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Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An
alternative approach, as proposed by Feynman, is to use a quantum computer. We discuss simulating
strongly correlated fermionic systems using near-term quantum devices. We focus specifically on two-
dimensional (2D) or linear geometry with nearest-neighbor qubit-qubit couplings, typical for super-
conducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater
determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary
fermionic Gaussian state with OðN2Þ gates and OðNÞ circuit depth. Both algorithms are optimal in the
sense that the numbers of parameters in the quantum circuits are equal to those describing the quantum
states. Furthermore, we propose an algorithm to implement the 2D fermionic Fourier transformation on a

2D qubit array with onlyOðN1.5Þ gates andOð ffiffiffiffi
N

p Þ circuit depth, which is the minimum depth required for
quantum information to travel across the qubit array. We also present methods to simulate each time step in

the evolution of the 2D Fermi-Hubbard model—again on a 2D qubit array—with OðNÞ gates and Oð ffiffiffiffi
N

p Þ
circuit depth. Finally, we discuss how these algorithms can be used to determine the ground-state properties
and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.
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I. INTRODUCTION

A large class of materials evade description by density-
functional theory [1] due to the effects of strong electron-
electron correlations [2,3].A simulationof strongly correlated
electronic structure and dynamical effects in such materials
would allow a quantitative prediction of their physical
characteristics before fabricating them, which is often costly.
This approach would open the route for designing materials
with application-specific characteristics. The properties of
strongly correlated fermionic systems remain elusive after
many years of intensive research. Indeed, solving a general
quantum many-body problem without using approximations
on a classical computer takes exponential time in the size of
the problem.
One way to avoid this difficulty, as envisioned by

Feynman, is to use a quantum computer to simulate quantum
systems [4,5]. In experiments with real materials, one rarely

knows for sure the initial states and the underlying
Hamiltonians. A quantum computer, however, enables one
to prepare the initial state with confidence and to have full
control over the Hamiltonian under which the state evolves.
We are closer to Feynman’s vision with recent advances in
quantum-computing hardware. It is important to develop
simulation algorithms that are optimized given the limita-
tions of current and near-term quantum hardware, such as the
locality of qubit-qubit couplings, the gate sequences, and the
mitigation of errors and noise. Significant progress has been
made in this direction [6–9].
We propose several quantum algorithms to simulate

correlated fermions on 2D and linear qubit arrays with
nearest-neighbor couplings which are typical for super-
conducting transmon qubits. We use the Fermi-Hubbard
model as an example to demonstrate these algorithms. In
this simple model, the superconductor–to–Mott-insulator
transition is solely determined by the competition between
the hopping and the interaction terms. Solving the Hubbard
model allows one to single out this mechanism from other
effects such as disorder and long-range interactions in real
materials.
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The Hubbard model [10] approximates the long-range
Coulomb interaction of electrons in a crystal with a local
on-site interaction. This locality reduces the resources
required for simulating the model and makes it a prime
candidate for the early applications of quantum simulations
[11]. The single-band Fermi-Hubbard model is described
by the Hamiltonian

HFH ¼ −
X
hj;ki;σ

tjkðc†j;σck;σ þ H:c:Þ þ U
X
j

nj;↑nj;↓

þ
X
j;σ

ðϵj − μÞnj;σ −
X
j

hjðnj;↑ − nj;↓Þ; ð1Þ

where c†j;σ (cj;σ) is the creation (annihilation) operator for the

jth site with spin σ and nj;σ ¼ c†j;σcj;σ is the fermion
occupation number operator. The first term on the right
side of Eq. (1) describes fermions hopping between sites, the
second term describes the on-site interactions, and the
remaining two terms describe a local potential and a
magnetic field. The model demonstrates a wide range of
strongly correlated phenomena, including metal-insulator
transitions, unconventional Fermi liquids, and a number of
inhomogeneous phases. The Fermi-Hubbard model also
provides an approximate description of materials [12]
including the cuprate family [13] (albeit a multiband
extension of the model is necessary for quantitative corre-
spondence to the materials), which has attracted a lot of
interest because of unconventional symmetry-breaking phe-
nomena and high-temperature superconductivity [14].
The one-dimensional (1D) Hubbard model was solved

by Lieb and Wu in 1968 [15]; however, a full theoretical
analysis of the 2D Hubbard model requires going beyond
the validity of mean-field and perturbation theory argu-
ments remains an open question. The 2D Hubbard model
serves as a canonical microscopic physical model for
strongly correlated fermionic systems. In the underdoped
region of its phase diagram, multiple orders exist corre-
sponding to a regime of maximum numerical difficulty.
Significant numerical progress has been made in the
identification of the unconventional Mott-insulator transi-
tion and a superconducting phase with a d-wave order
parameter [16,17]. Exact numerical diagonalization is
limited to about 20 sites (40 logical qubits) [18,19], which
is too small for a finite-size scaling analysis. Approximate
methods such as quantum Monte Carlo simulations or
many-body theory expansions have been used to simulate
systems with hundreds of sites, which allows for extrapo-
lation to the thermodynamic limit. Except at half filling,
quantum Monte Carlo methods suffer from sign problems
which prevent them from simulating systems at very low
temperatures [20]. Application of the density-matrix
renormalization group (DMRG) [21] to the 2D Hubbard
model requires mapping to an effective 1D problem, to
which the standard DMRG is applied. Other numerical
methods to determine the phase diagrams of the Hubbard

model include the dynamical cluster approximation [22,23]
and the density-matrix embedding theory [17,24]. These
methods can asymptotically approach the exact solution
with increasingly larger clusters; however, simulating those
clusters requires an exponential amount of computing
resources on a classical computer.
To simulate the Fermi-Hubbard model on a quantum

computer, one needs to map the fermionic operators to
qubit operators. In the second quantization picture, a
particular spin orbital being unoccupied (occupied) can
be represented by the qubit state j0i (j1i). To retain the
fermionic anticommutation relations, one also needs to
account for the parities of qubits corresponding to other
spin orbitals, e.g., by using the Jordan-Wigner transforma-
tion (JWT) [25,26]. The two terms on the second line of
Eq. (1) can be implemented using only single-qubit
operators, and the on-site interaction term can be imple-
mented with two-qubit interactions. The hopping terms,
however, cannot be implemented straightforwardly in more
than one spatial dimension because of the nonlocal parity
operators in the JWT. It is of practical importance to reduce
the depth of the quantum circuits for these terms with only
local qubit interactions [9], which is crucial to near-term
quantum computers without quantum error correction
[27,28]. We will always have local qubit interactions in
mind, which is a different model from quantum computa-
tion with all-to-all interactions. The digital quantum sim-
ulations we consider here could address low-temperature
properties of the Hubbard model, which thus far remain
hard to access with analog simulators [29]. In addition to
simulating unitary dynamics, preparing the ground state is a
source of significant overhead in digital quantum simu-
lations. We develop algorithms for state preparations with
only locally coupled qubits by adopting the general ideas
from Ref. [11].
Beyond the Hubbard model, there are a growing number

of materials showing surprising sensitivity to impurities.
It is an open issue to understand and, ultimately, to control
the emergent phases from impurities [30]. At low temper-
atures, impurities and disorder can induce a metal-to-
insulator transition by localizing the Cooper pairs
[31,32]. Impurities, however, can also induce interesting
phases of strongly correlated matter and help probe the
underlying mechanism of exotic states [33,34]. On the
other hand, quantum impurity models are useful for hybrid
quantum-classical approaches to strongly correlated mate-
rials [35], where the quantum computer solves an impurity
problem that is determined self-consistently with the help
of a classical computer. Our methods work for systems that
violate translational symmetries and thus are suited for
simulating impurity models.
In this paper, we propose several quantum algorithms to

simulate fermionic systems on near-term devices, e.g., on
2D or linear geometry with nearest-neighbor qubit-qubit
couplings. Specifically, we propose quantum algorithms to
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prepare arbitrary fermionic Gaussian states which can be
used as a starting point to model correlated quantum states.
The same algorithms can also be used to implement
arbitrary fermionic transformations with linear input-output
relations. We also provide a state-of-the-art algorithm for
2D fermionic Fourier transformation, where the fermionic
parity problem is overcome with negligible overhead.
Our algorithms open up the possibility of a wealth of
experiments to simulate many-body physics, including the
Fermi-Hubbard model, in the noisy intermediate-scale
quantum era [36].
The paper is organized in the following way. In Sec. II,

we review the topic of mapping fermionic operators to
qubit operators and introduce notation. In Sec. III, we
improve an existing quantum algorithm in Ref. [11] to
prepare an arbitrary Slater determinant by exploiting a
unitary symmetry. In Sec. IV, we present an algorithm to
prepare an arbitrary fermionic Gaussian state, improving on
and generalizing an existing method for translationally
invariant systems [37]. Both algorithms in Secs. III and IV
are implemented as part of the open-source project
OpenFermion [38]. In Sec. V, we introduce a quantum
algorithm to implement the 2D fermionic Fourier trans-
formation on a 2D qubit array with only OðN1.5Þ gates and
Oð ffiffiffiffi

N
p Þ circuit depth, a better scaling than methods based

on the fermionic SWAP gates [9]. In Sec. VI, we discuss
applications of our quantum algorithms using the Fermi-
Hubbard model as an example. In Appendix A, we review
the properties of mean-field Hamiltonians that are quadratic
in the fermionic creation and annihilation operators and
discuss how to diagonalize these Hamiltonians. In
Appendix B, we introduce an alternative approach to solve
time evolutions of the quantum lattice models, such as the
Hubbard model, by using ancilla-assisted fermionic gates.
In Appendix C, we discuss fermionic operations based on
Hamiltonian evolution. In Appendix D, we briefly review
the fermionic SWAP gate. In Appendix E, we discuss how to
simulate the 2D Hubbard model with a qubit ladder using
the fermionic SWAP gate. In Appendix F, we study the
Trotter errors in adiabatic state preparation numerically for
small system sizes.

II. MAPPING FERMIONS TO QUBITS

The first step in solving strongly correlated fermionic
systems with a quantum computer is to map the Hilbert
space of fermions to the states of qubits. Following
Ref. [39], we represent the fermionic Hamiltonian in the
second quantization picture using a discrete basis of spin
orbitals. A qubit is assigned to each spin orbital; the qubit
state j0i (j1i) denotes an unoccupied (occupied) spin
orbital. The fermionic operators satisfying the anticommu-
tation relations can be mapped to qubit operators using
the JWT [25,26], the Bravyi-Kitaev transformation (BKT)
[40,41], or the Ball-Verstraete-Cirac transformation
(BVCT) [42–44]. To represent the parities, the JWT

requires strings of Pauli operators that act on OðNÞ qubits,
the BKT uses OðlogNÞ nonlocal operators, and the BVCT
requires only Oð1Þ local operators by introducing one
ancilla qubit per logical qubit. Although the JWT seems to
have the worst scaling, it has the most straightforward form
and can be applied to 1D fermionic systems without
encountering the parity problem. One way to get around
the parity problem in the JWT for systems of higher
dimensions is to use fermionic SWAP gates [9,45]. We
discuss in this paper a different approach based on traveling
ancilla qubits, which solves the parity problem in the JWT
with negligible overhead.
The JWT maps the fermionic creation and annihilation

operators to qubit operators as follows:

c†j ↦
1

2
ðXj − iYjÞZ1 � � �Zj−1; ð2aÞ

cj ↦
1

2
ðXj þ iYjÞZ1 � � �Zj−1; ð2bÞ

where X, Y, and Z are the Pauli operators. It assumes an
ordering of the qubits and attaches the Pauli-Z operators
with smaller indices (the parity) to the raising and lowering
operators. A single Slater determinant in the computational
basis (Fock state) takes the form

c†j1 � � � c†jNf
jvaci ↦

�YNf

n¼1

Xjn − iYjn

2

�
j0 � � � 0i; ð3Þ

where j1 < j2 � � � < jNf
and jvaci is the vacuum state. The

fermionic number operator

c†jcj ↦
1

4
ðXj − iYjÞðXj þ iYjÞ ¼

1

2
ðI − ZjÞ; ð4Þ

where I is the 2 × 2 identify operator. The fermionic
hopping term can be realized by a product of Pauli
operators (k > j),

c†jck ↦
1

4
ðXj − iYjÞðXk þ iYkÞZjþ1 � � �Zk−1: ð5Þ

For the case k ¼ jþ 1, we have

−iðc†jcjþ1 − H:c:Þ ↦ 1

2
ðXjYjþ1 − YjXjþ1Þ; ð6aÞ

c†jcjþ1 þ H:c: ↦
1

2
ðXjXjþ1 þ YjYjþ1Þ; ð6bÞ

interactions which can be implemented efficiently with
superconducting qubits [46]. The hopping terms between
orbitals encoded far from each other in the Jordan-Wigner
transformation, however, are generally hard to implement.
In Secs. III and IV, we discuss state preparation algorithms
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that totally avoid such hopping terms. In Sec. V and
Appendix B, we also discuss strategies to implement
such terms by introducing ancilla qubits that store the
parities.

III. PREPARING SLATER DETERMINANTS

A Slater determinant can be regarded as an eigenstate of
a Hamiltonian quadratic in fermionic creation and annihi-
lation operators, or simply as a quadratic Hamiltonian. The
standard algorithm to prepare Slater determinants was
described in Ref. [25] and improved in Ref. [11] using
elementary operations called Givens rotations, which are
rotations in the plane spanned by two coordinates axes. The
circuit depth and implementability can be improved by
parallelizing the Givens rotations restricted to neighboring
qubits [45]. Here, we present an algorithm that reduces the
total number of Givens rotations by exploiting a freedom in
the representation of Slater determinants; PYTHON code
for this algorithm is available as part of the OpenFermion

project [38].
In the second quantization picture, a single Slater

determinant takes the form

jΨSi ¼ b†1 � � � b†Nf
jvaci; b†j ¼

XN
k¼1

Qjkc
†
k; ð7Þ

where Q is an Nf × N matrix satisfying

Q†Q ¼ PS; ð8Þ

with PS the projector (of rank Nf) onto the subspace
spanned by the single-particle wave functions of the
occupied spin orbitals (rows of Q). An arbitrary Slater
determinant (7) can be prepared by applying a single-
particle basis change U to an easy-to-prepare determinant in
the computational basis (3):

jΨSi ¼ Uc†1 � � � c†Nf
jvaci; Uc†jU

† ¼ b†j ; ð9Þ

for j ¼ 1; 2;…; Nf. The unitary U corresponds to a
fermionic Fourier transformation when the rows of Q
are orthonormal plane waves. The identity (8) remains
true under the transformation Q → VQ, where V is an
arbitrary Nf × Nf unitary matrix. Indeed, the Slater deter-
minant (7) remains the same (up to an overall phase) under
the basis transformation V:

�YNf

j¼1

XNf

k¼1

Vjkb
†
k

�
jvaci ¼ detðVÞjΨSi; ð10Þ

where detðVÞ is the determinant of V. The unitary V can be
chosen to be composed of a sequence of Givens rotations
on neighboring rows of Q that bring the matrix elements in

its upper right corner to zeros. A Givens rotation takes the
following form in the two relevant coordinate axes:

Gðθ;φÞ ¼
�
cos θ −eiφ sin θ
sin θ eiφ cos θ

�

¼
�
cos θ − sin θ

sin θ cos θ

��
1 0

0 eiφ

�
; ð11Þ

where we generalize the original definition by allowing
complex matrix elements. For example, with N ¼ 6 and
Nf ¼ 3, we can break V into three Givens rotations,

Q→

0
B@

� � � � � 0

� � � � � �
� � � � � �

1
CA→

0
B@

� � � � � 0

� � � � � 0

� � � � � �

1
CA

→

0
B@

� � � � 0 0

� � � � � 0

� � � � � �

1
CA¼ VQ; ð12Þ

where � represents an arbitrary matrix element, and the bold
matrix elements are zeroed out with Givens rotations. This
procedure does not change the Slater determinant (10), and
no physical operation is required. However, the procedure
makes it clear that the number of physical Givens rotations
can be reduced and how this can be achieved.
The unitary in Eq. (9) corresponds to a single-particle

basis change and can be decomposed into a sequence of
Givens rotations [11],

U ¼ G1G2 � � �GNG
: ð13Þ

The Givens rotation Gðθ;φÞ acting on the jth and kth spin
orbitals takes the form

�Gc†jG
†

Gc†kG
†

�
¼ Gðθ;φÞ

�
c†j

c†k

�
; ð14Þ

where the 2 × 2 matrix Gðθ;φÞ is defined in Eq. (11). A
Givens rotation of the form (14) can be implemented on a
quantum computer using the circuit in Fig. 1 (the two
qubits are adjacent in the JWT).
The first part of the circuit (the dotted box) describes a

rotation between the qubit states j10i and j01i correspond-
ing to a rotation in the single-particle subspace of the two

FIG. 1. Quantum circuit for a Givens rotation on neighboring
qubits: The part in the dotted box represents a rotation between
the two states j01i and j10i.
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spin orbitals; the two qubit states j00i and j11i correspond-
ing to the unoccupied state and the double-occupied state
are unchanged in this step. The fermionic unitary U in
Eq. (13) can be represented by a matrix U corresponding to
a single-particle basis change (see Appendix A),

Uc†U† ¼ Uc†; U ¼ GNG
� � �G2G1; ð15Þ

where c† ¼ ðc†1 � � � c†NÞT . The order of the Givens rotations
is reversed in Eq. (15) compared to Eq. (13); this is the case
because the matrix G acts directly on the vector of
fermionic creation operators in Eq. (14), and it should
be placed on the right side of all matrices representing
earlier rotations.
To perform the transformation in Eq. (9), we require that

the first Nf rows of U be equal to VQ; see also
Appendix A. With the example N ¼ 6 and Nf ¼ 3, this
condition is equivalent to

VQU† ¼

0
B@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1
CA: ð16Þ

A sequence of Givens rotations—acting on adjacent col-
umns of VQ (corresponding to neighboring qubits in the
JWT)—can achieve the desired form as follows:

VQ→

0
B@
� � � 0 0 0

� � � � � 0

� � � � � �

1
CA→

0
B@
� � 0 0 0 0

� � � � 0 0

� � � � � �

1
CA

→

0
B@

λ1 0 0 0 0 0

0 � � 0 0 0

0 � � � � 0

1
CA→

0
B@
λ1 0 0 0 0 0

0 λ2 0 0 0 0

0 0 � � 0 0

1
CA

→

0
B@
λ1 0 0 0 0 0

0 λ2 0 0 0 0

0 0 λ3 0 0 0

1
CA→ VQU†; ð17Þ

where the λj are phase factors, i.e., jλjj ¼ 1. The bold
matrix elements are zeroed out in each step; Givens
rotations on nonoverlapping columns can be implemented
in parallel [45]. The underlined ones become zeros or phase
factors automatically due to the orthonormality of the rows.
The phase factors are brought to ones in the last step by
single-qubit rotations; this step is unnecessary if the goal is
to prepare a single Slater determinant. The total number of
Givens rotations needed for the transformation U is

NG ¼ NNf − NfðNf − 1Þ=2 − NfðNf þ 1Þ=2
¼ ðN − NfÞNf; ð18Þ

and the circuit depth is N − 1. Our algorithm requires only
N2=4 Givens rotations in the worst case, when Nf ¼ N=2.
By comparison, direct implementations without using the
unitary freedom V require more Givens rotations [11,45].
We also point out that the trick to reducing NG by
interchanging the roles of particles and holes [11] is no
longer needed here; i.e., particles and holes are treated on
an equal footing in our algorithm.
In summary, we describe in this section a method to

prepare a Slater determinant (7) using two-qubit gates that
act only on neighboring qubits. Our method can be
achieved in four steps:
(1) Store the wave functions of the occupied orbitals in

the rows of the matrix Q.
(2) Zero out the upper-right matrix elements of Q using

the freedom Q → VQ.
(3) Diagonalize VQ using a sequence of Givens rota-

tions as column transformations.
(4) Find the quantum gates that correspond to the

Givens rotations in step 3.
As mentioned above, this algorithm is implemented as part
of the open-source project OpenFermion [38]. The code takes
as input the matrix Q from Eq. (7) describing a Slater
determinant and outputs a sequence of elements of the form
ðj; k; θ;ϕÞ, which describes a Givens rotation of columns j
and k. Furthermore, rotations that can be performed in
parallel are grouped together. We use the code to verify that
the method described here does produce the desired Slater
determinant.

IV. PREPARING FERMIONIC GAUSSIAN STATES

Fermionic Gaussian states [47,48] can be regarded as a
generalization of Slater determinants obtained by relaxing
the constraint that the total number of particles be fixed.
The celebrated Bardeen-Cooper-Schrieffer (BCS) wave
function [49] for superconductivity is a special case of
fermionic Gaussian states. Verstraete et al. [37] demon-
strated how to prepare the ground state of a BCS-like
Hamiltonian—for 1D translationally invariant systems—
using the fermionic fast Fourier transformation and the
two-mode Bogoliubov transformation. Recently, superpo-
sitions of fermionic Gaussian states were used to approxi-
mate low-energy states of quantum impurity models [50],
which can be useful in a quantum-classical hybrid scheme
for correlated materials [35]. Simulating quantum systems
with disorder on a quantum computer may also lead to a
better understanding of and, ultimately, control over the
emergent phases from impurities [30].
Here, we discuss how to prepare an arbitrary fermionic

Gaussian state as the ground state of a quadratic
Hamiltonian,

H ¼
XN
j;k¼1

Mjkc
†
jck þ

1

2

XN
j;k¼1

�
Δjkc

†
jc

†
k þ H:c:

�
; ð19Þ
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where M ¼ M† and Δ ¼ −ΔT are complex matrices.
PYTHON code for this algorithm is available as part of
the OpenFermion project [38]. Our method can also be used to
implement an arbitrary fermionic Gaussian unitary. In
Appendix A, we review the standard approach to bringing
the Hamiltonian (19) into the diagonal form,

H ¼
XN
j¼1

εjb
†
jbj þ c number; ð20Þ

where 0 ≤ ε1 ≤ ε2 � � � ≤ εN , and bj and b†j are a new set of
fermionic operators that satisfy the canonical anticommu-
tation relations. The new fermionic operators are linear
combinations of the original ones:

�
b†

b

�
¼ W

�
c†

c

�
¼

�
Wc†W†

WcW†

�
; ð21Þ

where ð c† c ÞT ¼ ðc†1 � � � c†N c1 � � � cNÞT and ðb† b ÞT ¼
ðb†1 � � � b†N b1 � � � bNÞT . The fermionic Gaussian unitary W
performs the linear transformation W, and the ground state
of the quadratic Hamiltonian (19) is

jΨ0i ¼ Wjvaci ¼ Ujvaci; ð22Þ
where cjjvaci ¼ 0 for j ¼ 1; 2;…; N, and U ¼ WV for
some single-particle basis transformation V. The unitary
matrix W has the block form

W ¼
�
W�

1 W�
2

W2 W1

�
; ð23Þ

where the submatrices satisfy

W1W
†
1 þW2W

†
2 ¼ 1; ð24Þ

W1WT
2 þW2WT

1 ¼ 0; ð25Þ

with 1 and 0 being the N × N identify matrix and the zero
matrix, respectively. We define the N × 2N matrix WL ¼
ðW2 W1Þ as the lower half of W; the jth row of WL
corresponds to the expansion coefficients of the operator bj.
The matrix WL uniquely determines the transformation W
up to an overall phase.
Using elementary matrix manipulations on WL, we

demonstrate that the Gaussian unitary U in Eq. (22) can
be broken into a sequence of operations that can be
implemented on a quantum computer:

U ¼ BG1BG2G3B � � �GNG
B; ð26Þ

where the Gj values are Givens rotations on adjacent
fermionic modes encoded in the JWT, and B denotes the
particle-hole Bogoliubov transformation on the last fer-
mionic mode,

BcNB† ¼ c†N; ð27Þ

BcjB† ¼ cj; for j ¼ 1; 2;…; N − 1: ð28Þ

The transformation B does not conserve the total number of
particles and is crucial to preparing superpositions of states
with different numbers of particles. It can be implemented
easily by applying the Pauli-X operator on the last qubit;
the parities of the other fermionic modes encoded in the
JWTare not affected, which would not be true for any other
spin orbital. In the relevant coordinate axes, the matrix
representation of the Givens rotation is

G ¼

0
BBBBB@

cos θ −eiφ sin θ 0 0

sin θ eiφ cos θ 0 0

0 0 cos θ −e−iφ sin θ
0 0 sin θ e−iφ cos θ

1
CCCCCA
: ð29Þ

The representation of the particle-hole transformation is

B ¼ B† ¼
�
1 − eNeTN eNeTN
eNeTN 1 − eNeTN

�
; ð30Þ

where eN ¼ ð0 � � � 0 1ÞT is an N-dimensional unit vector.
The goal is to find a 2N × 2N unitary matrix U decom-
posed into G and B,

U ¼ BGNG
� � �BG3G2BG1B; ð31Þ

such that

VWLU† ¼ ð 0 1 Þ; ð32Þ

where V is an arbitrary unitary matrix. The right-hand side
of Eq. (32) represents the original annihilation operators cj,
which corresponds to the vacuum state defined in Eq. (22).
We discuss how to bringWL to the desired form (32) using
an example of four spin orbitals. Following Sec. III, we use
the unitary V as a freedom to zero out some matrix elements
on the left side of WL,

VWL ¼

0
BBBBBB@

0 0 0 � � � � 0

0 0 � � � � � �
0 � � � � � � �
� � � � � � � �

1
CCCCCCA
; ð33Þ

where � represents an arbitrary matrix element and the
underlined matrix element is automatically zeroed out due
to Eq. (25). A sequence of elementary operations that
brings WL to the desired form is
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VWL →

0
BBBBBB@

0 0 0 0 � � � �
0 0 � � � � � �
0 � � � � � � �
� � � � � � � �

1
CCCCCCA

→

0
BBBBBB@

0 0 0 0 � � � 0

0 0 0 � � � � 0

0 � � � � � � �
� � � � � � � �

1
CCCCCCA

→

0
BBBBBB@

0 0 0 0 � � 0 0

0 0 0 0 � � � �
0 0 � � � � � �
� � � � � � � �

1
CCCCCCA

→

0
BBBBBB@

0 0 0 0 λ1 0 0 0

0 0 0 0 0 � � 0

0 0 0 � 0 � � 0

0 � � � 0 � � �

1
CCCCCCA

→

0
BBBBBB@

0 0 0 0 λ1 0 0 0

0 0 0 0 0 λ2 0 0

0 0 0 0 0 0 � �
0 0 � � 0 0 � �

1
CCCCCCA

→

0
BBBBBB@

0 0 0 0 λ1 0 0 0

0 0 0 0 0 λ2 0 0

0 0 0 0 0 0 λ3 0

0 0 0 λ4 0 0 0 0

1
CCCCCCA

→

0
BBBBBB@

0 0 0 0 λ1 0 0 0

0 0 0 0 0 λ2 0 0

0 0 0 0 0 0 λ3 0

0 0 0 0 0 0 0 λ4

1
CCCCCCA

→ VWLU†: ð34Þ

The bold matrix elements in the fourth column are
always zeroed out by the particle-hole transformation B,
and the other bold matrix elements on the left side are
zeroed out by the Givens rotationsG. The bold elements on
the right side become nonzero due to the particle-hole
transformation B, and the underlined matrix elements are
brought to zeros or phase factors automatically by the
condition (24) or (25). The phase factors are brought to
ones in the last step by single-qubit rotations; this step is
unnecessary if U is applied to the vacuum state. The total
numbers of Givens rotations and particle-hole transforma-
tions are

NG ¼ ðN − 1ÞN=2; NB ¼ N; ð35Þ

and the circuit depth is, at most, 2N − 1.
In summary, we describe in this section a method to

prepare an arbitrary Gaussian state as the ground state of
the quadratic Hamiltonian (19) using two-qubit gates that
act only on neighboring qubits. Our method can be
achieved in four steps:
(1) Calculate the matrix W using the procedure

described in Appendix A.
(2) Zero out the upper-left matrix elements of WL using

the freedom WL → VWL (33).
(3) Zero out the remaining matrix elements on the left

side of VWL using the sequence (34).
(4) Find the quantum gates corresponding to the se-

quence in step 3.
The procedure described here also applies to the imple-

mentation of an arbitrary Gaussian unitary, where one

cannot use the unitary freedom V. By rearranging Eq. (32),
we have

WL ¼ V†ð 0 1 ÞU ¼ ð 0 1 Þ
�
VT 0

0 V†

�
U; ð36Þ

where the matrix diagðVT; V†Þ corresponds to a basis
change and can be decomposed as Givens rotations using
the method discussed in Sec. III.
As mentioned above, this algorithm has also been

implemented as part of OpenFermion [38]. The user can
specify a quadratic Hamiltonian by inputting the matrices
M and Δ from Eq. (19). The code then outputs a sequence
of operations, each of which either describes a Givens
rotation or indicates a particle-hole transformation on the
last fermionic mode. The operations that can be performed
in parallel are grouped together. Since OpenFermion also
contains modules to initialize common Hamiltonian mod-
els, it can be used to easily specify, for instance, a mean-
field Hamiltonian and then obtain a circuit that prepares its
ground state. We use the code to verify that the method
described here does produce the desired ground state.

V. FERMIONIC FOURIER TRANSFORMATIONS

The fermionic Fourier transformation is a subroutine of
many quantum algorithms. It was first introduced for
quantum-computing purposes in Ref. [37]. Recently,
Babbush et al. [9] demonstrated that the 2D and 3D
fermionic Fourier transformations can be implemented
using a 2D qubit array with OðNÞ depth. Here, we present
an algorithm to implement the 2D fermionic Fourier

QUANTUM ALGORITHMS TO SIMULATE MANY-BODY … PHYS. REV. APPLIED 9, 044036 (2018)

044036-7



transformation using a 2D qubit array with only Oð ffiffiffiffi
N

p Þ
depth. This amount of depth is required for quantum
information to travel across the array, and therefore this
scaling is optimal. Our method provides an example where
the parity problem in JWTs for more than one spatial
dimension can be circumvented with negligible overhead.
Our algorithm also works for more general transformations
that can be factorized into a product of transforms on each
spatial dimension, including Fourier transformations with
open boundary conditions and fermionic Gaussian uni-
taries. This algorithm allows one to efficiently prepare the
initial states for systems whose ground states are well
approximated by the mean-field states, as well as to
improve the efficiency of measurements.
In Sec. III, we demonstrate that any fermionic single-

particle basis transformation—including the 1D fermionic
Fourier transformation—can be implemented using a 1D
qubit chain with OðN2Þ gates and OðNÞ depth; see also
Theorem 7 in Ref. [9]. Using this algorithm as a subroutine,
we discuss an algorithm that implements the 2D fermionic
Fourier transformation using a 2D qubit array withOðN1.5Þ
gates and Oð ffiffiffiffi

N
p Þ depth. More generally, our method

works for any fermionic single-particle basis transforma-
tion F (or fermionic Gaussian unitary) that factorizes,

F ¼ F xF y ¼ F yF x; ð37Þ

where the horizontal (vertical) transformation F x (F y) is a
product of commuting terms, each of which involves spin
orbitals only in the same row (column). We map the
fermionic operators to qubit operators using a snake-shaped
JWT in row-major order; see Fig. 2. The transformation F x

on a single row can be implemented with Oðn2xÞ gates and
OðnxÞ depth using the algorithm described in Sec. III,
where nx is the number of spin orbitals in a single row
(number of columns). The vertical transformation F y is
much harder to implement with our mapping because of the
nonlocal parity operators in the hopping terms; see Eq. (5).
This difficulty can be overcome by reordering the fermionic
spin orbitals in the JWT using the fermionic SWAP gates;

such a strategy allows one to perform the 2D fermionic
Fourier transformation using a 2D qubit array with OðN2Þ
gates and OðNÞ depth [9].
We use a different approach that takes full advantage of

the 2D qubit interactions. In our scheme, the transformation
(37) is realized using the decomposition

F ¼ F xF y ¼ F xΓ†F b
yΓ; ð38Þ

where Γ ¼ Γ† is a diagonal unitary matrix in the computa-
tional (Pauli-Z) basis with eigenvalues �1. We will show
that Γ can be implemented with OðNÞ gates and Oð ffiffiffiffi

N
p Þ

depth. The unitary F b
y is implemented by using the Givens

rotations without the parity operators attached; see Fig. 1.
This procedure is equivalent to using a JWT with column-
major order, and the generator of the real Givens rotation
takes the form (6a)

Kjk ¼
1

2
ðXjYk − YjXkÞ; ð39Þ

where the qubits j and k are adjacent in one column; we call
these operators bare hopping terms.
The unitary transformation Γ attaches the corresponding

parity operator to the bare hopping terms,

Γ†KjkΓ ¼ KjkZjþ1 � � �Zk−1; k > j; ð40Þ
for any indices j and k adjacent in the same column.
Any non-neighboring vertical hopping terms can be
derived as (nested) commutators of the nearest-neighbor
ones, and their parities are taken care of automatically.
Because F y can be decomposed into a product of
Givens rotations generated by the vertical hopping terms,
we have Γ†F b

yΓ ¼ Fy. We denote an arbitrary state in the
computational basis with jsi, where s ¼ ðs1; s2;…; sNÞ
is a binary string. The matrix element of the hopping term
Kjk with respect to the basis states jsi and js0i takes the
form

hs0jΓ†KjkΓjsi ¼ γsγs0 hs0jKjkjsi; ð41Þ
where γs and γs0 are the corresponding eigenvalues of Γ.
Comparing Eq. (40) to Eq. (41), we have

γsγs0 ¼ ð−1Þ
P

k−1
l¼jþ1

sl ¼ ð−1Þ
P

k−1
l¼jþ1

s0l ; ð42Þ
for any pair of basis states such that hs0jKjkjsi ≠ 0. The
matrix element hs0jKjkjsi is nonzero only when sj ≠ s0j,
sk ≠ s0k, and sl ¼ s0l for all l ≠ j, k; the total parity of the
qubits j and k also needs to be odd,

sj þ sk ¼ s0j þ s0k ¼ 1: ð43Þ
The unitary F b

y on a single column can be implemented
with Oðn2yÞ gates and OðnyÞ depth using the bare hopping
terms, where ny is the number of spin orbitals per column.
By parallelizing operations on different rows or columns of

FIG. 2. The fermionic spin orbitals on a 4 × 4 array aremapped to
qubits (the blue circles) on an array of the same dimensions using a
snake-shaped JWT. The red arrow shows the direction of the JWT,
and the qubits are numbered by their order in the JWT. Hopping
terms between an odd-numbered row and the row below are called
right-closed hopping terms,while those between an even-numbered
row and the row below are called left-closed hopping terms.
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qubits, one can implement either F x or F b
y with OðN1.5Þ

gates and Oð ffiffiffiffi
N

p Þ depth, where N ¼ nx × ny is the number
of spin orbitals.
A Slater determinant in the momentum basis can be

prepared by applying the transformation F to a Slater
determinant in the site basis jsi,

F jsi ¼ F xΓ†F b
yΓjsi ¼ γsFxΓ†F b

y jsi; ð44Þ

where γs ¼ �1. The transformation Γ is also useful for
simulating the time evolution of fermionic systems, e.g., the
Fermi-Hubbard model. The hopping terms in each Trotter
step can be implemented with OðNÞ gates and Oð ffiffiffiffi

N
p Þ

circuit depth by using Γ.
To implement Γ, we introduce one ancilla qubit per row

to store the parities (see Fig. 4); they are used only to
facilitate the implementation of Γ and are disentangled with
the system qubits in the end. Initially, the ancilla qubits are
located on the right side in all of the system qubits, and their
states are set to j0i. In each time step, each ancilla qubit is
swapped with the system qubit to the left, which allows it to
interact with other system qubits. The parity stored in the
ancilla qubit is updated by applying the controlled-NOT
(CNOT) gate controlled by the same system qubit (now on
the right side of the ancilla); see Fig. 3. After the CNOT gate,
the ancilla qubits store the total parity of system qubits to
their right on the same rows. We apply controlled-Z (CZ)
gates between the ancilla qubits and the system qubits (see
Fig. 4); each CZ gate introduces a parity (an overall �1
sign) to the state jsi in the computational basis. The goal is
to find the set of CZ gates, acting on neighboring qubits,
such that they put the desired parities with the bare vertical
hopping terms. It is instructive to first work out the cases for
right-closed and left-closed hopping terms separately.
In Fig. 4, we plot the CZ gates (the dashed lines) that

generate the desired parities for the right-closed hopping
terms between an odd-numbered row and the row below it.
We explain how this works for the hopping term between
the system qubits 2 and 7. Any two basis states jsi and js0i
corresponding to a nonzero matrix element of the hopping
term satisfy sl ¼ s0l for l ∈ f3; 4; 5; 6g; therefore, they
accumulate the same parity before hitting the two CZ gates
involving qubit 2; see Fig. 4(b). The states of the two
ancilla qubits involved in these two CZ gates are the same
for the two basis states because the parities of qubits 2 and 7
have not been added to them. After the two CZ gates in
Fig. 4(b), the two basis states acquire a difference in parity
equaling ðs3 þ s4 þ s5 þ s6Þmod 2; see Fig. 5. To simplify
the notation, we will neglect mod 2 in dealing with parities

hereafter. The two ancilla qubits in the first and second
rows take different values for jsi and js0i after the parities of
qubits 2 and 7 are added to them; however, the total parities
of the two ancilla qubits are still the same. The subsequent
two CZ gates (qubit 1 is involved) do not introduce a parity
difference to the two basis states because both s and aþ b
are the same for the two basis states. After the ancilla qubits
reach the left end, all of the right-closed hopping terms get
the desired parities from the CZ gates.
In Fig. 6, we plot the CZ gates that introduce the desired

parities for the left-closed hopping terms, i.e., those
between an even-numbered row and the row below. We
now explain how this works for the hopping term between
qubits 6 and 11. Any two basis states jsi and js0i
corresponding to a nonzero matrix element of the hopping
term satisfy sl ¼ s0l for l ∈ f5; 12g; therefore, they accu-
mulate the same parities before hitting the two CZ gates in
Fig. 6(a). These two CZ gates do not introduce a parity
difference, either, because both the parity of the ancilla
qubit and the total parity of the two system qubits are the
same for the two basis states; see Eq. (43) and Fig. 7.
The ancilla qubit takes different values for jsi and js0i after
the parity of qubit 11 is added to it. As a result, the
following two CZ gates (qubits 7 and 10 are involved)
introduce a parity difference to the two basis states equaling
s7 þ s10 ¼ s07 þ s010; see Fig. 7. Since the state of the ancilla

FIG. 3. The ancilla qubit a is swapped with the system qubit s
to its left, and its state is then updated by the CNOT gate.

(a) (b)

FIG. 4. The procedure to generate the desired parities for the
right-closed hopping terms. The ancilla qubits (the orange
ellipses) store the parity of the system qubits (the blue circles),
where j-k denotes the parity ðPk

l¼j slÞ mod 2. (a) The ancilla
qubits are initially located at the right side of the lattice, with their
states set to j0i. (b) They are then moved to the left while the
parity stored in them being updated. The purple dashed lines
represent CZ gates between the ancilla and the system qubits for
right-closed hopping terms. The CZ gates in (a) can be omitted
because the ancilla states are set to j0i initially.

FIG. 5. The CZ gates involving one system qubit s and two
ancilla qubits a and b. When s ≠ s0 and aþ b ¼ a0 þ b0 for the
two basis states, a parity difference of aþ b is introduced. By
comparison, no parity difference is introduced when both
quantities are the same for the two basis states.
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qubit remains different for jsi and js0i, a parity difference of
s8 þ s9 ¼ s08 þ s09 is introduced in the next step. After the
ancilla qubits reach the left end, all of the left-closed
hopping terms get the desired parities from the CZ gates.
We show how to introduce the desired parities to the

right-closed and the left-closed hopping terms using the CZ

gates in Figs. 4 and 6, respectively. The ancilla qubits are
brought in to interact with system qubits in a particular
column at a time, and they store the total parities of all of
the system qubits in the same row to the right of the current
column. We depict the two kinds of CZ gates in Fig. 8 for a
single time step, where the system (ancilla) qubits are
represented by blue (red) dots. One will not achieve the
desired results for both kinds of hopping terms by simply
combining the two sets of CZ gates. This is the case because
the CZ gates for the right-closed terms also affect the
parities of the left-closed terms, and vice versa.

To circumvent this difficulty, we introduce the CZ gates
for a single time step using an example of 6 rows in Fig. 9.
In addition to the CZ gates in Fig. 8 for all of the right-
closed hopping terms, we also introduce a CZ gate between
each system qubit and the ancilla qubits below it, starting
with the next odd-numbered row. We show that this set of
CZ gates works for both right-closed and left-closed
hopping terms. First, we discuss the hopping term between
the first and second rows. The CZ gates are divided into
three parts in Fig. 9. In the first part, the states of the ancilla
qubits are the same for the two basis states jsi and js0i, and
the total parity of the two system qubits in the first and
second rows are also the same; see Eq. (43). As a result, the
CZ gates in the first part do not introduce a parity difference
to the two basis states. Neither do the CZ gates in the second
part because they act on qubits that are not involved in the
hopping term. The third part is equivalent to the circuit in
Fig. 8(a). Therefore, this circuit works for any hopping term
between the first and second rows.
To show how the same circuit works for the hopping

terms between the second and third rows, we rearrange the
CZ gates in Fig. 9 into the specific form in Fig. 10. Because
all CZ gates commute, these two circuits are equivalent. The
first three pairs of CZ gates and the second part in Fig. 10 do
not introduce a parity difference to the two basis states, for
the same reasons we discussed earlier. Neither do the last
two CZ gates in the first part because the total parity of the
two ancilla qubits in the second and third rows are the same
for the two basis states. The third part of Fig. 10 is
equivalent to the circuit in Fig. 8(b). Therefore, the same

FIG. 7. The CZ gates involving two system qubits s and t and
one ancilla qubit a. When a ≠ a0 and sþ t ¼ s0 þ t0 for the two
basis states, a parity difference of sþ t is introduced. By
comparison, no parity difference is introduced when both
quantities are the same.

Odd

Even
(a)

Even

Odd
(b)

FIG. 8. The CZ gates between system (blue) and ancilla (red)
qubits. (a) Right-closed hopping terms (between an odd-
numbered row and the row below it), e.g., the one involving
qubit 2 in Fig. 4(b). (b) Left-closed hopping terms (between an
even-numbered row and the row below it), e.g., the one involving
qubits 6 and 11 in Fig. 6(a).

FIG. 9. The CZ gates between the system (blue) and ancilla
(red) qubits in a single time step that introduce the desired parities
to both the right-closed and left-closed hopping terms.

(a) (b)

FIG. 6. The procedure to generate the desired parities for the
left-closed hopping terms. The ancilla qubits (the orange ellipses)
store the parity of the system qubits (the blue circles), where j-k
denotes the parity ðPk

l¼j slÞmod 2. (a) Two CZ gates (the dashed
lines) are applied to the anilla qubit labeled 12 and the system
qubits labeled 6 and 11. (b) Two CZ gates are applied to the anilla
qubit labeled 11-12 and the system qubits labeled 7 and 10.

FIG. 10. Quantum circuit to demonstrate the hopping terms
between the second and third rows by rearranging the CZ gates
in Fig. 9.
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circuit also works for any hopping term between the second
and third rows. It is straightforward to verify that the circuit
works for any other nearest-neighbor vertical hopping
terms in this example; see Appendix G. Therein, we also
give an argument on why our approach works for systems
with any even number of rows (an unused row can be added
when the number of rows is odd).
The problemwith implementing the circuit in Fig. 9 is that

there are many nonlocal gates in the first and second parts,
whichwe replot in Fig. 11. To deal with this difficulty, we go
to the parity basis of columns by applying the circuit in
Fig. 12(a) to both the system and the ancilla qubits. In this
new basis, any system qubit stores the total parity of the
original system qubits in the same column from the current
location to the bottom; e.g., the qubit 10 in Fig. 12(b) stores
the parity s10 þ s15 in the parity basis of the columns. Any
ancilla qubit stores the total parity to the lower left of the
corresponding system qubit; e.g., the ancilla qubit corre-
sponding to system qubit 10 in Fig. 12(b) stores the parity
s11 þ s12 þ s13 þ s14. To find the circuit corresponding to
Fig. 11 in the new basis, we first go to the parity basis of the
ancilla qubits and keep the system qubits unchanged.
With this intermediate basis, the first four (last two) pairs

of CZ gates in Fig. 11 are mapped to the first (second) pair of
CZ gates in Fig. 13(a). This is the case because we can
combine all CZ gates acting on the same system qubit into a
single CZ gate by using an ancilla qubit storing the total
parity of the original ancilla qubits. We continue to go to the
parity basis of the system qubits, and the circuit in Fig. 13(a)
is mapped to the one in Fig. 13(b). This is the case because
the total parity of the first and second (third and fourth)
qubits in Fig. 13(a) is equal to the total parity of the first and
third (third and fifth) qubits.

In general, we have a CZ gate between the system qubit
on each odd-numbered row and the ancilla qubit two rows
below it and a CZ gate between the system and the ancilla
qubits on each odd-numbered row except for the first row.
Going to the parity basis of the system qubits might seem to
be unnecessary, but we will show that it is essential for
reducing the circuit depth.
We have shown that the first two parts in Fig. 9 can be

implemented with only local CZ gates; however, going to
the parity basis requires a sequence of Oð ffiffiffiffi

N
p Þ gates which

increases the circuit depth. One solution is to implement, in
parallel, the quantum circuit in Fig. 12(a) to all columns of
system qubits at the beginning. As the ancilla qubits move
to the left, they pick up the parities stored in the system
qubits. These add up to the desired parities of the ancilla
qubits in the parity basis, and no basis transformation is
needed when the ancilla qubits move across the system
qubits. The circuit in Fig. 13(b) is implemented in each time
step. After the ancilla qubits reach the left end, we go back
to the original basis by applying the gates in Fig. 12(a), in
reverse order, to both the system and the ancilla qubits. We
then move the ancilla qubits to the right by reversing the
order of the CNOT and the SWAP gates when we move them
to the left. The CZ gates in the last part of Fig. 9 are
implemented in each time step. All of the ancilla qubits are
disentangled with the system qubits when they reach the
right end, and the unitary Γ has been implemented on the
system qubits. We verify our procedure numerically by
using random classical bit strings s and s0 for system sizes
up to 100 × 100 and by simulating the actual quantum
circuit for the system size 4 × 4.
In summary, the unitary Γ can be implemented with the

following four stages:
(1) Implement the circuit in Fig. 12(a) for each column

of the system qubits.
(2) Move the ancilla qubits to the left while applying the

CZ gates in Fig. 13(b).
(3) Undo the circuit in Fig. 12(a) for both the system

qubits and the ancilla qubits.
(4) Move the ancilla qubits to the right while applying

the CZ gates in the third part of Fig. 9.
Each of the four stages can be implemented with OðNÞ
gates and Oð ffiffiffiffi

N
p Þ depth; therefore, the whole procedure

FIG. 11. The first and second parts in Fig. 9.

(a) (b)

FIG. 12. Parity basis of the columns. (a) The circuit maps the
computational basis to the parity basis. (b) The parities stored in
system qubit 10 (blue) and the corresponding ancilla (orange).

(a) (b)

FIG. 13. Equivalent circuits to Fig. 11. (a) The ancilla qubits are
in the parity basis and the system qubits are in the original basis.
(b) Both the system and the ancilla qubits are in the parity basis.
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takes gates and depth with the same scalings. By com-
parison, F x or F b

y requires OðN1.5Þ gates and Oð ffiffiffiffi
N

p Þ
depth to implement. Our quantum algorithm provides an
example in which the parity problem in simulating 2D
fermionic systems can be circumvented with negligible
overhead.

VI. THE FERMI-HUBBARD MODEL

One way to unravel the intricate physics in strongly
correlated materials is to approximate them with idealized
model Hamiltonians, such as the Fermi-Hubbard model.
The Hubbard model captures many signatures of the
physical systems, although it is too simple to describe real
materials quantitatively. It has resisted a full solution
despite decades of intense analytical and numerical studies.
The Hubbard model has a relatively small number of
interacting terms, allowing for easy implementation on a
quantum computer. The single-band Hubbard model is
described by the Hamiltonian

HFH ¼ −
X
hj;ki;σ

tjkðc†j;σck;σ þ H:c:Þ þ U
X
j

nj;↑nj;↓

þ
X
j;σ

ðϵj − μÞnj;σ −
X
j

hjðnj;↑ − nj;↓Þ; ð45Þ

where the first term represents fermions hopping between
sites, the second term represents on-site interactions, the
third term is a local potential field, and the last term
represents a local magnetic field.
The 2D Hubbard model is widely used as a canonical

microscopic model for strongly correlated fermionic sys-
tems. It is believed to be a key ingredient in understanding
the mechanism behind high-temperature superconductivity
[14]. In particular, understanding the physics of the model
in the intermediate interaction strength regime U=t ∼ 4 in
the underdoped region remains an open problem. Multiple
orders exist in this region of its phase diagram; see Fig. 14.
Even the nature of the ground state remains ambiguous due
to the competition between a number of different order

parameters [51]. Significant progress has been made in the
identification of the unconventional Mott-insulator transi-
tion and a superconducting phase with d-wave order
parameter [52,53]. Recently, the antiferromagnet phase
of the Fermi-Hubbard model was realized in optical lattices
of about 80 sites at a temperature of 1=4 times the tunneling
energy [29]. This region of multiple competing phases is
also the most interesting regime from the point of view of
modeling materials; therefore, a simulation using even a
relatively small quantum computer could provide alter-
native qualitative and quantitative insights into the physics
of the model [11,54,55]. Generalizations of the Hubbard
model beyond the single-band case and including more
complicated lattices could be a route to modeling a wide
range of strongly correlated materials. It is also a versatile
tool for exploring strongly correlated electron phases [56]
in a controlled way. Simulation of the Hubbard model on a
quantum computer could allow quantitative analysis of the
physical characteristics beyond the phase diagram, such as
dynamical effects which could help uncover the deeper
physics of the strongly correlated phases in the model.
In order to implement time evolution of the Hubbard

model on a quantum computer, we decompose it into a
product of available quantum gates based on the Trotter-
Suzuki formula [57,58]; the desired accuracy determines
the number of time steps [59,60]. We simulate the Trotter
error numerically for small system sizes in Appendix F. In
each time step, we implement successively the horizontal
hopping terms, the vertical hopping terms, and the remain-
ing terms. The two spin states can be mapped to two
sublattices of a 2D qubit array; for an example, see Fig. 15.
The horizontal hopping terms can be implemented by
bringing qubits corresponding to the same spin states next
to each other with the fermionic SWAP gates; for example,
one can swap the qubits j↑ with j↓ for an odd j value in a
row to implement some hopping terms, swap back, and
then swap j↑ with j↓ for an even j value in the same row to
implement the remaining hopping terms. This step requires
OðNÞ gates andOð1Þ depth. The vertical hopping terms can
be implemented using the method described in Sec. V; this
requires OðNÞ gates and Oð ffiffiffiffi

N
p Þ depth. Alternatively, the

vertical hopping terms can be implemented using the
method described in Appendix B, also with OðNÞ gates
andOð ffiffiffiffi

N
p Þ depth. The on-site interaction terms in Eq. (45)

are mapped to qubit operators of the form

FIG. 14. Phase diagram of the 2D Fermi-Hubbard model. The
critical temperature Tc depends on the value of hole doping, AFM
stands for antiferromagnet.

FIG. 15. One way to map the two spin states to qubits on a 2D
qubit array using the JWT.
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nj↑nj↓ ↦
1

4
ðI − Zj↑ÞðI − Zj↓Þ; ð46Þ

which can be implemented using a controlled-phase gate,

expð−iτUnj↑nj↓Þ ↦

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iτU

1
CCCA: ð47Þ

The bias term and the magnetic term in the second line of
Eq. (45) can be implemented straightforwardly with single-
qubit operators. This step requires OðNÞ gates and Oð1Þ
depth. Putting all of these steps together, each Trotter step
can be simulated with only OðNÞ quantum gates and
Oð ffiffiffiffi

N
p Þ depth.
Cooper proved that an arbitrarily small attraction

between electrons can cause a pairing of electrons, leading
to a lower energy state than the Fermi energy. As described
by the BCS theory [49], the s-wave pairing wave function
due to electron-phonon interactions is responsible for
conventional superconductivity. The cuprate superconduc-
tivity has d-wave symmetry [61,62], wherein the super-
conducting wave function changes sign upon rotation by
90°. It has been predicted that d-wave pairing underlies
high-Tc superconductivity in cuprates [63]; however, the
mechanism of this pairing is not completely known. The
mean-field Hamiltonian that describes d-wave pairing in
the single-band Hubbard model is

HDW ¼ −
X
hj;ki;σ

tjk

�
c†j;σck;σ þ c†k;σcj;σ

�
− μ

X
j;σ

nj;σ

−
X
hj;ki

Δx2−y2
jk

�
c†j↑c

†
k↓ − c†j↓c

†
k↑ þ H:c:

�
; ð48Þ

where the chemical potential term with μ regulating the

total number of particles and Δx2−y2
jk ¼ �Δ=2 are the

superconducting gaps for the horizontal and vertical direc-
tions, respectively. With the mapping in Fig. 15, the pairing
term c†j↑c

†
k↓ þ H:c: can be implemented similarly to the

hopping terms.
Assuming translational symmetry and periodic boundary

conditions, the ground state of the Hamiltonian (48) can be
prepared using the fermionic Fourier transformation,

c†k;σ ¼
1ffiffiffiffiffiffiffiffiffinxny

p
Xnxny
j¼1

e2πiðkxxjþkyyjÞc†j;σ; ð49Þ

where nx ðnyÞ is the number of sites in the horizontal
(vertical) direction, and xj ∈ f1;…; nxg and yj ∈
f1;…; nyg denote the coordinates of the jth site. The

discrete wave vector k ¼ ðkx; kyÞ satisfies the condition
kxnx ∈ f1;…; nxg, and similarly for ky.
In the momentum basis, the Hamiltonian (48) becomes

HDW ¼
X
k;σ

ξkc
†
k;σck;σ −

X
k

Δk

�
c†k↑c

†
−k↓ þ H:c:

�
; ð50Þ

where −k≡ ð1 − kx; 1 − kyÞ and

ξk ¼ −2t½cosð2πkxÞ þ cosð2πkyÞ� − μ; ð51Þ

Δk ¼ Δ½cosð2πkxÞ − cosð2πkyÞ�; ð52Þ

where μ is chosen such that ξk ¼ 0 at the Fermi surface.
The BCS mean-field ground state of Eq. (50) is

jΨDWi ¼
Y
k

�
uk þ vkc

†
k↑c

†
−k↓

�
jvaci; ð53Þ

u2k ¼ 1

2

�
1þ ξkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2k þ jΔkj2
p

�
; ð54Þ

v2k ¼ 1

2

�
1 −

ξkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ jΔkj2

p
�
; ð55Þ

where uk ≥ 0 and sgnvk ¼ sgnΔk. Inspired by Ref. [37],
we prepare the BCS ground state in the site basis by first
preparing the ground state in the momentum basis (53) and
then applying the 2D Fourier transformation to the two spin
states independently.
The ground state in the momentum basis can be prepared

by applying a Bogoliubov transformation to the vacuum
state:

jΨDWi ¼
Y
k

exp

�
θkc

†
k↑c

†
−k↓ − H:c:

�
jvaci; ð56Þ

where sin θk ¼ vk. The corresponding generator is

i

�
c†k↑c

†
−k↓ − H:c:

�
↦

1

2

�
Xk↑Y−k↓ þ Yk↑X−k↓

�
; ð57Þ

where the qubit corresponding to the spin orbital −k↓ is
put next to that of k↑ in the JWT. This unitary can be
implemented with the quantum circuit in Fig. 16.
The fermionic Fourier transformations, different for the

two spin states due to the opposite orders in k, can be

FIG. 16. Quantum circuit to implement the Bogoliubov trans-
formation in the BCS state.
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performed using the method described in Sec. V. The BCS
mean-field state with periodic boundary conditions can thus
be prepared using OðN1.5Þ gates and Oð ffiffiffiffi

N
p Þ circuit depth.

An alternative way to prepare the d-wave mean-field
state is by introducing the fermionic operators correspond-
ing to the real single-particle wave functions,

c†kþ;σ ¼
1ffiffiffi
2

p
�
c†k;σ þ c†−k;σ

�
; ð58Þ

c†k−;σ ¼
−iffiffiffi
2

p
�
c†k;σ − c†−k;σ

�
; ð59Þ

for k1, k2 ≤ 1=2. With these operators, the Hamiltonian
(50) takes the form

HDW ¼
X

k1;k2≤1=2;σ
ξk

�
c†kþ;σckþ;σ þ c†k−;σck−;σ

�

−
X

k1;k2≤1=2
Δk

�
c†kþ↑c

†
kþ↓ þ c†k−↑c

†
k−↓ þ H:c:

�
;

ð60Þ

where the pairing terms are also “diagonalized” as a
consequence of the real transformation matrix. There-
fore, one can prepare the mean-field ground state by first
preparing the Bogoliubov ground state of the spin orbitals
k� ↑ and k� ↓ before performing the same real basis
transformation for the two spin states. This method might
be more efficient than the one using plane waves by
avoiding the phase rotations.
In experiments, it is often the case that open boundary

conditions are used. In this case, the horizontal or vertical
hopping terms in Eq. (48) correspond to a real triangular
matrix with real eigenstates. We use these eigenstates as the
single-particle basis states instead of the plane waves;
therefore, the basis transformation matrix is also real.
Similar to the case of periodic boundary conditions, the
basis states on a 2D array with open boundary conditions
can also be decomposed into a product of 1D basis states in
each direction. This factorized form allows for efficient
implementation of the 2D basis transformation with
OðN1.5Þ gates and Oð ffiffiffiffi

N
p Þ depth using the method

described in Sec. V. When the Hamiltonian (48) does
not satisfy translational symmetry, we can still prepare the
mean-field ground state using the method described in
Sec. IV. However, we might not be able to take advantage
of the factorized form of the transformation, and it takes
OðN2Þ gates and OðNÞ depth to prepare the mean-field
ground state in the worst case.
The ground state of the 2D Fermi-Hubbard Hamiltonian

(1) can be prepared by first preparing the mean-field ground
state and then slowly interpolating from HDW to HFH [18].
Following Ref. [11], we introduce the Hamiltonian

HðsÞ ¼ ð1 − sÞHDW þ sHFH

− ζ
X
hj;ki

Δx2−y2
jk

�
c†j↑c

†
k↓ − c†j↓c

†
k↑

�
þ H:c:

− η
X
⟪j;k⟫

iΔxy
jk

�
c†j↑c

†
k↓ − c†j↓c

†
k↑

�
þ H:c:; ð61Þ

where s slowly changes from 0 to 1 in the adiabatic
algorithm and Δxy

jk ¼ Δ=2 for xj − xk ¼ �1 and
yj − yk ¼ �1. The coefficients ζ and η introduce small
gaps to avoid quantum fluctuations of the d-wave order
parameter and the otherwise gapless nodal quasiparticles,
respectively.
The initial HamiltonianHDW favors a mean-field ground

state with d-wave symmetry of the pairing order parameter.
The algorithm proceeds in the following way. We initialize
the system in a specific mean-field wave function of the
d-wave type,

HDWjΨDWðs ¼ 0Þi ¼ E0ðs ¼ 0ÞjΨDWðs ¼ 0Þi; ð62Þ

and adiabatically deform it to the ground state of the
Hubbard model. If the initial wave function does not reflect
the symmetry of the Fermi-Hubbard ground state, the
adiabatic trajectory encounters a quantum phase transition.
This transition manifests as a small spectral gap between
the ground state and the excited states at the point of
transition, which vanishes in the thermodynamic limit. If
the initial mean-field state reflects the symmetry of the
ground state of the Hubbard model, there is no phase
transition and the spectral gap remains independent of the
system size in the course of the evolution. One indication
that the phase transition has occurred in the course of the
evolution is that the final state contains excitations above
the pairing gap, which can be detected by measuring the
correlation functions. The controlled-phase gate (47) is
implemented off resonantly to achieve the required high
fidelity in the Xmon superconducting qubits [28]. The
optimal length of the gate translates into the limited strength
of the effective interaction corresponding to roughly
U ∼ 10 MHz for the Xmons. For the desired parameter
regimeU ∼ 4t, an upper bound on the superconducting gap
can be inferred from typical values of the order parameters
obtained numerically, Δ≲ 0.04t ∼ 0.01U ∼ 0.1 MHz.

VII. SUMMARY

In this paper, we discuss quantum simulation of strongly
correlated fermionic systems using qubit arrays. We
improve on an existing quantum algorithm to prepare an
arbitrary Slater determinant [11,45] by exploiting a unitary
symmetry. We also present a quantum algorithm to prepare
an arbitrary fermionic Gaussian state withOðN2Þ gates and
OðNÞ circuit depth. This algorithm—unlike existing ones
that rely on translational symmetry—is completely general
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and is useful for simulating disordered systems and
quantum impurity models. Our quantum algorithms are
optimal in the sense that the number of parameters in the
quantum circuit is equal to that describing the quantum
states. We implement these algorithms as a part of the open-
source project OpenFermion [38].
We also present an algorithm to implement the 2D

fermionic Fourier transformation on a 2D qubit array with
OðN1.5Þ gates and Oð ffiffiffiffi

N
p Þ circuit depth, both of which

scale better than methods based on fermionic SWAP gates
[9]. A crucial step to achieve this optimal scaling is a
unitary transformation that attaches the parity operators to
the hopping terms; we show that it can be implemented
with OðNÞ gates and Oð ffiffiffiffi

N
p Þ circuit depth. This approach

provides an examplewhere the parity problem in simulating
fermionic systems inmore than one spatial dimension can be
circumvented with almost no additional cost. Our algorithm
can also be used for any 2D transformation that factorizes
into horizontal and vertical terms, such as the fermionic
Fourier transformation with open boundary conditions.
Using the Fermi-Hubbard model as an example, we

discuss how to use our algorithms to find the ground-state
properties and phase diagrams of strongly correlated
systems. We demonstrate that the d-wave pairing mean-
field states of the model can be prepared withOðN1.5Þ gates
and Oð ffiffiffiffi

N
p Þ depth. We show that each Trotter step in the

time evolution can be implemented with OðNÞ gates and
Oð ffiffiffiffi

N
p Þ depth with only local qubit interactions. We

discuss how to prepare the ground state of the model by
adiabatically evolving the system from the mean-field
Hamiltonian to the Hubbard Hamiltonian. The methods
that we develop can also be used for other quantum lattice
models that suffer from the negative-sign problem, e.g.,
frustrated spin systems, the t − J model, or lattice gauge
theories.
In conclusion, we show in this paper that physical

properties of strongly correlated fermionic systems can
be simulated on available 2D qubit arrays with only
OðN1.5Þ gates and Oð ffiffiffiffi

N
p Þ circuit depth with very little

overhead by using the Jordan-Wigner transformation. This
result is one more step towards the goal of using quantum
computers to investigate correlated quantum systems that
are beyond the reach of any classical computer.
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APPENDIX A: QUADRATIC HAMILTONIANS

Hamiltonians that are quadratic in fermionic creation and
annihilation operators are important in the mean-field
descriptions of many-body quantum systems. The most
general form of a quadratic Hamiltonian is

H ¼
XN
j;k¼1

�
Mjk − μδjk

�
c†jck þ

1

2

XN
j;k¼1

�
Δjkc

†
jc

†
k þ H:c:

�
;

ðA1Þ

where M ¼ M† and Δ ¼ −ΔT are complex matrices and
the chemical potential μ regulates the total number of
particles; hereafter, μ will be absorbed into M to simplify
notation. We review the standard results on how to bringH
into the diagonal form,

H ¼
XN
j¼1

εjb
†
jbj þ c number; ðA2Þ

where bj and b†j are a new set of fermionic operators that
satisfy the canonical anticommutation relations.
When the number of particles is conserved (Δ ¼ 0), the

Hamiltonian (A1) takes the form

H ¼
XN
j;k¼1

Mjkc
†
jck: ðA3Þ

The commutator of H and a single creation operator is

½H; c†l � ¼
X
jk

Mjk½c†jck; c†l �

¼
X
jk

Mjkc
†
jδkl ¼

X
j

Mjlc
†
j : ðA4Þ

In matrix form, we have

½H; c†� ¼ MTc† ¼ M�c†; ðA5Þ

where c† ¼ ðc†1 � � � c†NÞT . The time evolution under the
Hamiltonian H takes the form
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e−iτHc†eiτH ¼ e−iτM
T
c†: ðA6Þ

Therefore, the time evolution of the 2N × 2N matrix H can
be represented by the N × N unitary matrix e−iτM

T
. The

quadratic form (A3) can be diagonalized into the form (A2)
by introducing the fermionic operators bj and b†j such that

b† ¼ Uc†; UMTU† ¼ diagðε1;…; εNÞ; ðA7Þ

where U is an N × N unitary matrix and the eigenvalues
satisfy ε1 ≤ ε2 � � � ≤ εN. In the Nf-particle sector, the
ground state of the Hamiltonian (A3) corresponds to a
Slater determinant with the Q matrix being the first Nf

rows of U; see Eq. (7).
When the number of particles is not conserved, we

rewrite the Hamiltonian (A1) in matrix form,

H ¼ 1

2

�
c† c

�� Δ M

−M� −Δ�

��
c†

c

�
þ c number;

ðA8Þ

where the extra constant comes from different ordering of
the fermionic operators; the matrix form (A8) is symmet-
rically ordered, while the form in Eq. (A1) is normally
ordered. The standard way to diagonalize the Hamiltonian
(A8) is by solving the Bogoliubov–de Gennes equations,
which is somewhat cumbersome for numerical implemen-
tations. Alternatively, one introduces the Majorana fermion
operators,

fj ¼
1ffiffiffi
2

p ðc†j þ cjÞ; fjþN ¼ iffiffiffi
2

p ðc†j − cjÞ; ðA9Þ

for j ¼ 1; 2;…; N, which satisfy the anticommutation
relations

ffj; fkg ¼ δjk; for j; k ¼ 1; 2;…; 2N: ðA10Þ

In matrix form, the transformation (A9) reads

f ¼ Ω
�
c†

c

�
; Ω ¼ 1ffiffiffi

2
p

�
1 1

i1 −i1

�
; ðA11Þ

where f ¼ ðf1 f2 � � � f2NÞT . The Hamiltonian (A8) can be
rewritten in terms of the Majorana fermion operators:

H ¼ i
2
fTAfþ c number; ðA12Þ

where A is a 2N × 2N real antisymmetric matrix,

A ¼ −iΩ�
� Δ M

−M� −Δ�

�
Ω†: ðA13Þ

Conversely, any real antisymmetric matrix A corresponds to
a quadratic Hamiltonian of the form (A1). The commutator
between a single Majorana fermion and the Hamiltonian
H is

½H; fl� ¼
i
2

X
j≠k

Ajk½fjfk; fl� ¼ i
X
j≠l

Ajlfj: ðA14Þ

Using the matrix form ½H; f� ¼ −iAf, we have

e−iτHfeiτH ¼ e−τAf: ðA15Þ

Therefore, the unitary evolution of the Hamiltonian
H can be represented by the orthogonal matrix e−τA.
The matrix A can be brought into the standard form
(equivalent to the Schur form up to a permutation) by an
orthogonal transformation R,

RART ¼
�

0 E

−E 0

�
; E ¼ diagðε1;…; εNÞ; ðA16Þ

where 0 ≤ ε1 ≤ ε2 � � � ≤ εN . This transformation corre-
sponds to a basis change of the Majorana fermions
f0 ¼ Rf, where the new operators f0 also satisfy the
anticommutation relations (A10). Going back to the picture
of creation and annihilation operators, such a basis trans-
formation takes the form

�
b†

b

�
¼ W

�
c†

c

�
; ðA17Þ

where ðb† bÞT ¼ ðb†1 � � � b†N b1 � � � bNÞT and ðc† cÞT ¼
ðc†1 � � � c†N c1 � � � cNÞT . The unitary matrix W defines a
new set of fermionic operators bj and b†j , which brings
the Hamiltonian (A1) to the diagonal form (A2). The matrix
W is related to R through a basis transformation,

W ¼ Ω†RΩ: ðA18Þ

It is the starting point of our procedure in Sec. IV, which
prepares the ground state of the Hamiltonian (A1) on a
quantum computer. In summary, W can be calculated in
four steps:
(1) Write the quadratic Hamiltonian (A1) in the matrix

form (A8).
(2) Find the real antisymmetric matrix A using the

matrix form (A8) and Eq. (A13).
(3) Bring A into the standard form (A16) using an

orthogonal transformation R.
(4) Calculate the matrix W using R and Eq. (A18).
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APPENDIX B: ANCILLA-ASSISTED
FERMIONIC GATES

In Sec. V, we discuss how to implement the 2D fermionic
Fourier transformation with OðN1.5Þ gates and Oð ffiffiffiffi

N
p Þ

circuit depth. A crucial ingredient of our method is a
unitary that attaches the corresponding parity operators to
the bare hopping terms. This procedure allows efficient
implementation of both horizontal and vertical hopping
terms on a 2D qubit array. The same strategy can be used to
simulate Hamiltonian time evolution—again on a 2D qubit
array—by Trotterization, where a single time step can be
achieved with only OðNÞ gates and Oð ffiffiffiffi

N
p Þ depth. Here,

we propose an alternative method to implement the hop-
ping terms in a Trotter step using ancilla qubits to store the
parities also with OðNÞ gates and Oð ffiffiffiffi

N
p Þ depth. However,

it is less efficient in circuit depth to perform the 2D Fourier
transformation compared to the method in Sec. V due to
difficulties in parallelization.
We discuss how to implement the hopping terms on a 2D

qubit array using the same example of array size 4 × 4. The
ancilla qubits move horizontally in the array to facilitate
vertical hopping terms; see Fig. 17. The ancilla qubits are
initially at the far left side of the qubit array; the states of
those ancilla qubits for the right-closed hopping terms are
set to j0i, while those for the left-closed hopping terms
store the parities of the two corresponding rows; e.g., the
ancilla on the second row initially stores the parity Z5–12.
The vertical hopping terms are implemented with the parity
stored in the ancilla qubits, whose states are updated

constantly. For example, the vertical hopping term between
qubits 3 and 6 in Fig. 17(d) is

K̃3;6Z4–5 ¼ −K̃3;6Z3–6; ðB1Þ

where K̃3;6 ¼ ðX3X6 þ Y3Y6Þ=2 denotes the bare hopping
term. The time evolution expð−iτK̃3;6Þ can be implemented
using the second part of the circuit in Fig. 18, where the
parity stored in the ancilla qubit is attached to the bare
hopping term K̃3;6 by the CZ gates; the first part of the
circuit, corresponding to Fig. 17(c), updates the parity and
swaps the ancilla qubit with system qubit 3. The order of
the two parts in Fig. 18 may be reversed for other hopping
terms, e.g., the one between system qubits 7 and 10; see
Figs. 17(c) and 17(d). After the ancilla qubits have swept
over the entire rows, they are pushed back in the reverse
direction and the same procedure starts over again. The
vertical hopping terms require OðNÞ two-qubit gates to
implement for a single Trotter step. The horizontal hopping
terms can be implemented straightforwardly as long as the
two involved qubits are at the same side of the ancilla qubit
(no need to update the parity).
In Appendix E, we discuss how to simulate the 2D

Fermi-Hubbard model with qubits on a ladder, i.e., two
coupled chains. The basic idea is to use the fermionic SWAP

gate to change between row-major order and column-major
order so that both the horizontal and vertical couplings can
be implemented with only local interactions. This idea was
also proposed by Kivlichan et al. [45] independently.
Because such a strategy does not take full advantage of
the 2D qubit interactions, the number of gates scales as
OðN1.5Þ, which is worse than OðNÞ, by using the methods
described above and in Sec. V.

APPENDIX C: HAMILTONIAN-BASED
FERMIONIC GATES

Using methods in quantum optimal control [64], one can
prepare the desired quantum states by applying sequences
of Hamiltonian evolutions to initial states that are easy to
prepare. When the fermionic Hamiltonians are quadratic in
creation and annihilation operators, one can use their
matrix representation to find the optimal control sequences.
As a simple example, we discuss how to prepare the

ground state of a hopping Hamiltonian on three orbitals,

(a) (b)

(c) (d)

FIG. 17. (a)–(d) Implementing the hopping terms on a 4 × 4
qubit array. The red arrow indicates the direction of the JWT and
the system qubits (the blue circles) are numbered by their order in
the JWT. The ancilla qubits (the orange ellipses) store the parity
information of the system qubits, where j-k denotes the parity
Zj-k ≡ Zj � � �Zk. The purple dashed lines represent quantum
gates between neighboring qubits.

FIG. 18. Quantum circuit to implement the vertical hopping
term between qubits 3 and 6.
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HJX ¼ 1ffiffiffi
2

p
�
c†2c1 þ c†3c2 þ H:c:

�
: ðC1Þ

Besides HJX , we also need HJZ in our control set,

HJZ ¼ c†1c1 − c†3c3; ðC2Þ

whose ground states are easy to prepare. Using the normal
ordered form in Eq. (A3), we have the matrix representa-
tions for HJX and HJZ ,

JX ¼ 1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; JZ ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ðC3Þ

which are the same as the corresponding spin-1 angular
momentum operators. Using two rotations along the X axis
and the Z axis, we have

JX ¼ e−iπJZ=2e−iπJX=2JZeiπJX=2eiπJZ=2: ðC4Þ

Using the isomorphism (A6), one can prepare eigenstates
of the hopping Hamiltonian HJX by applying U to the
corresponding eigenstates of HJZ , where

U ¼ expð−iπHJZ=2Þ expð−iπHJX=2Þ: ðC5Þ

Since JZ is diagonal, the eigenstates of HJZ are easy-to-
prepare Slater determinants in the computational basis (3).
As a second example, we discuss the permutation of

orbitals,

�
1 2 3

3 2 1

�
; ðC6Þ

which requires three fermionic SWAP (FSWAP) gates on
neighboring qubits in the JWT. We show how it can be
achieved with a single multiqubit gate using Hamiltonian
evolution by HJX. The matrix powers of JX are

J2X ¼ 1

2

0
B@

1 0 1

0 2 0

1 0 1

1
CA; J3X ¼ JX: ðC7Þ

From Eq. (C7), we can derive the exponential of JX,

e−iτJX ¼ 1 − i sin τJX þ ðcos τ − 1ÞJ2X: ðC8Þ

For τ ¼ π, we have

e−iπJX ¼ 1 − 2J2X ¼ −

0
B@

0 0 1

0 1 0

1 0 0

1
CA: ðC9Þ

Therefore, the unitary that swaps the first orbital with the
third orbital is equal to

F 1;3
SWAP ¼ exp

�
−iπ

X3
j¼1

c†jcj

�
expð−iπHJXÞ; ðC10Þ

where the first term on the right-hand side fixes the extra
minus sign in Eq. (C9). The two constituent parts in
Eq. (C10) commute with each other, and the first part
can be implemented with only single-qubit gates with
the JWT.

APPENDIX D: FERMIONIC SWAP GATE

The FSWAP gate on two neighboring qubits takes the
form [37]

Fq;qþ1
SWAP ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

1
CCCA; ðD1Þ

where we use the standard order of basis states
j00i; j01i; j10i; j11i. One way to implement the fermionic
SWAP gate is to use the ISWAP gate

ISWAP ¼

0
BBB@

1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

1
CCCA ¼ eðiπ=2ÞH

q;qþ1
ISWAP ; ðD2Þ

Hq;qþ1
ISWAP ¼ 1

2

�
XqXqþ1 þ YqYqþ1

�
: ðD3Þ

To fix the phases in ISWAP, we introduce

eðiπ=4ÞðZqþZqþ1Þ ¼

0
BBB@

i 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −i

1
CCCA; ðD4Þ

which commutes with the ISWAP gate. The fermionic SWAP

gate then takes the form

Fq;qþ1
SWAP ¼ −ieðiπ=4ÞðZqþZqþ1Þeðiπ=2ÞH

q;qþ1
ISWAP : ðD5Þ

APPENDIX E: SIMULATING THE 2D HUBBARD
MODEL WITH A QUBIT LADDER

Experimentally, it is often easier to build qubits on a
ladder (two coupled chains) than on a 2D lattice. The two
spin chains in a ladder can be used to map fermionic modes
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with two different spin states; see Fig. 19. Because there are
no hopping terms between the two spin states in the
Hubbard model, the quantum state can be mapped using
two independent JWTs on the two spin chains. One needs
only to implement hopping terms within the chains and
interaction terms between corresponding qubits in the two
chains. In Ref. [65], the authors discussed physical imple-
mentations of analog quantum simulators of the 1D
Hubbard model on a qubit ladder. Here, we discuss a
digital quantum simulation of the 2D Hubbard model using
the same architecture. The challenge is to implement both
the horizontal and vertical hopping terms with only local
qubit operations. We solve this problem by reordering the
spin orbitals encoded in the JWT using the fermionic SWAP

gate (see Appendix D). Similar ideas were proposed
independently by Kivlichan et al. [45].
We demonstrate our approach using an example in which

the Fermi-Hubbard model on a 3 × 3 lattice is mapped to a
qubit ladder of size 2 × 9; see Fig. 19. The spin-up (-down)
orbitals are mapped to the upper (lower) chain in the ladder
using the JWT. To implement both the horizontal and
vertical hopping terms, one can switch between the row-
major and column-major orders,0

B@
1 2 3

4 5 6

7 8 9

1
CA⟶transposition

0
B@

1 4 7

2 5 8

3 6 9

1
CA; ðE1Þ

which corresponds to the following in situ transposition of
the fermionic orbitals in the JWT:

�
1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

�
: ðE2Þ

This permutation can be decomposed into elementary
permutations involving only neighboring qubits; see
Fig. 20. The pink permutation in Fig. 20 can be implemented
using three FSWAP gates involving only neighboring qubits;
in Appendix C, we discuss an alternative approach to
implementing this permutation using Hamiltonian evolu-
tion. The number of two-qubit gates required to implement
the in situ transposition for the two chains is Ntrans ¼ 2×
9 ¼ 18. The numbers of two-qubit gates needed for the
on-site interaction terms and the hopping terms areNint ¼ 9

and Nhop ¼ 2 × 2 × 6 ¼ 24, respectively. The total number
of two-qubit gates needed to simulate a single Trotter step
is NTrott ¼ Ntrans þ Nint þ Nhop ¼ 51.
To end this appendix, we consider simulating the 2D

Fermi-Hubbard model on a lattice of dimension nx × ny
using a qubit ladder of length nxny. Without loss of
generality, we assume that ny ≥ nx. The fermionic orbitals
are mapped to qubits in row-major order using the JWT.
Implementing the in situ matrix transposition on the entire
chain requires OðN2Þ two-qubit gates and is inefficient.
Instead, we can implement the in situ matrix transposition
on orbitals in neighboring rows. This modification allows
one to implement all of the hopping terms on a lattice with
onlyOðN1.5Þ two-qubit gates. For example, a single Trotter
step can be implemented with seven constituent operations:
(1) Implement the horizontal hopping terms and the

on-site interaction terms.
(2) Implement in situ transpositions on spin orbitals on

the first and second rows, third, and fourth rows, and
so on.

(3) Apply vertical hopping terms between these pairs
of rows.

(4) Undo the in situ transposition.
(5) Implement in situ transposition on spin orbitals on

the second and third rows, fourth and fifth rows, and
so on.

(6) Apply vertical hopping terms between these pairs
of rows.

(7) Undo the in situ transposition.
A single in situ transposition involving two rows requires
ðnx − 1Þnx=2 FSWAP gates on neighboring qubits to imple-
ment. Because there are 4ðny − 1Þ in situ transpositions in
oneTrotter step, the total number of two-qubit gates required
is Ntrans ¼ 2ðny − 1Þðnx − 1Þnx ¼ Nnx − N − 2n2x þ 2nx,
where N ¼ 2nynx is the total number of spin orbitals.

FIG. 19. A 2 × 9 qubit ladder (two chains) is used to simulate
the 2D Hubbard model on a 3 × 3 lattice. The spin-up and -down
orbitals are mapped to the upper and lower qubit chains,
respectively, using two independent JWTs. The solid red lines
represent nearest-neighbor interactions between qubits in the
same JWT, and the dashed blue lines represent ZZ interactions
between qubits representing different spin states.

FIG. 20. The in situ matrix transposition (E2) can be decom-
posed into elementary fermionic permutations involving only
neighboring qubits (time goes from top to bottom). The first line
is the initial ordering and the last line is the target ordering. In
each line, the qubits plotted with the same bright color are
involved in one elementary permutation, and their positions are
updated in the next line. The gray qubits remain in the same
place. The pink permutation can be implemented with three
FSWAP gates involving only neighboring qubits, or by Hamil-
tonian evolution, as described in Appendix C. The rest of the
permutations require a single FSWAP gate.
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The numbers of two-qubit gates needed for the on-site
interaction terms and the hopping terms are Ninter ¼ N=2
and Nhop ¼ 2ðny − 1Þnx þ 2ðnx − 1Þny ¼ 2N − 2ðny þ nxÞ,
respectively. For square lattices, the total number of two-
qubit gates needed for a single Trotter step is NTrott ¼
Ntrans þ Ninter þ Nhop ≃ N3=2=

ffiffiffi
2

p þ N=2. For example, the
total number of two-qubit gates is 275 for 50 spin orbitals on
a square lattice with a size of 5 × 5.

APPENDIX F: NUMERICAL STUDY
OF THE TROTTER ERROR

One way to prepare strongly correlated quantum states is
by adiabatic evolution. On a digital quantum computer, we
can simulate the evolution by dividing it into discrete time
steps and approximating the Hamiltonian within each time
step. Here, we numerically study the errors that arise from
using a second-order Trotter formula to simulate adiabatic
state preparation for the ground states of the Fermi-
Hubbard model.
For simplicity, we consider only the hopping terms:

Hhop ¼ −
X
hj;ki;σ

tjk

�
c†j;σck;σ þ H:c:

�
; ðF1Þ

and the interaction term

Hint ¼ U
X
j

nj;↑nj;↓ − μ
X
j;σ

nj;σ: ðF2Þ

We introduce a chemical potential term in Hint to fix the
particle number of the ground state so that it occurs at half
filling. Since the ground state ofHhop is also half filled and
both Hhop and Hint conserve particle number, the particle
number stays constant throughout the evolution. To prepare
a ground state of Hint starting from a ground state of Hhop,
we apply the time-dependent Hamiltonian

HðsÞ ¼ ð1 − sÞHhop þ sHint; ðF3Þ

where s ¼ t=T ∈ ½0; 1�, with T being the total evolution
time. If we split T into n time steps, then a single Trotter
step takes the form

e−ið1−sÞΔtHhope−isΔtHint ; ðF4Þ

where Δt ¼ T=n.
For the purposes of this paper, we ignore the issue of

approximating the two time-evolution operators in
Eq. (F4). We use the parameter settings

tjk ¼ 1 for all cases of hj; ki; U ¼ 4; and μ ¼ 1

ðF5Þ

on two-dimensional grids of various sizes. We use the
open-source package OpenFermion [38] to initialize the
Hamiltonians of the Hubbard model and compute their
ground states. Then, we use the open-source package QuTiP

FIG. 21. Fidelity with states from adiabatic evolution for
various Trotter step numbers on a 2 × 2 grid.

FIG. 22. Fidelity with states from adiabatic evolution for
various Trotter step numbers on a 3 × 2 grid.

FIG. 23. Fidelity with states from adiabatic evolution for
various Trotter step numbers on a 4 × 2 grid.
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[66] to compute the exact evolution by the time-dependent
Hamiltonian (F3), starting with the ground state of Hhop.
We adjust the total evolution time T until the final state is
within the ground space of Hint, indicating that the
evolution is adiabatic. For all of the grid sizes in our work,
T ¼ 100 is sufficient. Finally, we approximate the evolu-
tion using the second-order Trotter formula with various
values of n, the number of steps. Higher values of n give a
better approximation. For each step size, we record the
quantum state 20 times throughout the evolution and
compute the fidelity of these states with the states from
the true adiabatic evolution. The numerical results for grid
sizes 2 × 2, 3 × 2, and 4 × 2 are shown in Figs. 21, 22, and
23, respectively.

APPENDIX G: REARRANGED QUANTUM
CIRCUITS FOR DIFFERENT HOPPING TERMS

In Sec. V, we provide an algorithm to implement the 2D
fermionic Fourier transformation with OðN1.5Þ gates and
Oð ffiffiffiffi

N
p Þ depth. A crucial step is a unitary transformation Γ,

diagonalized in the computation basis, that introduces the
desired parities to the bare vertical hopping terms. Therein,
we provide a method to implement Γ with OðNÞ gates and
Oð ffiffiffiffi

N
p Þ depth by introducing one ancilla per row to store

the parities of the system qubits. In each time step, the
ancilla qubits interact with system qubits in a particular
column with the circuit in Fig. 24. The first and second
parts of the circuit consist of CZ gates between each system
qubit and the ancilla qubits below, starting with the next
odd-numbered row. This circuit is used to demonstrate the
hopping terms between the first and second rows, and a
rearranged circuit in Fig. 25 is used for hopping terms
between the second and third rows. Here, we provide the
other arrangements of the same circuit for the remaining
pairs of rows that are adjacent to each other. The circuit in
Fig. 24 can be transformed into those in Figs. 26 and 28 by
regrouping neighboring pairs of gates, which can be
generalized to any right-closed hopping term for a system
with an even number of rows. Similarly, the first three pairs
of gates and the last two gates in the second part in Fig. 25
can be regrouped into gates in the corresponding positions
in Fig. 27, which can also be generalized to any left-closed
hopping term for larger system sizes. Each of the remaining

gates in Fig. 25 (except for the third part) involve the first
system qubit and an ancilla qubit below; these gates do not
affect any left-closed hopping term, either.
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