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Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where
random numbers for quantum key distribution and bits for classical communication are encoded on the
sameweak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in
practice since a single coherent communication system can be used for multiple purposes. However,
previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it
incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a
relatively high phase noise due to the fact that the signal and the LO are generated from two independent
lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined
noise model where phase noises originating from different sources are treated differently: on the one hand,
phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be
calibrated locally and the photon statistics of the detected signals can be determined from the measurement
results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as
untrusted noise since its randomness (from the adversary’s point of view) is hard to justify. Simulation
results show the tolerable phase noise in this refined noise model is significantly higher than that in the
previous study, where all of the phase noises are assumed to be untrusted. We conduct an experiment to
show that the required phase stability can be achieved in a coherent communication system using a true LO.
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I. INTRODUCTION

Quantum key distribution (QKD) allows two remote
parties, traditionally called Alice and Bob, to generate a
secure key through an insecure quantum channel fully
controlled by an adversary (Eve) [1–6]. The secure key can
be further applied in other cryptographic protocols to
enhance communication security.
One of the major roadblocks in the wide adoption of

QKD is the high cost: dedicated communication infra-
structures (such as dark fibers) and expensive devices (such
as single-photon detectors) are commonly required in

today’s commercial QKD systems. It is thus imperative
to come up with cost-effective QKD solutions. Recently, in
light of the similarity between continuous-variable (CV)
QKD based on coherent detection [7] and classical coherent
communication, we proposed a simultaneous quantum and
classical communication (SQCC) protocol where Gaussian
distributed random numbers for QKD and bits for classical
communication are encoded on the same weak coherent
pulse and decoded by the same coherent receiver [8]. Since
a single coherent communication system can be used for
both classical communication and QKD, it can effectively
reduce the cost of QKD itself.
However, previous studies show the SQCC protocol can

tolerate only very small phase noise [8]. This is mainly due
to the cross talk between the QKD signal and the classical
communication signal: on the one hand, the random QKD
signal appears as an additional noise source in the classical
communication. To ensure the classical bit error rate (BER)
is below a given threshold, a larger modulation amplitude
of the classical signal would be required compared to
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the case of conducting classical communication alone. On
the other hand, since the QKD signal is superimposed on the
classical signal, the variance of excess noise due to phase
fluctuation is proportional to the power of the classical
signal. A larger modulation amplitude of the classical signal
will result in a higher excess noise in QKD, hence resulting
in a poorer performance. To achieve high-performance
classical communication and QKD at the same time, the
tolerable phase noise variance is less than 10−4 rad2 in the
previous study [8]. Experimentally, phase noise below
10−4 rad2 has been demonstrated in CV-QKD experiments
using a distributed local oscillator (LO), where the LO for
coherent detection is generated fromAlice’s signal laser and
distributed to Bob through an insecure quantum channel
[9–13]. However, it could be difficult to achieve such a small
phase noise in CV QKD using a true LO, where the LO is
generated by Bob using an independent laser source. Note
that CV QKD using a true LO is very appealing in practice
due to its simple design and enhanced security [14–18].
Canwe relax the requirement of very lowphasenoise in the

SQCC protocol? In QKD, Alice and Bob can quantify the
information gained by Eve from the observed noise and other
system parameters: a higher noise level implies more infor-
mation gained by Eve thus a lower secure key rate. One
conservative approach to dealwith noise inQKD is to assume
that all of the observed noises are due to Eve’s attack. This
approachmay overestimate Eve’s information since practical
QKD systems present intrinsic noises not necessarily con-
trollable by Eve. An alternative approach is to assume that
certain intrinsic noises well protected from Eve are trusted in
the security proof. This approach can typically lead to a better
QKD performance. For example, the trusted detector noise
model has been widely adopted in long-distance CV-QKD
experiments [7,9–12,19]. More recently, the trusted source
noise model was also studied in CV QKD [20–24].
In this paper, we improve the phase noise tolerance of

the SQCC scheme using a true LO by adopting a refined
noise model where phase noises originating from different
sources are treated differently: on the one hand, phase noise
associated with the coherent receiver may be regarded as
trusted noise since the detector can be calibrated locally and
the photon statistics of the detected signals can be deter-
mined from the measurement results. This assumption is
consistent with the commonly adopted assumption of
trusted detector noise in practical CV QKD; on the other
hand, phase noise due to the instability of fiber interfer-
ometers are regarded as untrusted noise since its random-
ness (from Eve’s point of view) is hard to justify. We
conduct numerical simulations of the SQCC protocol using
a true LO based on the above noise model. Simulation
results show the tolerable phase noise in this refined noise
model is significantly higher than that in the previous study,
where all of the phase noise is assumed to be untrusted.
Based on a design proposed in Ref. [25], we conduct an
experiment to show the required phase stability can be

achieved in a coherent communication system using a true
LO generated on Bob’s end. Our findings suggest that the
SQCC protocol could be a viable solution in practice.
This paper is organized as follows: In Sec. II, we present

details of the SQCC protocol based on conjugate homo-
dyne detection. In Sec. III, we develop the noise model of
the SQCC using a true LO and present simulation results
based on practical system parameters. In Sec. IV, we
conduct an experiment to show that the required phase
stability can be achieved in a coherent communication
system using a true LO. Finally, we conclude this paper
with a discussion in Sec. V.

II. PROTOCOLS

The QKD protocol adpoted in this paper is the Gaussian-
modulated coherent states (GMCS) protocol [7] based on
conjugate homodyne detection [26]. We further assume that
the QKD protocol is implemented with a true LO generated
by Bob, as proposed in Ref. [14]. Since conjugate homo-
dyne detection allows Bob to measure both the X quad-
rature and the P quadrature simultaneously, we adopt the
quadrature phase-shift keying (QPSK) modulation for
classical communication. This setup is quantitatively differ-
ent from Ref. [8], where binary phase-shift keying modu-
lation is used for classical communication.

A. Classical QPSK scheme

In QPSK, Alice encodes two classical bits, mA and nA,
into the X quadrature and the P quadrature of a coherent
state, given by

jψi ¼ jðe−imAπ þ ie−inAπÞαi; ð1Þ
where α is assumed to be a real number. The average photon
number μ of the coherent state jψi is given by μ ¼ 2α2.
Bob measures both theX quadrature and theP quadrature

of the incoming signal and uses the signs of themeasurement
results to decodemA and nA; i.e., if the measured quadrature
value is positive (negative), the corresponding classical bit
is assigned as 0 (1).

B. The GMCS QKD based on conjugate
homodyne detection

In GMCS QKD based on conjugate homodyne detec-
tion [26], Alice prepares a coherent state jxA þ ipAi,
where xA and pA are Gaussian random numbers with zero
mean and a variance of VAN0. Here, N0 ¼ 1=4 denotes
the shot-noise variance. In this paper, all of the noise
variances are defined in the shot-noise unit. On Bob’s
end, he performs conjugate homodyne detection to
measure both the X and P quadratures simultaneously.
After repeating the above quantum state transmission and
detection process many times, Alice and Bob perform
data postprocessing. Through an authenticated classical
channel, Alice and Bob compare a subset of their data to
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estimate the transmission efficiency and the noise vari-
ance for each quadrature. If the observed noise is below a
certain threshold, Alice and Bob can further work out a
secure key by performing reconciliation and privacy
amplification. See Sec. III for additional details.

C. The SQCC protocol

In the SQCC protocol, Alice encodes her classical bits
fmA; nAg and Gaussian random numbers fxA; pAg on a
coherent state jðxA þ e−imAπαÞ þ iðpA þ e−inAπαÞi and
transmits it to Bob, who performs conjugate homodyne
detection to measure both the X and P quadratures
simultaneously.
Bob determines the classical bits fmB; nBg from the

signs of his measurement results fxR; pRg: if xRðpRÞ > 0,
then the bit value ofmBðnBÞ is assigned as 0. Otherwise, the
bit value is assigned as 1. To decode Alice’s random
numbers for QKD, Bob processes his measurement results
using on the overall transmittance Tη and the classical bits
fmB; nBg determined above:

xB ¼
ffiffiffiffiffiffi
2

Tη

s
xR þ ð2mB − 1Þα;

pB ¼
ffiffiffiffiffiffi
2

Tη

s
pR þ ð2nB − 1Þα; ð2Þ

where T is the channel transmittance, η is the detector
efficiency, and the factor

ffiffiffi
2

p
is due to conjugate homodyne

detection.
Alice and Bob can further perform data postprocessing

and work out a secure key from raw keys fxA; xBg and
fpA; pBg, just as in the case of conventional GMCS QKD
[7]. The phase-space representations of the above three
protocols are shown in Fig. 1.

D. CV QKD using a true LO

In all of the protocols discussed above, a LO is needed in
coherent detection. In most existing implementations of CV
QKD, to reduce the phase noise, both the signal and the LO
are generated by Alice from the same laser and sent through
the insecure quantum channel [7,9–13,19]. This arrange-
ment, however, may allow Eve to launch sophisticated
attacks by manipulating the LO [27–31]. It also requires
complicated multiplexing and demultiplexing schemes to
effectively separate the strong LO from the weak quantum
signal at the receiver’s end. To solve the above problems,
CV QKD using a true LO generated at Bob’s side was
developed [14,15]. The scheme presented in Ref. [14]
works as follows: for each transmission, Alice sends out
both a quantum signal and a phase reference pulse
generated from the same laser. The quantum signal carries
Alice’s random numbers, while the phase reference pulse
is not modulated. On Bob’s end, he performs conjugate
homodyne detection on both the quantum signal and the

phase reference pulse using two separate LOs generated
from his own LO laser. The measurement results from the
phase reference pulse are used to recover the phase relation
ϕ between the two lasers. Using this phase information,
Bob can classically correct his measurement results of the
quantum signal in the postprocessing stage by performing
the following rotation:

x0R ¼ xR cosϕ − pR sinϕ;

p0
R ¼ xR sinϕþ pR cosϕ: ð3Þ

Various schemes have been proposed to implement
CV QKD using a true LO. In Ref. [14], the QKD signal
and the phase reference pulse were generated by using
an amplitude modulator to modulate the output of a
continuous-wave (cw) laser twice, as shown in Fig. 2(a).
Two LO pulses are generated from Bob’s laser in the same
way. Given that Bob’s detector noise is much smaller than
the shot noise, the main phase noise of this scheme can be
estimated by [14]

FIG. 1. Phase-space representations of various coherent com-
munication schemes. (a) Classical QPSK scheme. (b) The GMCS
QKD scheme. (c) The SQCC protocol. The figures on the right
show the probability distributions of X-quadrature measurement.

NOISE ANALYSIS OF SIMULTANEOUS QUANTUM KEY … PHYS. REV. APPLIED 9, 054008 (2018)

054008-3



σ ¼ Δt
τ1

þ Δt
τ2

þ 2N0

ηnref
; ð4Þ

where Δt is the time delay between the signal pulse and the
phase reference pulse, τ1 (τ2) is the coherent time of the
signal (LO) laser, and nref is the average photon number of
the phase reference pulse on Bob’s side.
We define σB ¼ ½ð2N0Þ=ðηnrefÞ�. It represents the shot-

noise contribution and, in principle, can be suppressed by
using a strong phase reference pulse. The first two terms on
the rhs of Eq. (4) are fundamental phase noises associated
with the finite linewidth of the lasers, which can be reduced
by decreasing the time delay Δt or using lasers with a
longer coherent time (narrower linewidth).
In Ref. [25], Marie and Alléaume proposed a modified

scheme where the signal pulse and the phase reference
pulse are split from a common pulse using a path-
unbalanced interferometer, as shown in Fig. 2(b). Since
this scheme can effectively remove the phase noise con-
tributed by the lasers, the residual phase noise is mainly
determined by the last term on the rhs of Eq. (4) and the
phase instability of the path-unbalanced interferometers.
We adopt this modified scheme in this paper.

III. NOISE ANALYSIS

The performance of the SQCC protocol depends on the
noises presented in the system. In this section, we first
present the noise model adopted in this paper, followed by
calculations of the BER in classical communication, the

secure key rate in QKD, and simulation results based on
realistic parameters.

A. Noise model

The main noise sources considered here are (1) phase
noise in a coherent communication system using a true LO,
(2) noise εle due to the leakage from the phase reference
pulse to the signal, (3) detector noise denoted by υel,
(4) signal-independent noise ε0 from the channel and
other unidentified or unprotected sources, and (5) vacuum
noise. All of the noises are assumed to be Gaussian, and
we use the same symbol to represent both the noise and its
variance.
In this paper, we adopt the trusted detector noise model

by assuming both the detector efficiency η and detector
noise υel are well calibrated and out of Eve’s control. By
contrast, items (2) and (4) are untrusted noises and
contribute to Eve’s attack. Item (1) is more complicated
and can be further separated into two terms: the phase noise
σI due to the instability of the path-unbalanced interfer-
ometers [see Fig. 2(b)], and the phase noise σB given by the
last term on the rhs of Eq. (4). As discussed in Ref. [25],
previous experimental demonstrations of CV QKD using a
distributed LO have shown that the phase noise σI
associated with path-unbalanced interferometers can be
very small. For example, phase noises on the order of
10−4–10−5 rad2 were demonstrated in Refs. [9,12]. By
comparison, phase noise σB is typically much higher
(10−3 rad2, as we show in this paper).
One crucial assumption we make in this paper is that the

phase noise σB is trusted. Since σB is determined by the
detector and the photon number of the phase reference
pulse received by Bob, to justify this assumption in
practice, Bob may need to calibrate the detector and the
phase reference pulse in the QKD process [32,33]. The
detector calibration is also required in the trusted detector
noise model and has been studied previously [30]. Here, we
present a brief discussion on the calibration of the photon
number of the phase reference pulse. As discussed in
Sec. II D, to determine the phase relation between the LO
laser and the signal laser, Bob performs conjugate homo-
dyne detection to measure both the X quadrature and the P
quadrature of the phase reference pulse. From his meas-
urement results, Bob can also determine the photon
statistics of phase reference pulses since, classically, the
quantity z ¼ X2 þ Y2 is proportional to the intensity of the
phase reference pulse [34]. So, the same measurement
device for the LO phase recovery can also be used for phase
reference pulse calibration. Given the finite photon number
of the phase reference pulse, the corresponding phase noise
essentially originates from vacuum noise, which is truly
random to both the QKD users and Eve. We thus assume
that σB is trusted noise.
Can we assume that the phase noise σI is also trusted?

At first sight, since Eve cannot access the QKD system, it

FIG. 2. Two different ways to generate phase reference pulses
in CV QKD using a true LO. (a) The QKD signal (S) and the
phase reference pulse (R) are generated from a continuous-wave
laser by using an amplitude modulator (AM) [14]. (b) The QKD
signal and the phase reference pulse are split from a common
laser pulse using a path-unbalanced interferometer [25].
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seems reasonable to assume that σI cannot be manipulated
by Eve. However, the unpredictability of this noise (from
Eve’s point of view) is hard to justify. If there are some
internal patterns of the interferometer phase drift which are
ignored by QKD users but known by Eve, she may
compensate for this phase drift when the signal propagates
through the channel and thus reduce the phase noise. In the
meantime, she can attack the quantum signal to gain
information, at the cost of introducing noise. If the total
noise (including the reduced phased noise and the noise
due to Eve’s attack) equals the phase noise expected by the
users (when Eve does not compensate for the phase drift
in the channel), Eve’s attack cannot be detected. For this
reason, we assume that σI is untrusted.
The term εle quantifies the noise due to the leakage from

the phase reference pulse to the signal. Since the effect of
leakage is implementation specific, we conduct a detailed
analysis in the Appendix based on the design to be
presented in Sec. IV, where both time multiplexing and
polarization multiplexing are employed to reduce the
leakage. As shown in the Appendix, the excess noise
contributed by the leakage referred to the input of the
channel is given by

εle ¼
nrefΔt
TN0τc

× 10−ðξA=10Þ × 10−ðξP=10Þ; ð5Þ

where Δt is the time delay between the signal pulse and the
phase reference pulse, τc is the coherent time of Alice’s
laser, and ξA and ξP are the extinction ratios (in decibels) of
the amplitude modulator and the polarization multiplexing
scheme.
From Eq. (5), the excess noise εle can be effectively

suppressed by improving the extinction ratio ξA or ξP.
While amplitude modulators with a 65-dB extinction ratio
have been demonstrated experimentally [35] and applied in
a CV-QKD experiment [36], most standard commercial
products can achieve an extinction ratio in the range of 20
to 50 dB. In the simulation below, we assume an extinction
ratio of 30 dB for both amplitude modulation and polari-
zation multiplexing.

B. Bit error rate in classical communication

In the SQCC protocol, the Gaussian modulation for
QKD appears as a Gaussian noise for classical communi-
cation. Furthermore, the contribution of phase noises is
proportional to the power of classical signal and can be
described by ðα2=N0ÞðσI þ σBÞ. The overall noise variance
at the receiver’s end is given by

Ntot ¼
1

2
Tη

�
VA þ εle þ ε0 þ

α2

N0

ðσI þ σBÞ
�
þ 1þ υel;

ð6Þ

where the factor 1
2
is due to conjugate homodyne detection

since the received signal is split by Bob into two using a
symmetric beam splitter.
We assume that the channel between Alice and Bob is

telecom fiber with an attenuation coefficient of γ, which
is assumed to be 0.2 dB=km. The channel transmittance is
given by

T ¼ 10ð−γL=10Þ; ð7Þ

where L is the fiber length in kilometers.
Given that the signals transmitted by Alice are described

by Eq. (1), the BER of the classical QPSK is given by

CBER ¼ 1

2
erfc

� ffiffiffiffiffiffi
Tη

p
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4NtotN0

p
�
; ð8Þ

where erfcð� � �Þ denotes the complementary error function.
To achieve a BER of CBER in the classical communi-

cation, the required displacement α can be determined from
Eqs. (6)–(8) as

α ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TηðVA þ εle þ ε0Þ þ 2þ 2υel

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tηð2 − 4w2σI − 4w2σBÞ

p ; ð9Þ

where w is defined as

w ¼ erf−1ð1 − 2CBERÞ: ð10Þ

Here erf−1ð� � �Þ is the inverse error function.
We remark that to achieve a BER of 10−9 in classical

communication, the maximum tolerable phase noise is
σI þ σB ¼ 0.0278. This number is determined from Eq. (9)
by requiring the denominator to be a real number.

C. Secure key rate in QKD

The asymptotic secure key rate of QKD, in the case of
reverse reconciliation, is given by Refs. [9,37]:

R ¼ fIAB − χBE; ð11Þ

where IAB is the Shannon mutual information between
Alice and Bob, f is the efficiency of the reconciliation
algorithm, and χBE is the Holevo bound between Eve
and Bob.
As we have discussed above, we assume that the detector

noise υel and the phase noise σB are trusted, while the phase
noise σI, the excess noise due to leakage εle, and the
channel noise ε0 are untrusted. Under this noise model, in
the case of conjugate homodyne detection, the detector-
added noise referred to Bob’s input is given by

χhet ¼ ð2þ 2υelÞ=η − 1þ TεB; ð12Þ
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where εB quantifies the excess noise due to the trusted
phase noise referred to the channel input:

εB ¼
�
α2

N0

þ VA

�
σB: ð13Þ

The total channel-added noise (including all of the
untrusted noise) referring to the channel input is given by

χline ¼
1

T
− 1þ εle þ ε0 þ εI þ

4α2

N0

CBER; ð14Þ

where εI quantifies the excess noise due to untrusted phase
noise and is given by εI ¼ ½ðα2=N0Þ þ VA�σI. The term
½ð4α2Þ=N0�CBER quantifies the excess noise contributed by
the BER in classical communication.
The overall noise referred to the channel input is

given by

χtot ¼ χline þ
χhet
T

: ð15Þ

Since both quadratures are used for secure key gener-
ation, the mutual information between Alice and Bob is
given by

IAB ¼ log2
VA þ 1þ χtot

1þ χtot
: ð16Þ

The Holevo bound of the information between Eve and
Bob is given by Ref. [9],

χBE ¼
X2
i¼1

G

�
λi − 1

2

�
−
X5
i¼3

G

�
λi − 1

2

�
; ð17Þ

where GðxÞ ¼ ðxþ 1Þ log2ðxþ 1Þ − x log2 x,

λ21;2 ¼
1

2

�
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B

p �
; ð18Þ

where

A ¼ V2ð1 − 2TÞ þ 2T þ T2ðV þ χlineÞ2; ð19Þ

B ¼ T2ðVχline þ 1Þ2; ð20Þ

λ23;4 ¼
1

2

�
C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − 4D

p �
; ð21Þ

where

C ¼ 1

½TðV þ χtotÞ�2
fAχ2het þ Bþ 1þ 2χhet

× ½V
ffiffiffiffi
B

p
þ TðV þ χlineÞ� þ 2TðV2 − 1Þg; ð22Þ

D ¼
�
V þ ffiffiffiffi

B
p

χhet
TðV þ χtotÞ

�2

; ð23Þ

λ5 ¼ 1: ð24Þ
D. Simulation results

We conduct numerical simulations of the secure key rate
of QKD under the constraint of 10−9 BER in the classical
communication. Other simulation parameters are γ ¼
0.2 dB=km, ε0 ¼ 0.01, υel ¼ 0.1, η ¼ 0.5, f ¼ 0.95,
Δt¼ 50 ns, τc ¼ 1 μs, ξA ¼ ξP ¼ 30 dB, and nref ¼ 1000.
At each distance, the channel transmittance T can be
determined using Eq. (7). From Eqs. (9) and (10), given T
and that CBER ¼ 10−9, the displacement α is determined by
VA and other system parameters. So the only free parameter
needs to be optimized is the modulation variance VA.
We numerically optimize VA at each distance to achieve
themaximum secure key rate. Secure key rates are calculated
at four different phase noise combinations: (1) σI ¼ 10−5,
σB ¼ 10−3; (2) σI ¼ 10−5, σB ¼ 10−2; (3) σI ¼ 10−4,
σB ¼ 10−3; and (4) σI ¼ 10−4, σB ¼ 10−2. Figure 3 shows
the simulation results. As a comparison, we also calculate
the secure key rate under the assumption that the phase
noise σB is untrusted. Using the same system parameters, no
secure key can be generated at any distance.

0 10 20 30 40 50 60 70 80

Distance (km)

10–8

10–6

10–4

10–2

100

102

S
ec

ur
e 

ke
y 

ra
te

 (
bi

ts
/p

ul
se

)

(4)

(1)

(2)

(3)

FIG. 3. Simulation results of secure key rate under the constraint
of 10−9 BER in the classical communication. The simulation
parameters are γ ¼ 0.2 dB=km, ε0 ¼ 0.01, υel ¼ 0.1, η ¼ 0.5,
f ¼ 0.95, Δt ¼ 50 ns, τc ¼ 1 μs, ξA ¼ ξP ¼ 30 dB, and nref ¼
1000. The modulation variance VA is numerically optimized at
each fiber length. The four curves presented correspond to the
following phase noise combinations: (1) σI ¼ 10−5, σB ¼ 10−3;
(2) σI ¼ 10−5, σB ¼ 10−2; (3) σI ¼ 10−4, σB ¼ 10−3; and (4) σI ¼
10−4, σB ¼ 10−2. As a comparison, using the above system
parameters, no secure key can be generated at any distance if
the phase noise σB is untrusted.
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IV. PHASE NOISE MEASUREMENT

We conduct an experiment to determine the phase noise
in a coherent communication system using a true LO
based on the phase recovery scheme proposed in Ref. [25].
A similar experiment was also conducted recently by
Wang et al. [38].
The experimental setup is shown in Fig. 4. Two commer-

cial frequency-stabilized cw lasers at telecom wavelength
(Clarity-NLL-1542-HP from Wavelength Reference) are
employed as the signal laser and the LO laser. Both lasers
are operated at free-running mode with no optical or
electrical connections between them. Two LiNbO3 wave-
guide amplitude modulators (EOSPACE) are used to gen-
erate 10-ns laser pulses at a repetition rate of 10 MHz. At
Alice’s side, a polarization-maintaining fiber interferometer
with a time-delay unbalance of 46.9 ns is employed to
generate a phase-related pulse pair (signal and phase refer-
ence) from each incoming pulse. A specially designed bias-
free amplitude and phase modulator (APM in Fig. 4) is
placed inside the interferometer to control the amplitude and
phase of the signal pulse. Details of the APM’s design are
presented in Fig. 5. Note that the signal pulse and the phase
reference pulse are coupled into orthogonal polarization
modes by using a polarization beam combiner (PBC1 in
Fig. 4). Such a design can improve the isolation between the
two pulses. Both the signal pulse and the phase reference
pulse propagate through a spool of 25-km single-mode fiber.
At Bob’s end, a commercial 90° optical hybrid (Optoplex)
and two 350-MHz balanced amplified photodetectors
(Thorlabs) are employed to measure both the X quadrature
and the P quadrature of the two pulses from Alice. The two
LOs used in the coherent detection are split from a common
pulse generated by the LO laser. A tunable optical delay line
(TDL in Fig. 4) is placed inside Bob’s interferometer to
match its time-delay difference to that of Alice’s interfer-
ometer. By adjusting two polarization controllers (PC2 and

PC3 in Fig. 4), the intensity of each LO pulse can be adjusted
individually. Similar to the signal pulse and the reference
pulse from Alice, the two LO pulses are also coupled into
orthogonal polarization modes by a polarization beam
combiner (PBC2 in Fig. 4). Another polarization controller
(PC1 in Fig. 4) is used to match the polarization of Alice’s
pulse to that of the corresponding LO. Finally, the outputs of
the two balanced photodetectors are sampled by a 12-bit data
acquisition board (Texas Instruments).
In high-speed QKD, LiNbO3 waveguide modulators are

commonly employed to implement amplitude and/or phase
modulation. The bias voltage control is vital for an amplitude
modulator since its bias point commonly drifts with time.
Here, we achieve bias-free amplitude and phase modulation
by placing a phase modulator asymmetrically inside a loop
interferometer, as shown in Fig. 5. See a similar scheme in
Ref. [39]. The basic idea is to introduce different phase shifts
on lights traveling through the loop clockwise (CW pulse) or
counterclockwise (CCWpulse). Note that, depending on the
input optical signal (cw or pulsed) and the waveform of the
electrical control signal on the phase modulator, this device
can act as either an optical pulse generator or an amplitude
and phasemodulator.When the input is cw light, each control
pulse on the phase modulator will generate a pair of output
light pulses with a time delay given by Δt ¼ nðL2 − L1Þ=c,

FIG. 4. Experimental setup. S, signal laser; L, LO laser; AM1;2,
amplitude modulator; APM, amplitude and phase modulator (see
the details in Fig. 5); PMB, 90∶10 polarization-maintaining fiber
beam splitter; BS, 50∶50 single-mode-fiber (SMF) beam splitter;
TDL, tunable optical delay line; PBC1;2, polarization beam
combiner; PC1−3, polarization controller; Att., tunable optical
attenuator; AWG, arbitrary waveform generator; BD, balanced
photodetector; ADC, analog-to-digital converter.

FIG. 5. Bias-free amplitude and phase modulator. BS, 50∶50
polarization-maintaining fiber beam splitter; PM, phase modu-
lator; CW, clockwise; CCW, counterclockwise. (a) When the
input is cw light, the setup can act as a pulse generator. (b) When
the input is pulsed light, the setup can act as an amplitude and
phase modulator.
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where ðL2 − L1Þ=2 is the offset of the phase modulator from
the middle point of the loop interferometer (which is about
1.8 m in our experiment), n is the refractive index of the
optical fiber, and c is the speed of light in vacuum [see the
details in Fig. 5(a)]. The temporal width of the output optical
pulse is determined by the width of the control signal. When
the input is pulsed light, bias-free amplitude and phase
modulation can be achieved by controlling the waveform
of the control signal to the phase modulator, as shown in
Fig. 5(b). This design can be useful in other applications
beyond QKD. In this experiment, we simply use it to adjust
the photon number of the signal.
In CV QKD using a true LO [14], the measurement

results of the phase reference pulse ðXref ; PrefÞ are used to
determine the phase difference between the signal laser and
the LO laser using the relation

ϕ ¼ − tan−1
Pref

Xref
: ð25Þ

Once ϕ has been determined, Bob can correct his
measurement results of the signal pulse by using Eq. (3).
Here, we want to determine the phase noise of the above
process.More specifically,wewant to quantify the difference
between the ϕ estimated by Bob and the true value of the
phase difference ϕtru between the two lasers when the signal
is measured. To acquire a precise estimation of ϕtru, we
replace Alice’s signals for the SQCC protocol QKD by
strong (unmodulated) calibration pulses. In fact, to minimize
the measurement noise associated with the calibration pulse,
their intensity is even stronger than that of the phase reference
pulse. In this experiment, we define the weak pulse going
through the pathwith an amplitude and phasemodulator (see
Fig. 4) as the phase reference pulse, and the strong pulse
going through the other path as the calibration pulse. We
remark that no information is encoded in this experiment.
From the measurement results of the calibration pulse

ðXc; PcÞ, we calculate

ϕtru ¼ − tan−1
Pc

Xc
: ð26Þ

The phase error is defined as ϕ − ϕtru. Experimentally,
the variance of ϕ − ϕtru is determined to be 2.4� 0.4 ×
10−3 rad2 (when the average photon number of the phase
reference pulse is 103), and 0.79� 0.25 × 10−3 rad2 (when
the average photon number of the phase reference pulse is
104). From Fig. 3, this phase noise is low enough to
implement the SQCC protocol over practical distances.

V. DISCUSSION

CV QKD based on optical coherent detection is appeal-
ing in practice since it can be implemented with standard
telecommunication technology [40]. The research in CV
QKD is also aligned with the resurgence of classical optical
coherent communication, which is the most promising

solution to the dramatic growth of global communication
traffic [41]. Studies in this paper show that it is feasible to
use the same coherent communication system to conduct
QKD and classical communication simultaneously, as long
as the distance is within the reach of QKD.
To improve phase noise tolerance of the SQCC protocol

and make it compatible with the CV-QKD scheme using a
true LO, in this paper we adopt a refined noise model where
phase noise due to the finite photon number of the phase
reference pulse and the detector imperfection is assumed
to be trusted. Systematic noise analysis is conducted.
Simulation results show that the tolerable phase noise in
this refined noise model is significantly higher than that in
previous studies [8]. Experimentally, using a design pro-
posed in Ref. [25], we demonstrate that the required phase
stability can be achieved in practice.
While the results presented in this paper are encouraging,

further research is needed to bring this technology into real
life. As we show in this paper, a trusted noise model could
significantly improve the QKD performance. However, it
could also introduce potential security loopholes if Eve has
a way to manipulate the phase noise, or if the QKD users
overestimate the amount of trusted phase noise. It is thus
important to implement local calibration systems at both
Alice and Bob to monitor the relevant noise in real time.
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APPENDIX: LEAKAGE FROM PHASE
REFERENCE PULSE

In this appendix, we study the leakage from the phase
reference pulse to the signal based on the specific design
presented in Sec. IV.
As shown in Fig. 4, Alice generates laser pulses from a

cw laser source by using an optical amplitude modulator.
Each laser pulse is further split into two (the phase
reference pulse and the signal pulse) by using a path-
unbalanced interferometer. The signal and the reference are
coupled to orthogonal polarization modes to improve the
isolation between them.
In practice, only a finite extinction ratio can be achieved in

both amplitude modulation and polarization multiplexing.
So there will be unavoidable leakage from the phase
reference pulse to the signal pulse, as highlighted in Fig. 6.
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Given that the average photon number of the phase
reference pulse on Bob’s end is nref , the average photon
number of the leakage on Alice’s end is determined by

nle ¼
nref
T

× 10−ðξA=10Þ × 10−ðξP=10Þ; ðA1Þ

where ξA and ξP are the extinction ratios (in decibels) of the
amplitude modulator and the polarization multiplexing
scheme, correspondingly.
If the leakage photon has a fixed phase relation with the

phase reference pulse, then it introduces only a constant
displacement in phase space, which can be determined
from Bob’s measurement results and removed in the
postprocessing stage [10]. When taking into account the
phase noise of the QKD system and the finite coherent time
of the signal laser, the excess noise contributed by the
leakage can be described by

εle ¼
nle
2N0

σle; ðA2Þ

where σle quantifies the phase noise of the leakage.
In our setup, σle is determined mainly by the coherent

time τc of the laser. Note that the phase reference pulse and
the leakage are emitted at different times (with a time delay
of Δt) by Alice’s laser. The spontaneous emitted photons
generated within the above time interval contribute a
fundamental phase noise with a variance of 2Δt=τc. As
shown in Ref. [14], the coherent time of our laser is about
1 μs. If Δt is about 50 ns (see Fig. 6), then the phase noise
of the leakage contributed by the laser is about 0.1 rad2,
which is much larger than other phase noise in the QKD
system.
Using σle ¼ 2Δt=τc and Eq. (A1), Eq. (A2) can be

revised as

εle ¼
nrefΔt
TN0τc

× 10−ðξA=10Þ × 10−ðξP=10Þ: ðA3Þ
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