contribution, we find that, for both the SOI
and SiN cases, SPM is indeed the dominant contribution to
the nonlinearity; other terms do not yield a significant
difference to the results for a propagation distance on the
order of hundreds of micrometers. Hence, our choice of
SPM as the dominant nonlinearity in the parameter study is
justified.

APPENDIX D: DERIVATION OF MINIMUM
INPUT FIELD BEFORE DAMAGE OR

NONLINEARITIES

In this section, we give expressions for themaximumpeak
electric fields, denoted by E0, that we may inject into our
waveguide system before each constraint becomes relevant.

1. Input damage

Fields at the input are damaged if they exceed the damage
threshold of the coupling material. Thus, we enforce the
condition that

E0 < EdðτÞ: ðD1Þ
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2. Accelerator damage

With a given tree-network structure, we introduce a
total of Ns separate 1 → 2 power splits for an input
pulse. Furthermore, we introduce some optical-power
loss characterized by the power efficiencies of the input
coupler (ηc), splitters (ηs), and bends (ηs). Thus, the field
at the output port of the laser coupling structure, Eout,
is given by

Eout ¼ E0

�
2−Nsηcη

Ns
s ηNs

b

�
1=2

: ðD2Þ

As we show in Appendix E, resonance in the DLA
structures with quality factor Q will lead to a field
enhancement in the accelerator gap that scales as

ffiffiffiffi
Q

p
.

Since our damage will be caused by the maximum field in
the DLA materials, we assume there is another constant
factor, fm, relating the maximum field in the DLA material
to the average field in the accelerator gap. From simu-
lations, we estimate the value of fm to be 2. Thus, the
maximum field in the DLA material is

Emat ¼ Eoutfm
ffiffiffiffi
Q

p

¼ E0fm
ffiffiffiffi
Q

p �
2−Nsηcη

Ns
s ηNs

b

�
1=2

: ðD3Þ

We require the maximum field in the DLA material to be
lower than the damage threshold, giving the constraint that

E0 < EdðτÞ
2Ns=2

fm
ffiffiffiffi
Q

p
�
ηcη

Ns
s ηNs

b

�
−1=2

: ðD4Þ

3. Self-phase modulation

For a wave of power P0 and wavelength λ traveling a
distance L in a material with cross-section area A and
nonlinear refractive index n2, the accumulated SPM phase
is given by [66]

ΔϕSPM ¼ 2π
n2PL
Aλ

: ðD5Þ

Since the optical power in our waveguides is traveling in
several materials, each with a different nonlinear refractive
index, we define an effective n2 value for modeling that is
given by

nðeffÞ2 ¼ 1

PðtotÞ
Xnum mat

j¼1

nðjÞ2 PðjÞ; ðD6Þ

where PðtotÞ is the total optical power carried by the
waveguide and PðjÞ is the amount of power traveling in
material j.

Furthermore, the optical power is split in half at each
bend, so we must take this fact into account in our SPM
calculation. Taking into account the losses in our system,
the final expression for the amount of the SPM phase is

ΔϕSPM ¼ 2π
nðeffÞ2 P0ηc
Aeffλ

XNs

i¼0

ηisη
i
bLi

2i
: ðD7Þ

Once the SPM phase reaches a value of 2π, we notice
pulse deformation leading to degradation of the accel-
eration gradient. This approximation is confirmed by full
simulations with our NLSE solver, as described in
Appendix C. Thus, the constraint on our input field to
avoid SPM effects is given by

E0 <

�
2λ

nðeffÞ2 nc0ϵ0ηc

XNs

i¼0

2i

ηisη
i
bLi

�1=2

: ðD8Þ

APPENDIX E: DLA RESONANCES

In this appendix, we derive the analytical form of the
resonant field enhancement in the accelerator gap and
verify that it is approximately proportional to

ffiffiffiffi
Q

p
. The

resonant nature of the acceleration structure can by
described by coupled-mode theory [67,68]. We denote
the amplitude of the resonant mode as s, where jsj2
represents the energy stored in the resonant mode, and
the amplitudes of incoming and outgoing waves as a and b,
respectively, where a†a and b†b represent the power of the
incoming and outgoing waves. The dynamics of the
resonant mode can be described as

ds
dt

¼ ð−iω0 − γsÞsþ κTa; ðE1aÞ

b ¼ Baþ sd; ðE1bÞ

where ω0 is the resonant frequency of the acceleration
mode, γs is the leakage rate resulting from the coupling to
outgoing waves, and B is the background scattering matrix
including direct pathways. κ and d are coupling coefficients
for the incoming and outgoing waves. In a reciprocal
system with lossless materials [68], which is the case for a
DLA,

κ ¼ d; ðE2aÞ

d†d ¼ 2γs: ðE2bÞ

The periodic acceleration structure has two channels for
incoming and outgoing propagation waves to couple to the
resonant mode. As the acceleration mode is an even mode
which has a nonvanishing longitudinal electric field at the
mirror plane, the incident waves from the left and the right
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should have equal amplitude and phase to efficiently excite
the acceleration mode. Thus, a ¼ ½1; 1�Ta1, where ja1j2
represents the power of the incoming waves from the left
channel. The even mode also couples equally to the left and
the right channel. As a result, d ¼ ½1; 1�Td1, where d1 is the
coupling coefficient for the outgoing waves in the left
channel and jd1j2 ¼ γs, according to Eq. (E2).
From Eq. (E1), we obtain sðωÞ ¼ f½κTaþðωÞ�=

½−iðω − ω0Þ þ γs�g for each frequency component.
Based on the preceding analysis, we determine the spec-
trum of energy stored in the resonant mode as

jsðωÞj2 ¼ 4γjaþ1 ðωÞj2
ðω − ω0Þ2 þ γ2s

: ðE3Þ

To give an explicit expression about the field enhance-
ment, we denote the maximum electric-field amplitude at the
output port of the power delivery waveguide as Eout and the
maximum amplitude of the electric field inside the accel-
eration structure as Emat. We introduce the effective incident
spot area (S) such that the incident power from, say, the left
channel is ½1=ð2η0Þ�jEoutj2S, and define the mode volume
(V) of the resonant mode so that the energy stored in the
resonant mode is 1

2
ϵrϵ0jEmatj2V [69], where ϵr is the relative

permittivity of the dielectric accelerator. Thus,

jEmatðωÞj ¼
�

8cS
ϵrω0V

�
1=2

�
γ2s

ðω−ω0Þ2þ γ2s

�
1=2 ffiffiffiffi

Q
p

jEoutðωÞj;

ðE4Þ

where the quality factor Q is inversely proportional to
the resonant-mode leakage rate, i.e., Q ¼ ½ω0=ð2γsÞ�.
Equation (E4) shows that the field enhancement in the
resonant accelerator structure is proportional to

ffiffiffiffi
Q

p
and has

a bandwidth that decreases with an increasing Q value,
where the frequency dependence is the square root of a
Lorentzian line shape.

APPENDIX F: CALCULATION OF THE
ACCELERATION GRADIENT

Here, we formalize the calculation of the acceleration
gradient used in the parameter study. In the two following
subsections, we show how to deal with both arbitrary, finite-
duration input pulses and finite-stage-length structures. In
both derivations, we assume an input pulse E0ðtÞ, which
leads to the creation of an accelerating field in the gap of a
unit cell Ezðz; tÞ through the convolution with the corre-
sponding impulse response function fðz; tÞ. In the frequency
domain, this operation is done via multiplication of the pulse
spectrum E0ðωÞ by the transfer function Fðz;ωÞ:

Ezðz; tÞ ¼ E0ðtÞ∘fðz; tÞ; ðF1Þ

Ezðz;ωÞ ¼ E0ðωÞFðz;ωÞ: ðF2Þ

1. Finite pulse duration

We wish to derive the correspondence between the time-
domain description of the acceleration gradient, given an
arbitrary input pulse, and the frequency-domain approach
that is used in this work and others [6,39].
In the time domain, the acceleration gradient is expressed

as an integral over the accelerating electric field over the
particle’s trajectory:

G ¼ 1

L

Z
L=2

−L=2
dz Ez½z; tðzÞ�: ðF3Þ

If the electron moves uniformly in ẑ with speed βc0, then
zðtÞ ¼ z0 þ βc0t and we may express the acceleration
gradient as a function of the starting time, t0, as

Gðt0Þ ¼
1

L

Z
L=2

−L=2
dzEzðz; t0 þ z=βc0Þ

¼ 1

L

Z
L=2

−L=2
dz

Z
∞

−∞
dtEzðz; tÞδðt − t0 − z=βc0Þ:

ðF4Þ

In previous works, such as Ref. [6], the acceleration
gradient is computed by first performing a finite-difference
time-domain simulation to record Ezðz; tÞ along the gap for
a series of time, then maximizing the integral in Eq. (F4)
with respect to t0. However, we may, equivalently, do the
computation in the frequency domain by Fourier trans-
forming this equation with respect to t0, which yields

GðωÞ ¼ 1

L

Z
L=2

−L=2
dz

Z
∞

−∞
dtEzðz; tÞeiωðt−z=βc0Þ

¼ 1

L

Z
L=2

−L=2
dxe−iωz=βc0

Z
∞

−∞
dtEzðz; tÞeiωt

¼ 1

L

Z
L=2

−L=2
dze−iωz=βc0E0ðωÞFðz;ωÞ

≡ gðωÞE0ðωÞ: ðF5Þ

Here, gðωÞ is the gradient normalized by the incident
electric field at that frequency, E0ðωÞ, which is also
described in the following subsection. Now, by performing
a series of FDFD simulations at discrete frequencies, we
may estimate Fðz;ωÞ. Then, using the known pulse
amplitude spectrum and phase information in E0ðωÞ, we
can compute GðωÞ as described. Finally, Gðt0Þ can be
determined by applying an inverse discrete Fourier trans-
form on GðωÞ, and the acceleration gradient can then be
found by taking the maximum of the absolute value of this
quantity. Explicitly,

G ¼ max
t0

jF−1fgðωÞE0ðωÞgj: ðF6Þ
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2. Finite stage length

Now, let us assume that we have a DLA with a stage
length of L along ẑ with an incident laser pulse of the form
E0ðtÞ with spectrum E0ðωÞ. The laser is assumed to be
spatially uniform along the entire interaction length. We use
the same transfer-function formalism as was introduced at
the beginning of this section.
The DLA structure is further assumed to be periodic in ẑ

with a periodicity of Λz ¼ βλ ¼ 2πc0=ω0. Thus, the fields
can be expressed as a Fourier series,

Ezðz;ωÞ ¼ E0ðωÞ
X∞

m¼−∞
TmðωÞeimzω0=βc0 ; ðF7Þ

where the TmðωÞ terms are the spatial Fourier amplitudes of
the transfer function Fðz;ωÞ. See Ref. [70] for a similar
discussion.
The acceleration gradient at frequency ω, GðωÞ, can be

written as the average Ez felt by the particle as it moves
with velocity βc0ẑ through the entire interaction length of
the structure from z ¼ −L=2 to z ¼ L=2:

GðωÞ ¼ 1

L

Z
L=2

−L=2
dzEzðz;ωÞeizω=βc0

¼ 1

L

Z
L=2

−L=2
dzE0ðωÞ

X∞
m¼−∞

TmðωÞeiðmω0þωÞz=βc0 :

ðF8Þ

Rearranging the integral and defining the normalized
gradient gðωÞ≡GðωÞ=E0ðωÞ,

gðωÞ ¼ 1

L

X∞
m¼−∞

TmðωÞ
Z

L=2

−L=2
dzeiðmω0þωÞz=βc0

¼
X∞

m¼−∞
TmðωÞ

2βc0 sin (
L

2βc0
ðmω0 þ ωÞ)

Lðmω0 þ ωÞ

¼
X∞

m¼−∞
TmðωÞsinc

�
L

2βc0
ðmω0 þ ωÞ

�
: ðF9Þ

We reasonably assume that the input pulse power is
centered around ω0. In this case, then, only the m ¼ −1
value will contribute to the accelerating mode. We could
also choose a higher order, m ¼ −2;−3;…, for the accel-
erating mode, as was demonstrated previously [5,71], but
m ¼ −1 is chosen for simplicity. Thus, as the interaction
length increases, the sincð� � �Þ function becomes more
tightly centered around ω ¼ ω0, limiting the available
bandwidth of the input pulse.
Under this assumption, the final form of the normalized

gradient becomes

gðωÞ ¼ T−1ðωÞsinc
�

L
2βc0

ðω − ω0Þ
�
: ðF10Þ

Assuming that T−1ðωÞ is relatively constant over a
bandwidth larger than our input pulse, we see that the
gradient falls to zero at ω ¼ ω0 � ½ð2πβc0Þ=L�. For a
Gaussian pulse of duration τ with a time-bandwidth
product of 0.44, the gradient falls to zero at

L ¼ τ
4πβc0
0.44

: ðF11Þ

For a τ value of 250 fs and a β value of 1, this expression
corresponds to a stage length of 2.14 mm. Thus, to satisfy
the bandwidth requirement, L must be much less than
2.14 mm if no pulse-delay techniques are used.
This result can be compared to the following back-of-

the-envelope calculation: An electron traveling over a
length L with speed βc0 will spend Δte− ¼ ½L=ðβc0Þ� of
time in the channel. The input pulse will spend approx-
imately τ seconds in the gap. Thus, for the fields to be
present during the whole duration,

L < τβc0: ðF12Þ

This length scales with τ, β, and c0 in the same fashion as
Eq. (F11), which serves as a sanity check. However, the full
expression in Eq. (F10) can be used to rigorously compute
the effect that a finite-stage-length structure will have on the
acceleration gradient.

[1] E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu,
B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D.
Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and
R. L. Byer, Demonstration of electron acceleration in a
laser-driven dielectric microstructure, Nature (London) 503,
91 (2013).

[2] Kent P. Wootton, Ziran Wu, Benjamin M. Cowan, Adi
Hanuka, Igor V. Makasyuk, Edgar A. Peralta, Ken Soong,
Robert L. Byer, and R. Joel England, Demonstration of
acceleration of relativistic electrons at a dielectric micro-
structure using femtosecond laser pulses, Opt. Lett. 41, 2696
(2016).

[3] Kenneth J. Leedle, Andrew Ceballos, Huiyang Deng, Olav
Solgaard, R. Fabian Pease, Robert L. Byer, and James S.
Harris, Dielectric laser acceleration of sub-100 keV elec-
trons with silicon dual-pillar grating structures, Opt. Lett.
40, 4344 (2015).

[4] Kenneth J. Leedle, R. Fabian Pease, Robert L. Byer, and
James S. Harris, Laser acceleration and deflection of
96.3 keVelectrons with a silicon dielectric structure, Optica
2, 158 (2015).

[5] John Breuer and Peter Hommelhoff, Laser-Based Accel-
eration of Nonrelativistic Electrons at a Dielectric Structure,
Phys. Rev. Lett. 111, 134803 (2013).

TYLER W. HUGHES et al. PHYS. REV. APPLIED 9, 054017 (2018)

054017-14

https://doi.org/10.1038/nature12664
https://doi.org/10.1038/nature12664
https://doi.org/10.1364/OL.41.002696
https://doi.org/10.1364/OL.41.002696
https://doi.org/10.1364/OL.40.004344
https://doi.org/10.1364/OL.40.004344
https://doi.org/10.1364/OPTICA.2.000158
https://doi.org/10.1364/OPTICA.2.000158
https://doi.org/10.1103/PhysRevLett.111.134803


[6] T. Plettner, P. P. Lu, and R. L. Byer, Proposed few-optical
cycle laser-driven particle accelerator structure, Phys. Rev.
ST Accel. Beams 9, 111301 (2006).

[7] D. Cesar, S. Custodio, J. Maxson, P. Musumeci, X. Shen, E.
Threlkeld, R. J. England, A. Hanuka, I. V. Makasyuk, E. A.
Peralta, K. P. Wootton, and Z. Wu, Onset of nonlinear
effects in a high gradient dielectric laser accelerator,
arXiv:1707.02364.

[8] M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K.
Leedle, H. Deng, J. S. Harris, R. L. Byer, and P. Hommelhoff,
Dielectric laser acceleration of sub-relativistic electrons by
few-cycle laser pulses, Nucl. Instrum. Methods Phys. Res.,
Sect. A 865, 84 (2017).

[9] M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger,
C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl
et al., Acceleration of sub-relativistic electrons with an
evanescent optical wave at a planar interface, Opt. Express
25, 19195 (2017).

[10] N. A. Solyak, Gradient limitations in room temperature and
superconducting acceleration structures, AIP Conf. Proc.
1086, 365 (2009).

[11] Motoichi Ohtsu and Hirokazu Hori,Near-Field Nano-optics:
From Basic Principles to Nano-fabrication and Nano-
photonics (Springer Science+Business Media, New York,
2012).

[12] Evgenya I. Simakov, Heather L. Andrews, Matthew J.
Herman, Kevin M. Hubbard, and Eric Weis, Diamond field
emitter array cathodes and possibilities of employing
additive manufacturing for dielectric laser accelerating
structures, AIP Conf. Proc. 1812, 060010 (2017).

[13] Yasuhiko Arakawa, Takahiro Nakamura, Yutaka Urino,
and Tomoyuki Fujita, Silicon photonics for next generation
system integration platform, IEEE Commun. Mag. 51, 72
(2013).

[14] Andy Eu-Jin Lim, Junfeng Song, Qing Fang, Chao Li,
Xiaoguang Tu, Ning Duan, Kok Kiong Chen, Roger
Poh-Cher Tern, and Tsung-Yang Liow, Review of silicon
photonics foundry efforts, IEEE J. Sel. Top. Quantum
Electron. 20, 405 (2014).

[15] David Thomson, Aaron Zilkie, John E. Bowers, Tin
Komljenovic, Graham T. Reed, Laurent Vivien, Delphine
Marris-Morini, Eric Cassan, Léopold Virot, Jean-Marc
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