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Applications of magnetostrictive materials commonly involve the use of the dynamic deformation, i.e.,
the piezomagnetic effect. Usually, this effect is described by the strain derivative ∂λ=∂H, which is deduced
from the quasistatic magnetostrictive curve. However, the strain derivative might not be accurate to describe
dynamic deformation in semihard materials as cobalt ferrite (CFO). To highlight this issue, dynamic
magnetostriction measurements of cobalt ferrite are performed and compared with the strain derivative.
The experiment shows that measured piezomagnetic coefficients are much lower than the strain derivative.
To point out the direct application of this effect, low-frequency magnetoelectric (ME) measurements are
also conducted on bilayers CFO=PbðZr;TiÞO3. The experimental data are compared with calculated
magnetoelectric coefficients which include a measured dynamic coefficient and result in very low relative
error (<5%), highlighting the relevance of using a piezomagnetic coefficient derived from dynamic
magnetostriction instead of a strain derivative coefficient to model ME composites. The magnetoelectric
effect is then measured for several amplitudes of the alternating field Hac, and a nonlinear response is
revealed. Based on these results, a trilayer CFO/PbðZr;TiÞO3/CFO is made exhibiting a high magneto-
electric coefficient of 578 mV=A (approximately 460 mV=cmOe) in an ac field of 38.2 kA=m (about
48 mT) at low frequency, which is 3 times higher than the measured value at 0.8 kA=m (approximately
1 mT). We discuss the viability of using semihard materials like cobalt ferrite for dynamic magnetostrictive
applications such as the magnetoelectric effect.

DOI: 10.1103/PhysRevApplied.9.044035

I. INTRODUCTION

Magnetostriction is defined as the change in length of
materials under the influence of an external magnetic field.
The magnetostriction coefficient λ is generally measured
using the usual quasistatic strain-gauge technique, which
gives the differential strain as a function of the bias
magnetic fieldHdc. It has been shown that magnetostriction
is a quadratic function of M, i.e., λ ∝ M2 [1–3]. Today,
magnetostrictive materials are used in actuators [4,5], sonar
transducers [6], motors [7], and various types of sensors
[8,9]. The interest in oxide-based magnetostrictive materi-
als such as cobalt ferrites (CFOs) has also increased due to
their low cost, ease of fabrication, high resistivity, and high
mechanical robustness compared to rare-earth intermetal-
lics like Terfenol-D [10].
Another advantage of cobalt ferrites is that their mag-

netostrictive properties can be tuned by inducing a uniaxial
anisotropy. This can be done by magnetic annealing
[11–15], magnetic-field-assisted compaction [16,17], or
reaction under uniaxial pressure [18]. Another way to tune
magnetostrictive properties of CoFe2O4 is by substitution
of the Fe atoms by Mg, Al, Ti, Mn, Ni, Cu, Zn, Ga, Zr, Nb,

In, etc., or even rare-earth elements [19–33]. Moreover,
there is an increasing interest in synthesizing cobalt ferrite
from recycled Li-ion batteries to use it in magnetostric-
tive applications [25,34–36]. Hence, research in cobalt
ferrites is very active, with a special focus on tuning their
magnetostrictive properties.
Recently, these materials have also attracted renewed

interest because of their potential use in extrinsic multi-
ferroics, and particularly in magnetoelectric (ME) compo-
sites for smart electronic applications [37–41]. Indeed,
cobalt ferrites are very attractive for this purpose and have
been used either in laminated [15,42–49] or in particulate
[50–55] composites. The direct ME effect consists of a
change in the electric polarization induced by a magnetic
field. In ME heterostructures, the magnetoelectric coupling
is due to the magnetic-mechanical-electric conversion
through the interface between the two phases. This cou-
pling results from the variation of the polarization in the
piezoelectric layer caused by the dynamic mechanical
deformation of the ferromagnet, i.e., the dynamic mag-
netostriction, induced by an alternating field Hac super-
imposed to a bias magnetic field Hdc. Hence, the ME effect
arises mainly from the dynamic magnetostriction, i.e., the
piezomagnetic coefficient of the magnetic material.
As stated by du Trémolet de Lacheisserie [1], the
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induced by an alternating magnetic field Hac at any
polarizing field Hdc, which can be written qac ¼
ð∂λac=∂HacÞjHdc

, with λac being the dynamic magnetostric-
tion. It has also been modeled analytically by some authors
[56–58] based on Gibbs free energy. However, the piezo-
magnetic coefficient is commonly extrapolated from the
strain derivative of the quasistatic magnetostrictive curve,
namely, qdc ¼ ∂λ=∂Hdc [59], and is usually considered the
main parameter characterizing the magnetostrictive materi-
als. Nevertheless, the static strain derivative qdc may hardly
be used to extrapolate the piezomagnetic coefficient qac in
all materials. Actually, the strain derivative qdc is, by defini-
tion, related to the differential susceptibility of the material
χdiff [60], whereas the dynamic magnetostriction—and
hence the piezomagnetic coefficient qac—should mainly
depend on the dynamic susceptibility χac [61] of the
material for any given bias magnetic field. This also means
that dynamic magnetostriction should be correlated to the
amplitude of the alternating field Hac because χac depends
on the amplitude of the minor loop. Hence, the strain
derivative does not take into account the dynamic aspect
but rather only the quasistatic differential strain, pointing
out a possible inaccurate way of characterizing magneto-
strictive materials for a dynamic applications purpose.
On the other hand, the piezoelectric coefficient d33

for piezoelectric materials is always characterized by
dynamic measurements, with the most common methods
being the impedance resonance measurement or the laser
interferometry [62]. Several decades ago, dynamic meas-
urement was also used to investigate magnetostrictive
Terfenol-D alloys to show their potential as transducers.
These measurements were performed either with a strain
gauge [63–65], an accelerometer [66], a laser-Doppler-
vibrometry system [67,68] or by using a three-terminal
capacitance technique [69].
Nevertheless, to the best of our knowledge, the dynamic

magnetostriction of cobalt ferrite has not been investigated.
Yet the approximation of considering the static strain
derivative qdc as a relevant parameter to describe the
dynamic magnetostriction might be particularly misleading
for semihard materials such as cobalt ferrite. In fact, as
suggested by Srinivasan [70], this material exhibits large
anisotropy, which limits domain rotation and hence
dynamic deformation, while this material exhibits very
high saturation magnetostriction (λS > 300 ppm) [71].
This anisotropy could explain why the magnetoelectric
effect is much higher for materials with high permeability
and low magnetostriction saturation (λS) such as nickel
ferrite (NFO), nickel zinc ferrite (NZFO), and manganese
zinc ferrite (MZFO) than for materials with low permeabil-
ity and high λS such as cobalt ferrite [72–76]. Yet the strain
derivative qdc is higher for CFO than for NFO and MZFO,
showing that this parameter may not fully and accurately
characterize the ME effect. This approximation also had
consequences in the modeling of the magnetoelectric effect,

where authors had to introduce a very low mechanical
coupling factor for ME heterostructures including CFO to
fit predicted values with experimental data, which was not
the case for NFO and NZFO [72,77].
In this paper, we measure the dynamic magnetostriction

of the cobalt ferrite using a dynamic strain-gauge experi-
ment described in Sec. II B. We perform measurements on
an isotropic and anisotropic cobalt ferrite disk (2 mm in
thickness, 10 mm in diameter) and obtain a longitudinal
piezomagnetic coefficient qac11, at any working point
Hdc. We investigate the influence of the amplitude of the
alternating field Hac from 0.8 kA=m (1 mT) to 76.4 kA=m
(96 mT) and find a high dependence of qac11 on it. We
compare these values with the usual quasistatic strain
derivative coefficient qdc11 and find them to be much lower:
80% lower at 0.8 kA=m and 40% lower at the optimum
excitation field of 50.9 kA=m for the anisotropic sample.
Based on these results, the piezomagnetic coefficients
derived from dynamic magnetostriction measurements
are introduced in a low-frequency transverse ME model,
and the calculated values are compared with experimental
data retrieved for a ME bilayer CFO/PZT. A good accuracy
is found between the predicted and experimental data
(relative error <5%). Moreover, a strong dependence of
the ME coefficient on the amplitude of Hac is described,
pointing out the importance of choosing the accurate
driving field to optimize the ME effect for heterostructures
composed of cobalt ferrite. Finally, by making a ME
trilayer with optimized geometry, we are able to reach a
maximum ME coefficient of 578 mV=A (approximately
460 mV=cmOe) at low frequency with an ac field of
38.2 kA=m. Considering the results, we will discuss the
viability of using cobalt ferrite for a magnetoelectric
purpose.

II. EXPERIMENT

A. Sample preparation

Two different kinds of polycrystalline cobalt ferrite are
prepared, one exhibiting isotropic properties and the other
presenting a uniaxial anisotropy. In both cases, nanosized
(<50 nm) oxides Fe2O3 and Co3O4 (Sigma-Aldrich) are
used as precursors in a molar ratio of 3∶1. Powders are
mixed in a planetary ball mill for 30 min at 400 rpm, then
ground for 1 h at 600 rpm. In the first method, the synthesis
of the spinel phase is achieved by the usual calcination at
900 °C for 12 h. After grinding the cobalt ferrite powder at
550 rpm for 1 h, it is sintered using spark plasma sintering
(SPS) in the same conditions as described elsewhere [18].
Using this process permits us to obtain isotropic cobalt
ferrite. In the second method, the oxide mixture is proc-
essed by SPS, where both the synthesis and the sintering
are performed (reactive sintering). This technique is found
to introduce a uniaxial anisotropy to cobalt ferrite in the
direction of the applied pressure (for details, see Ref. [18]).
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Both methods result in cobalt ferrite with a large majority
spinel phase (>91%), and the final samples are identical
cylindrical pellets 10 mm in diameter and 2 mm thick
with a high relative density (about 97%). We refer to the
isotropic cobalt ferrite as CFOI, and the anisotropic one
as CFOA.
To manufacture magnetoelectric composites, cobalt

ferrite disks are bonded on 1-mm-thick and 10-mm-
diameter commercial lead zirconate titanate (PZT) disks
(Ferroperm PZ27) using silver epoxy (EPO-TEK E4110).
The piezoelectric samples are polarized along the thickness
direction. The magnetoelectric bilayers are, finally, disks
with a thickness of 3 mm and a diameter of 10 mm.
Measurements are also performed on a trilayer CFO/PZT/
CFO with layer thicknesses of 0.4 mm=0.75 mm=0.4 mm,
and with a diameter of 10 mm.

B. Experimental setup and methods

Magnetic measurements are carried out with a vibrat-
ing-sample magnetometer (Lakeshore 7400) up to a
maximum field of 800 kA=m. They are performed on
ME bilayers along the radial direction to obtain the
effective magnetization, which includes the radial demag-
netizing field and the strain contribution from the bonded
piezoelectric layer, as in magnetostrictive and magneto-
electric measurements.
Static magnetostriction measurements are performed at

room temperature using the usual strain-gauge method
[78], where deformation and resistance of the gauge are
correlated by

RH − R0

R0

¼ K
lH − l0

l0
¼ Kλ; ð1Þ

where RH is the resistance of the gauge at any bias field
Hdc, R0 the initial resistance for Hdc ¼ 0, K the gauge
factor, lH the deformation at any bias field Hdc, and l0 the
initial deformation for Hdc ¼ 0.
Self-temperature-compensation semiconductor gauges

(KYOWA KSN-2-120-E4-11) are used to obtain a high
gauge factor (K ∼ 104) and a low induced magnetic-field
voltage. The gauges are bonded on the pellet surface and
the applied magnetic field is in the plane of the disk, either
parallel (λ11) or perpendicular (λ21) to the gauge.
A dynamic magnetostriction measurement is also per-

formed at room temperature using the same strain gauge.
To measure the dynamic deformation, a low-frequency
(80-Hz) alternating magnetic field Hac has to be super-
imposed on the static one, Hdc. As defined previously, the
piezomagnetic coefficient should be written

qac ¼
� ∂λac
∂Hac

�
Hdc

; ð2Þ

where λac is the dynamic magnetostriction, defined by

λac ¼
Δlac
lH

; ð3Þ

where Δlac is the dynamic deformation and lH the defor-
mation for any given bias field. The dynamic magneto-
striction can be linked to the strain-gauge resistance by

λac ¼
ΔRac

KRH
; ð4Þ

where ΔRac is the alternating resistance and RH the
resistance for any given bias field. By combining
Eqs. (2) and (4), we relate the piezomagnetic coefficient
and the strain gauge:

qac ¼
�

1

KRH

∂Rac

∂Hac

�
Hdc

: ð5Þ

Hence, by imposing a dc current Idc through the gauge, the
previous equation can be expressed as

qac ¼
�

1

IdcKRH

Vac
q

Hac

�
Hdc

; ð6Þ

where Vac
q is the dynamic voltage at the terminals of the

gauge, Idc the current applied in the gauge, K the gauge
factor, RH the resistance of the gauge at any bias field Hdc,
and Hac the alternating magnetic field.
Here, the aim is to measure the dynamic voltage, which

is directly related to the dynamic deformation, by means of
a lock-in amplifier (EG&G Princeton 5210) with high input
impedance (100 MΩ). As dynamic deformation tends to be
lower than quasistatic deformation, the voltage signal is
expected to beweak, especially for a low excitation fieldHac.
Hence, to improve the sensitivity of themeasured voltageVac

q

and according to Eq. (6), we need a gauge showing a high
gauge factor K and a high electrical resistance RH and
allowing a high current Idc. Semiconductor gauges are used
because they provide a high gauge factor of 104, which is
50 times higher than the usual resistive gauge, and allow a
maximum dc current of 20 mA. However, their resistance is
quite low (R ∼ 125 Ω) and these gauges exhibit high temper-
ature dependence. To overcome this issue, self-temperature-
compensation gauges are used. The electrical circuit of
the dynamic magnetostriction measurement is depicted in
Fig. 1(a).
The dc current flowing through the gauge is supplied by

an LT3092 (Linear Technology). The stability of the current
with regard to the variation of the resistance is tested
beforehand. The current is fixed to 15 mA to avoid the
deterioration of the gauge. To bypass any offset in the
voltage measurement, a high-pass filter (HPF) is connected
in series by adding a capacitor (Cf ∼ 1.5 nF). Induced
voltage in the gauge should also be limited thanks to the use
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of semiconductor gauges, which have a lower active surface
than resistive gauges. The alternating field is produced by a
solenoid where ac current is generated by a function
generator connected to an amplifier (AMP), allowing us
to reach amplitudes ranging from 0.8 to 76.4 kA=m ac rms.
As a first approximation, in the calculation of Eq. (6), the
RH value measured at Hdc ¼ 0 kA=m is kept constant
instead of being retrieved at any given bias field. This
approximation is rather good, as low error should be
induced on the final value (<0.5%). The general exper-
imental setup is depicted in Fig. 1(b).
Magnetoelectric measurements are also performed by

applying a low-frequency alternating field Hac (80 Hz)
superimposed to a static field Hdc. The alternating and static
magnetic fields are produced by a solenoid and an electro-
magnet, respectively. Both fields are applied in plane
[direction (1)], producing an electric field E3 along the
thickness direction (3) of the piezoelectric layer. The trans-
versal magnetoelectric coefficient α31 can then be defined by

α31 ¼
E3

Hac
¼ V3

teHac
; ð7Þ

where V3 is the magnetoelectric voltage at the terminals of
the piezoelectric and te the thickness of the piezoelectric.
The magnetoelectric voltage is measured using a lock-in
amplifier (EG&G Princeton 5210) with high input imped-
ance (100 MΩ).

III. RESULTS AND DISCUSSION

A. Magnetic properties and static magnetostriction

The magnetic hysteresis loops of the two samples
CFOI and CFOA are shown in Fig. 2 (the dotted lines).
The anisotropic sample exhibits a higher coercive field
(Hc ¼ 51 kA=m) than the isotropic one (Hc ¼ 18 kA=m).
This is a consequence of the reaction under pressure which
induces an easy axis along the thickness direction [18], and
hence a higher anisotropy. The difference in the saturation
magnetization is attributed to the presence of a secondary
phase found in the samples [18]. After performing a major
hysteresis loop, a recoil curve is measured that moves from
remanence (H ¼ 0 kA=m) to saturation (H ¼ 800 kA=m)
(the thick lines) in order to reproduce the same exper-
imental conditions used in magnetostrictive and magneto-
electric measurements. The derivatives of both recoil
curves are plotted in the inset of Fig. 2. The isotropic
sample appears to be more sensitive to the field and
exhibits a higher susceptibility than the anisotropic one,
as the measurements are performed in the hard direction of
CFOA. The maximum susceptibility appears for an applied
field of 35 and 120 kA=m for CFOI and CFOA, respec-
tively. This behavior should be attributed to the width of
the hysteresis loops and plays a major role in the static and
dynamic magnetostrictive curves.
Magnetostriction measurement of the isotropic and aniso-

tropic cobalt ferrite are represented Figs. 3(a) and 3(b),
respectively. For each sample, the strain derivatives along the
longitudinal and the transverse direction are plotted, as is
their sum. The isotropic sample shows the usual longitudinal
and transverse magnetostriction behavior, with an approxi-
mate ratio of 2∶1 between them at saturation. This isotropy
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FIG. 1. (a) Electrical circuit of the dynamic magnetostriction
measurement. (b) General setup of the dynamic deformation
experiment.
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cycle. Thick lines symbolize the recoil curve progressing from 0
to 800 kA=m and are measured after performing the M-H loops.
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results in a sum qdc11 þ qdc21 ∼ −0.8 nm=A being reduced
by a factor of 1.5 compared to the maximum value of
qdc11 ∼ −1.2 nm=A. On the other hand, the uniaxial
anisotropy has strong consequences on the magnetostrictive
behavior. The longitudinal magnetostriction λ11 is increased,
while the transverse magnetostriction λ21 is decreased. This
effect is also apparent in the strain derivative, where the
longitudinal one, qdc11 ∼ −1.55 nm=A, is enhanced, while the
transverse one, qdc21 ∼ 0.25 nm=A, is reduced. The low qdc21
results in a sum, qdc11 þ qdc21 ∼ −1.35 nm=A, much higher
than that for the isotropic materials. This increase is of great
relevance for improving the transverse magnetoelectric
effect, which is known to depend on the sum q11 þ q21
[42,72]. However, the drawback of having anisotropic
sample is the decrease of its susceptibility. In fact, as shown
previously, CFOA requires a higher bias field Hdc to reach
the optimum strain derivative. The maximum longitudinal
strain derivative qdc11 is reached for an applied polarizing field

of 38 and 135 kA=m for CFOI and CFOA, respectively.
These values are in good agreement with the ones found
for the maximum differential susceptibility measured in the
previous paragraph, and they can be explained by the
definition of the strain derivative:

qdc ¼ ∂λ
∂Hdc

¼ ∂λ
∂M

∂M
∂Hdc

;

qdc ¼ ∂λ
∂M χdiff ; ð8Þ

where χdiff here refers to the slope of the recoil curve,whereas
it is usually defined on the initial magnetization curve [60].

B. Dynamic magnetostriction

Dynamic magnetostriction measurements are performed
using the experimental setup presented in Sec. II B. First, a
low-frequency (80-Hz) and low-amplitude (0.8-kA/m)
alternating field is superimposed on the static magnetic
field. Measurements for the longitudinal piezomagnetic
coefficient qac11 are represented in Fig. 4 for CFOI and
CFOA. To compare, quasistatic strain derivative coeffi-
cients qdc11 are also plotted in the figure. For both samples,
the dynamic coefficient (qac11) is much lower than that for the
static coefficients (qdc11). In fact, the measured piezomag-
netic coefficient is decreased to 0.36 and 0.30 nm=A
compared to the strain derivative for CFOI and CFOA,
respectively. It is worth noting that the reduction is less
drastic for the isotropic sample than for the anisotropic one.
This might be a consequence of the large anisotropy and
coercive field found for CFOA, which limits domain
rotation, and hence dynamic deformation. This result also
proves that high-permeability materials are more efficient
for a dynamic purpose at low driving field.

FIG. 3. Static longitudinal λ11 and transversal λ21 magneto-
strictive curves for (a) CFOI and (b) CFOA. (Inset) The dc strain
derivatives qdc along the longitudinal and transversal directions,
and the sum of the two.
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FIG. 4. Longitudinal strain derivative qdc11 and piezomagnetic
coefficient qac11 (Hac ∼ 0.8 kA=m) for CFOI and CFOA.
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To show the dependence of the piezomagnetic coeffi-
cient qac on the amplitude of the alternating field, the same
measurements are performed for several Hac amplitudes:
0.8, 1.6, 3.2, 6.4, 12.7, 25.5, 38.2, 50.9, 63.7, and
76.4 kA=m. In Fig. 5, the maximum longitudinal piezo-
magnetic coefficient (the modulus) is plotted as a function
of the amplitude of Hac for both samples CFOI and CFOA
(the semilog2 plot). It appears that dynamic magnetostric-
tion, i.e., the piezomagnetic coefficient, depends on the
amplitude of the excitation field. For both samples, the
piezomagnetic coefficient qac is enhanced by increasing
the excitation field Hac until it reaches an optimum field
and then starts decreasing. Indeed, by increasing the field
from 0.8 to 25.5 kA=m, the ac piezomagnetic coefficient
for CFOI is increased from 0.36 to 0.86 nm=A. For CFOA,
the coefficient is increased from 0.30 nm=A at 0.8 kA=m
to 0.90 nm=A at 50.9 kA=m. Hence, a higher coefficient
can be found for CFOA than for CFOI, as in quasistatic
values, but requiring a higher ac field. The decrease of the
piezomagnetic coefficient once a given Hac is reached is
possibly due to the nonlinearity of the magnetostrictive
curve. When the driving field is too strong, secondary
harmonics are enhanced and hence reduce the fundamental
signal (see Sec. III C). The dependence of the piezomag-
netic coefficient to the excitation field can be explained by
Eq. (2):

qac ¼
� ∂λac
∂Hac

�
Hdc

¼
�∂λac
∂M

∂M
∂Hac

�
Hdc

;

qac ¼
�∂λac
∂M χac

�
Hdc

; ð9Þ

where χac is defined as the response of the magnetization of
the material to a small change in the magnetic field [61].
Thus, qac depends on Hac through the dependence of the
dynamic susceptibility χac on Hac.
In Fig. 5, the piezomagnetic coefficients qac are also

compared to the strain derivative qdc. For CFOI, at
0.8 kA=m, the dynamic coefficient is 30% of the quasi-
static value and reaches 70% at 25.5 kA=m. For CFOA, at
0.8 kA=m, the dynamic coefficient is 20% of the quasi-
static value and reaches 60% at 50.9 kA=m. Moreover, qac

is enhanced by only 50% when the ac field is increased
from 0.8 to 12.7 kA=m for CFOA, whereas qac is increased
by 100% for the same range of field for CFOI. This result
confirms that materials with high permeability exhibit
higher dynamic deformation at low excitation field
(Hac ≤ 25.5 kA=m), even though they have a lower satu-
ration magnetostriction λS and a lower static derivative
strain ∂λ=∂Hdc. On the other hand, at high driving field
(Hac > 25.5 kA=m), CFOA enhances its coefficient by
100% and is kept high between 38.2 and 76.4 kA=m,
whereas CFOI increases by only 16% until decreasing
drastically for Hac > 50.9 kA=m. These results show that
high anisotropy samples, i.e., those with low permeability,
need a high driving field to be efficient in dynamic
applications, but they have a better effect when excited
at the optimum alternating field.
The same measurements are performed in the transverse

direction qac21 for both samples. However, because of the
low dynamic deformation in this direction, weak signal
voltage is measured, hence affecting the accuracy and
making the measurements unreliable. As a first estimation,
the transverse dynamic deformation is considered to
keep the same ratio between the longitudinal and
transverse coefficients as in the quasistatic deformation
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FIG. 5. Maximum longitudinal dynamic piezomagnetic coefficients qac11 (modulus) as a function of the excitation field Hac for
(a) CFOI and (b) CFOA (semilog2 plot). Values are compared to the longitudinal strain derivative coefficient qdc11.
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½ðqac11Þ=ðqac21Þ� ¼ ½ðqdc11Þ=ðqdc21Þ�, for any given bias field Hdc.
Hence, qac21 is calculated using

qac21 ¼
�
qdc21
qdc11

· qac11

�
Hdc

: ð10Þ

C. Magnetoelectric effect

Let us now focus on the magnetoelectric effect of the
bilayers CFOI/PZT and CFOA/PZT. For several years
now, authors have developed very accurate magnetoelectric
models to describe this effect with respect to the material
properties. Here, we use the low-frequency model for the
transverse effect presented in Ref. [79]:

α31 ¼
ηðqm11 þ qm21Þde31

ϵ33½ðse11 þ se21Þ þ ηγðsm11 þ sm21Þ� − 2ðde31Þ2
; ð11Þ

where η is the mechanical coupling factor, de31 is the
transverse piezoelectric coefficient, ϵ33 is the dielectric
permittivity, sij represents the compliances, and γ ¼
½ðνeÞ=ðνmÞ� ¼ ½ðteÞ=ðtmÞ� is the volume ratio, with te and
tm being the thicknesses of the PZT and CFO, respectively.
For the PZT (PZ27 from Ferroperm), we use the fol-

lowing parameters for calculations: de31 ¼ −170 pC=N,
se11¼17pm2=N, se21¼−6.6pm2=N, ϵr33 ¼ 1800, and, for
CFOA (the same as for CFOI), we use sm11 ¼ 6.44 pm2=N,
sm21 ¼ −1.96 pm2=N [42]. The mechanical coupling factor
η can be defined as being the ratio of the average strain
between the piezoelectric and magnetic phases hSei=hSmi.
FEM simulation is used to simulate the mechanical
coupling factor. The simulation takes into account an
epoxy layer of 30 μm between the piezoelectric and mag-
netostrictive phases, and a friction coefficient k ¼ 0.25 is
introduced at each interface, as explained in Ref. [80]. The
resulting bilayer mechanical coupling factor is η ¼ 0.25.
In Fig. 6, we show the transverse magnetoelectric

coefficient αexp31 ð0.8 kA=m) for the bilayer CFOA/PZT,
measured at low frequency (80 Hz) and with a low-ac
field (0.8 kA=m) as a function of the static field. Two
theoretical magnetoelectric coefficients curves are also
plotted in this figure. The first (the dotted line) is calculated
using strain derivative coefficients αth31ðqdcÞ, whereas the
second plot (the blue squares) is calculated using a
piezomagnetic coefficient measured at 0.8 kA=m
αth31½qacð0.8 kA=mÞ�. The second method provides a much
more accurate curve than the first one. Indeed, a maximum
magnetoelectric coefficient of 494 mV=A is calculated
using the strain derivative qdc, whereas the experimental
value is 100 mV=A. By contrast, using the measured
piezomagnetic coefficient qac gives a maximum ME
coefficient of 90 mV=A. Hence, the relative error for
αth31ðqdcÞ is 394% with respect to the experimental value,

whereas it decreases to 10% with αth31½qacð0.8 kA=mÞ�.
Even though good accuracy is found using dynamic
deformation, the relative error (approximately 10%) should
be mainly attributed to qac21, which is calculated using a
static ratio at any given bias field, as described in Sec. III B.
However, to improve the accuracy on the maximum

magnetoelectric coefficient αmax
31 , we use a more reliable

method to estimate qac21 from the measured values. In this
case, the ratio between the transverse and longitudinal
coefficients is chosen at the maximum strain derivative sum
qdc11 þ qdc21. The longitudinal piezomagnetic coefficient is
hence taken at its maximum value, giving

qac21ðαmax
31 Þ ¼

�
qdc21
qdc11

�
maxðqdc

11
þqdc

21
Þ
qac11max: ð12Þ

Hence, it is found that qac21ðαmax
31 Þ ¼ −0.125qac11max for

CFOA. In this case, a maximum αth31½qacð0.8 kA=mÞ� value
of 96 mV=A is found, thus reducing the relative error to
4%. In the following, only the maximum magnetoelectric
coefficient is considered, and the transverse dynamic
coefficient qac21 is therefore calculated using

qac21ðαmax
31 Þ ¼ −0.35qac11max ð13Þ

for CFOI, and

qac21ðαmax
31 Þ ¼ −0.125qac11max ð14Þ

for CFOA.
As the dynamic magnetostriction is a function of the

amplitude of the ac field, a similar behavior is expected for
the magnetoelectric effect. Hence, ME measurements on
both bilayer CFOI/PZT and bilayer CFOA/PZT are per-
formed for various Hac values in the interval between 0.8

Applied field Hdc (kA/m)
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FIG. 6. Magnetoelectric coefficient measured for CFOA/PZT at
Hac ∼ 0.8 kA=m and 80 Hz, compared to the calculated coef-
ficient integrating either the measured strain derivative qdc or the
piezomagnetic coefficient qac at 0.8 kA=m.
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to 76.4 kA=m. From these measurements, the maximum
magnetoelectric coefficient reached is retrieved and plotted
(the black open circles) as a function of the excitation field
in Fig. 7. As expected, the magnetoelectric effect depends
on the amplitude of Hac, showing a nonlinear magneto-
electric effect with respect to the ac field.
The ME effect tends to behave as with dynamic

magnetostriction: an enhancement of the effect until reach-
ing an optimum Hac field and then a decrease of the signal.
As with the piezomagnetic effect, the decrease following
the maximum can be explained by the nonlinearity of the
magnetostrictive curve due to the magnetic hysteretic
conduct of the ceramic, leading to an increase of harmonics
with an increasing Hac [57,81–85]. To visualize this effect,
we report in Fig. 8 the total harmonic distortion (THDF)
[86] calculated from the magnetoelectric voltage measured
as a function of the ac field for both bilayers. It appears that

when the excitation field Hac is increased, the THDF
increases. For CFOI/PZT, the ME effect stops increasing
at 38.2 kA=m where the THDF is 7.8%, and for CFOA/
PZT stops increasing at 50.9 kA=m where the THDF is
7.1%. However, the ME coefficient for CFOI/PZT
decreases drastically at 63.7 and 76.4 kA=m, where the
THDF is equal to 19.1% and 27.1%, respectively. On the
other hand, the THDF is still quite low for CFOA/PZT at
76.4 kA=m (about 10%). This low value might be due to
the higher permeability of CFOI compared to CFOA.
Materials with higher permeability require a lower field
to reach the maximum dynamic deformation. Hence, by
applying a strong ac field, the field is high enough to
achieve the nonlinear part of the magnetostrictive curve,
which mainly contributes to the increase of the second
harmonic [85]. This explanation is highlighted in the inset
Fig. 8, which shows the percentage of harmonic distortion
with respect to the fundamental when excited at
76.4 kA=m. The contribution of the second harmonic in
CFOI/PZT is high (approximately 25%), whereas the major
contribution of distortion in CFOA/PZT is from the third
harmonic (about 10%).
Figure 7 also shows that, for the 1.6 to 12.7 kA=m ac

fields, CFOI/PZT has a better magnetoelectric effect than
CFOA/PZT. The bilayer composed of ferrite with higher
permeability is more efficient at low excitation field than
the ferrite with lower permeability. However, for a
25.5 kA=m or higherHac, CFOA/PZT reaches much higher
values than CFOI/PZT. Indeed, the maximum ME coef-
ficient achieved for isotropic CFO is 198 mV=A, while it
reaches 275 mV=A for the anisotropic sample. In diamond
symbols, the calculated maximum magnetoelectric coef-
ficients using the previously measured piezomagnetic
coefficients are plotted (the red open diamonds). For both
samples, good accuracy between the experimental and
calculated data is found, with a low relative error
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FIG. 7. The maximum magnetoelectric coefficient measured αexp31 or calculated αth31 for ME bilayers (a) CFOI/PZT and (b) CFOA/PZT
as a function of the excitation field Hac at low frequency (80 Hz) (the semilog2 plot). The calculated values integrate the measured
piezomagnetic coefficients qac at each exciting field.
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FIG. 8. Total harmonic distortion as a function of the excitation
field for CFOI/PZT and CFOA/PZT (the semilog2 plot). (Inset)
The percentage of harmonics with respect to the fundamental for
a driving field of 76.4 kA=m.
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(<5%). This accuracy proves the relevance of using the
piezomagnetic coefficient instead of quasistatic strain
derivative coefficients to model correctly the ME effect,
and consequently to any dynamic magnetostrictive appli-
cations with cobalt ferrite. It also demonstrates that using
semihard anisotropic cobalt ferrite with high static defor-
mation is not necessarily more efficient than using the soft
isotropic one, mainly because dynamic deformation, i.e.,
the ME effect, needs high permeability to have good
performance for low amplitudes of Hac. However, it seems
that semihard CFO ferrite exhibits much higher linearity in
response to the amplitude of Hac, which could be interest-
ing if used in a magnetic or current environment exhibiting
high-amplitude signals.
In order to evaluate the maximum potential of the

composite CFOA/PZT at optimum alternating field, a
ME trilayer with an optimized PZT/CFO volume ratio is
made. Trilayer composite is known to enhance the
mechanical coupling factor and reduce the demagnetizing
effect, which contributes to enhancing the magnetoelectric
effect [80]. In Fig. 9, the magnetoelectric effect of CFOA/
PZT/CFOA is shown for a low excitation field 0.8 kA=mand
the optimum ac field 38.2 kA=m, at low frequency (80 Hz).
A maximum α31 of 578 mV=A (about 460 mV=cmOe) at
38.2 kA=m is reached, which is 3 times higher than the value
measured at 0.8 kA=m (approximately 193 mV=A). This
result points out that it is worth characterizing semihard
materials at high excitation field to be able to use their
maximumpotential in dynamic applications. This coefficient
could be increased by using a more efficient piezoelectric
materials as leadmagnesiumniobate-lead titanate (PMN-PT)
or lead zirconium niobate-lead titanate (PZN-PT) single
crystals [87]. It could also be enhanced by cosintering both
magnetic and piezoelectric phases instead of bonding them,
hence increasing the mechanical coupling. The cosintering
was recently achieved in bulk CFO=BaTiO3 composites
using SPS [49]. One can also notice the very linear aspect of

the curve between 0 and 75 kA=m, which is a predominant
parameter to produce a precise dc current sensor using the
ME effect [85,88]. This linearity could also be exploited for
energy-harvesting purposewith an extremely low-frequency
and high-ac field [89].

IV. CONCLUSION

In summary, we investigate in this paper the dynamic
magnetostriction of isotropic and anisotropic cobalt ferrite.
The measured piezomagnetic coefficient is found to be
much lower than the quasistatic strain derivative coeffi-
cient. Also, it is shown that piezomagnetic coefficients
depend on the amplitude of the driving ac field and behave
nonlinearly with it. As the isotropic sample has higher
permeability, it exhibits higher dynamic deformation than
the anisotropic sample for a low-ac field, whereas the strain
derivative coefficient is higher for the anisotropic sample.
However, at very high driving field (> 38.2 kA=m), the
anisotropic CFO shows higher dynamic deformation. This
work shows that the strain derivative is not the appropriate
parameter to describe dynamic deformation for semihard
materials such as cobalt ferrite. Our results will be useful to
properly characterize other low-permeability materials such
as TbFe2, DyFe2, SmFe2, and Terfenol-D.
The magnetoelectric effect is also investigated for these

two ceramics, showing a general behavior which can be
correlated with dynamic magnetostriction. The effect is
dependent on the ac field, and good accuracy is found
between predicted and experimental data when piezomag-
netic coefficients are introduced in the ME model instead
of quasistatic strain derivatives. Hence, using an optimized-
geometry ME trilayer allows us to reach a high ME coef-
ficient of 578 mV=A for a high-ac field of 38.2 kA=m at
low frequency (80 Hz). This result points out the limitations
of cobalt ferrite in magnetoelectric applications for a low-ac
field but shows its great potential for applications in a high-
ac field.
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