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Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction
measurements is complicated in practice by nonideal factors such as trapping in defects and injection
barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection
barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit
can be obtained to the entire current density–voltage curve from experimental space-charge-limited current
measurements on both symmetric and asymmetric 2; 20; 7; 70-tetrakis(N;N-di-4-methoxyphenylamine)-
9; 90-spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that
is more than an order of magnitude higher than the effective mobility obtained using analytical
approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that
where these analytical approximations require a temperature-dependent effective mobility to achieve fits,
the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent
mobility. Finally, we present an analytical model describing trap-limited current flow through a
semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility
and trap characteristics from this analytical model to the results from the numerical model, showing
excellent agreement. This work shows the importance of accounting for traps and injection barriers
explicitly when analyzing current density–voltage curves from space-charge-limited current measurements.
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I. INTRODUCTION

In recent years, there has been a great deal of interest in
understanding the charge-carrier transport of weakly doped
or undoped semiconducting thin films based on disordered
molecular materials such as π-conjugated small molecules
and polymers [1–4]. Studying space-charge-limited cur-
rents (SCLCs) in single-carrier devices is an important
means to understand electron and hole transport in such
semiconductors. Although there have been many earlier
reports on the charge-carrier transport of molecular materi-
als using SCLCs, the vast majority of these rely on using
the Mott-Gurney (MG) law [5], which is not necessarily
suitable for the analysis since this law relies on idealized
and trap-free semiconductors in devices with contacts
which are not too injection limiting. In contrast, many

molecular materials contain charge-carrier traps, and sin-
gle-carrier devices usually have some contact asymmetry
due to the relative difficulty of ensuring truly identical and
ideal contacts on both sides of the semiconducting thin film
whose mobility has to be measured.
Analytical equations have been derived to describe

charge transport when either traps [6–8] or a built-in
voltage resulting from contact asymmetry is present
[9,10]. Mark and Helfrich derived an equation describing
SCLCs in the drift-dominated voltage regime when the
charge transport of the semiconductor was limited by
energetic disorder due to the localization of charge carriers
in exponential tails in the band gap [8]. Fischer et al. have,
however, pointed out that this so-called Mark-Helfrich
equation is imprecise in estimating the trap characteristics
since the equation does not take diffusion of charge carriers
into account [11], which may affect the current density in
the Mott-Gurney regime when charge carriers are localized
in exponential tails. For that reason, a good analytical
model describing space-charge-limited charge transport in
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disordered semiconductor devices does not currently exist.
Moreover, no analytical model exists that describes the
common practical situation where both a large built-in
voltage and traps are present. As a result, less suitable
models, such as the MG law, are often used to analyze the
experimental data, despite evidence for both trapping and
built-in voltages. While more sophisticated drift-diffusion
simulations can be used to analyze the experimental data
more accurately, only a small number of publications adopt
that approach [3,12–14].
It is common within the organic semiconductor com-

munity to model the total density of states (DOS) using a
Gaussian distribution (alternative approaches using master
equations have also been used [15,16]). Hopping charge
transport in such a Gaussian DOS leads to a dependence of
the (effective) mobility on the temperature, electric field,
and charge-carrier density that has been parametrized by
Pasveer et al. and subsequently used in a series of papers
describing unipolar transport in organic semiconductors
[17,18]. However, it has previously been shown that
exponential tails (which is a good approximation of a
Gaussian in a limited energy range) or even more complex
shapes of the DOS are sometimes required to describe
certain aspects of the physics of organic semiconductor
devices [3,12–14,19,20]. For instance, molecular dynamics
and tight-binding simulations on P3HT lead to a DOS that
is neither a pure Gaussian nor a pure exponential tail but
rather a combination of both [21]. Thus, there is value in
having models that allow us to change the shape of the DOS
without starting with the process of parametrizing mobility
as a function of the temperature, electric field, and charge-
carrier density as previously done, but rather account for
these effects directly in the drift-diffusion model through
the trap characteristics and interface statistics.
Here, we show how using drift-diffusion simulations

improves the accuracy and physical interpretation of the
determined mobility relative to traditional analytical
approaches. We show that the obtained mobility depends
only on the temperature, electric field, and charge-carrier
density through the trap and injection characteristics. In
addition, we derive a simple analytical description of the
current density, which can be used to determine the trap
characteristics of a symmetric single-carrier device with
high precision when the semiconductor has an exponential
trap distribution by examination of the low-voltage current
regime rather than from the current in the intermediate
Mott-Gurney regime. A small molecule system commonly
used as a hole-selective interlayer for dye-sensitized solar
cells and organometallic perovskite cells, spiro-OMeTAD,
is used for the study. Spiro-OMeTAD is chosen based on
the expectation that its amorphous microstructure is largely
insensitive to the layer thickness allowing for a thickness
series to be performed. It is shown that when hole transport
in spiro-OMeTAD is characterized using either the drift-
diffusion solver approach (including exponential tails) or

by using the analytical model proposed herein, the bandlike
hole mobility is determined to be both temperature, field,
and charge-carrier-density independent and substantially
higher than the effective mobility that has been previously
extracted using the more simple Mott-Gurney law [22].

II. BACKGROUND THEORY

First, we discuss the concept of single-carrier devices,
along with injection barriers and built-in voltages in such
devices, and then we discuss some common analytical
approximations that have been used to analyze SCLC data.

A. Single-carrier devices

When the selected electrodes form contacts both to the
conduction-band edge or both to the valence-band edge of
an intrinsic (or weakly doped) semiconductor, the current-
voltage relation is governed by a single carrier type, with
the charge-carrier species determined by the charge selec-
tivity of the contact [an electron-only device is shown in
Fig. 1(a)]. When a voltage V is applied across such a single-
carrier device, excess charge carriers of the same species as
the ones present at equilibrium are injected, and the current
is space-charge limited [Fig. 1(b)]. For an electron-only
device, if the work functions (WFs) of the contacts are
larger than the electron affinity of the semiconductor,
injection barriers will arise [shown as qϕinj and qϕext in
Fig. 1(a)], and if these values are different (and nonzero),
a built-in voltage will be present across the device
(qVbi ¼ qϕext − qϕinj), which gives rise to large diffusion
currents when V < Vbi [Fig. 1(c)].

B. The Mott-Gurney law

The most commonly used method for fitting data
obtained from single-carrier devices is to use the MG
law. The MG law describes a space-charge-limited drift
current in an idealized single-carrier device made from a
trap-free and undoped semiconductor in the intermediate
voltage regime and in the limit of barrier-free injection
[Fig. 1(b)] [[5,6,23]]. The MG law is given by

J ¼ 9

8
μεrε0

V2

L3
; ð1Þ

where μ is the charge-carrier mobility for either electrons or
holes (μn for electrons and μh for holes), εr is the static
relative permittivity, ε0 is the permittivity of free space, V is
the applied voltage, and L is the thickness of the semi-
conductor layer. However, organic semiconducting materi-
als are rarely trap-free, rendering the simple MG theory
improper for describing charge transport for most realistic
cases. It is, however, still common to assume an effective
mobility μeff in the case where the MG law is used even
though the semiconductor contains traps. This effective
mobility is usually defined as [11,24]
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μeff ¼ μband
hρfreei
hρtotali

; ð2Þ

where μband is the bandlike mobility of the semiconductor
[which is approximately equal toμ inEq. (1) in an ideal case],
hρfreei ¼ L−1 R L

0 ρfreeðxÞdx is the spatial average of the
free charge-carrier density, and hρtotali ¼ L−1 R L

0 ½ρfreeðxÞþ
ρtrappedðxÞ�dx is the total charge-carrier density across the
thickness of the semiconductor. Since the effective mobility
in Eq. (2) is defined from the ratio of the free to total charge-
carrier density, the effective mobility is usually electric field
and temperature dependent. However, the band mobility is
not inherently dependent on either of these quantities [19].
Note that this definition of the effective mobility does not
account for nonideal injection.

C. The Mark-Helfrich equation

One of the few analytical equations which describes
SCLC charge transport in a semiconductor with traps,
assumed to be distributed as exponential tails of states in
the DOS, is called the Mark-Helfrich equation [6,8]. For an
electron-only device, it is given by

J ¼ q1−lμnNeff

�
εrε0l

Ntðlþ 1Þ
�

l
�
2lþ 1

lþ 1

�
lþ1 Vlþ1

L2lþ1
; ð3Þ

where q is the elementary charge, l ¼ Ech/kBT, with Ech
being the characteristic energy of the exponential tail [see
Fig. 1(d) and the Supplemental Material [25] Eqs. (S30) and
(S31)], Neff is the effective density of states, Nt is the trap
density (per unit volume), and kBT is the thermal energy.
Equation (3) predicts that exponential tail states in the band
gap give rise to a stronger power-law dependence of voltage
on current than expected from the MG law in the inter-
mediate-voltage regime. However, it was recently shown that
this equation is not accurate since it fails to account for
diffusion currents, which can make a significant contribution
to the total current, especially when traps are present [11].

D. Built-in voltages

In addition to assuming the semiconductor to be trap-
free, the MG law also assumes that there are negligible
energy barriers for both injection (qϕinj) and extraction
(qϕext) from the metal contact into the semiconductor. This
criterion can, however, rarely be met in real experimental
cases, and a finite injection barrier can have a significant
influence on the probed charge-transport behavior. With
qϕinj;ext ¼ 0 eV being assumed, the MG law, therefore,
also implicitly requires that there exists no built-in voltage
Vbi across the device arising from a difference in the WFs,
and, hence, the injection barrier heights Vbi ¼ qϕext − qϕinj

[Fig. 1(c)] [5], a feature which is often difficult to achieve

(a)

(c) (d)

(b)Symmetric

Drift Flow 

Asymmetric

Symmetric

Localized states
BI

FIG. 1. Schematic of the energy-level diagrams of (a) symmetric electron-only device at thermodynamic equilibrium, where qφinj and
qφext represent the injection and extraction barrier heights, respectively, EC and EV are the conduction- and valence-band edge,
respectively, EF is the Fermi level of the semiconductor at thermal equilibrium, and F is the electric field. (b) Symmetric electron-only
device with enough applied voltage to assume drift-dominant transport (Mott-Gurney regime). (c) Asymmetric electron-only device at
equilibrium showing the energy barrier arising from a built-in voltage qVbi ¼ qφext − qφinj. (d) Sketch of the total DOS including
exponential tail states (the depth of the tails are given by their respective characteristic energies). Electron transport is shown for
simplicity (hole transport is completely analogous). In (b) and (c), forward injection of electrons from the left-hand side is assumed.
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from a practical device fabrication perspective. The limited
choice of contact materials available to match very deep
(> ∼ 6 eV below the vacuum level) or very shallow
(< ∼ 2 eV below the vacuum level) transport levels often
results in contacts with poor injection properties. A
common hole-selective material for organic optoelectronic
devices is the conductive polymer blend, poly(3,4-ethyl-
enedioxythiophene) polystyrene sulfonate (PEDOT:PSS).
The literature values for the WF of this conductive polymer
range between 4.8 and 5.2 eV [26,27]. With many semi-
conducting polymers and small molecules having their
highest occupied molecular orbital (HOMO) levels lying
much deeper than 5.2 eV below the vacuum level, this
interlayer material will not form a perfectly injecting
contact with such materials. Another popular hole-selective
material is MoO3, with literature values for the WF ranging
between 6 and 6.9 eV [28,29]. Sandwiching a deep HOMO
(>6 eV below the vacuum level) material between these
two contact materials, for example, will allow for Ohmic
injection from MoO3 into the HOMO level, whereas the
PEDOT:PSS will form an injection-limited contact, while
at the same time resulting in the formation of a Vbi across
the device due to the difference in the contact WFs
[Fig. 1(c)]. Because of lack of contact materials, it is
common to measure SCLCs on asymmetric single-carrier
devices, since such devices are more realistic to fabricate
than symmetric single-carrier devices [Fig. 1(c)]. However,
this Vbi will greatly affect the current density–voltage (J-V)
curves at low and intermediate bias voltages until the
internal voltage is overcome [9,10].
In order to correct for the built-in voltage, an effective

applied voltage Veff ¼ V-Vbi, where the Vbi is used as a
fitting parameter in the MG law (or other analytical
equations of variant types, such as the MH equation or
the Murgatroyd equation [30]), is commonly used [31,32].
This indirect approach is, however, rather uncertain, since
the band diagram at V ¼ 0 V for a symmetric device and
V ¼ Vbi for an asymmetric device are not necessarily
similar. At a significant applied bias such that the built-in
voltage is overcome, and if, hypothetically, the value of Vbi
is exactly known, then using this effective voltage approach
is a good approximation. The Vbi is, however, rarely known
precisely in advance, and it is sometimes estimated by
shifting the voltage axis to a regime where J varies with V2,
which can eventually lead to misinterpretation of carrier
mobility values, especially when traps are present.
Analytical drift-diffusion equations have been derived to

account for built-in voltages directly in intrinsic single-
carrier devices at low voltages directly, such as [9,10]

J ¼
qμNeffðϕext − ϕinj − b − VÞfexpð qVkBTÞ − 1g

L expðqϕinj

kBT
Þ expð qb

kBT
Þfexpðqϕext−qϕinj−qb

kBT
Þ − expð qVkBTÞg

;

ð4Þ

where b is the voltage reduction due to band bending at the
injecting interface [the derivation of Eq. (4) is shown in the
Supplemental Material [25] and in Ref. [10] ]. Assuming
the Vbi is large enough so that band bending at the interface
is negligible b ¼ 0 and the injection barrier height at the
injection point is zero qϕinj ¼ 0 eV, Eq. (4) is reduced to a
simpler form

J ¼
qμNeffðVbi − VÞfexpð qVkBT

Þ − 1g
LfexpðqVbi

kBT
Þ − expð qVkBTÞg

; ð5Þ

which is a useful equation for determining the built-in
voltage of a single-carrier device [9]. Equation (5) describes
the current density of an asymmetric intrinsic semiconduc-
tor device for all V < Vbi. However, it cannot describe the
situation where traps are present. Even though analytical
models exist to describe both a built-in voltage and traps
separately, no analytical model exists to describe the
common practical situation featuring both traps and a large
built-in voltage.

E. Low-voltage regime

The final set of analytical models presented here applies
to the low-voltage regime (from a symmetric single-carrier
device), where, in practice, a linear dependence of J on V is
often observed. It has previously been shown that linear
currents observed in SCLC J-V curves are due to one of, or
a combination of, the following effects: flow of equilibrium
charge carriers at low voltages in symmetric single-carrier
devices (the moving-electrode equation) [33–35], a large
increase of the charge-carrier density away from the
equilibrium value due to doping [35,36], or bulk saturation
of charge carriers inside the device either at high bias or
with large injection barriers [37].
In the absence of traps, doping, and a built-in voltage, the

current density at low voltages is given by the moving-
electrode (ME) equation [33,34,38–40],

J ¼ 4π2
kBT
q

μεrε0
V
L3

: ð6Þ

Linear currents can, however, also arise at low voltages
in single-carrier devices through shunts due to low-
resistance pathways through the semiconducting film.
This linear current density is given by Ohm’s law as

J ¼ ðRPÞ−1V/L; ð7Þ
where RP is the shunt resistivity or parallel resistivity (in
units of Ω cm2). Shunt currents are especially relevant for
asymmetric devices with a large Vbi since the current
density at low voltages is greatly reduced in these devices
(as is obvious later in this study).
In principle, the total current density of an asymmetric

single-carrier device can be calculated by using a
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combination of Eqs. (1) (with the V-Vbi correction), (4), and
(7) if the semiconductor in the device is intrinsic [a
symmetric device can likewise, in principle, be calculated
using a combination of Eqs. (1) and (6)]. However, this
description of the current density does not account for the
presence of traps, which have—on numerous occasions—
been shown to be present in organic semiconductors [14,41].

III. ANALYTICAL RESULTS

Reference [40] has shown that the spatial distribution of
the equilibrium charge-carrier density of an intrinsic and
trap-free single-carrier device n can be described, to a very
good approximation, by

n ¼ 2π2εrε0kBT
q2L2

�
cos2

�
π

�
x
L
− 1

2

���−1
; ð8Þ

where x is the distance from the injecting contact. As we
show, Eq. (8) precisely describes the charge-carrier density in
the middle of the device x ¼ L/2 but produces unphysical

singularities at the contacts x ¼ 0 and x ¼ L, as seen in
Fig. 2(a). By taking x ¼ L/2, the equilibrium charge-carrier
density in the middle of the device is given by

n0 ¼
2π2εrε0kBT

q2L2
: ð9Þ

AcomparisonofEq. (9)with numerically calculated values
of the electron density is shown in Fig. 2(b) (solid lines).
The arithmetic mean of Eq. (8) hni ¼ L−1 R L

0 ndx cannot
be calculated since the integral does not converge.
However, n−1 can be integrated, and, thus, the harmonic
mean of the charge-carrier density can be written as

hnanai ¼
1

1
L

R
L
0 ðnÞ−1dx : ð10Þ

This yields

hnanai ¼
4π2εrε0kBT

q2L2
; ð11Þ

(a)

(c) (d)

(b)

Trap-free

Localized states

Eq. (15)
Numerical calc.

Eq. (8)

FIG. 2. (a) Electron density as a function of the spatial position of a trap-free device and a device with localized states in the form of
exponential tail trap states in comparison with Eq. (8). (b) Average electron densities n of the numerical calculation (red dashed line) and
the analytical approximation Eq. (11) (green dashed line) and electron density in the middle of the device n0 from the numerical
calculation (solid red line) and from Eq. (9) (solid green line). (c) Schematic of the description of the localized states in the band gap. In
this case, T ¼ 0 K is assumed for the representation of the occupied density of states. (d) Electron density in the middle of the device
calculated using Eq. (15) (solid lines) and from numerical calculations (dashed lines) when traps are included for three values of Ech as
indicated, 0.04, 0.06, and 0.08 eV.

CHARGE TRANSPORT IN SPIRO-OMETAD INVESTIGATED … PHYS. REV. APPLIED 9, 044017 (2018)

044017-5



which is, of course, just 2n0. Upon insertion of this charge-
carrier density into the drift-current equation J ¼ qμnhniana
ðV/LÞ, we obtain the ME equation (6). The ME equation is
a very good approximation of the current density in an
intrinsic single-carrier device at low voltages. Equation (9)
is a very good approximation of the charge-carrier density
in the middle of the device at low applied voltages, since
the overall shape and magnitude of the charge-carrier-
density profile does not change significantly between 0 and
0.1 V [see Fig. 2(a)].
It is important to note that the harmonic mean of the

charge-carrier density hniana does not give the same value
of the arithmetic mean of the charge-carrier density of a
device calculated using a numerical approach hninum, since
the device boundaries are not correctly described in the
analytical approximation [since the charge-carrier density
at the boundary is set by the effective density of states in the
numerical calculations and blows up to infinity in Eq. (8)].
For this reason, the ME equation cannot be directly used to
determine the charge-carrier density of the entire device but
only in the middle of the device [35]. Figure 2(b) shows that
hninum > hniana, in general, for an intrinsic and trap-free
device.
We now proceed to derive a formula for the current-

voltage response of a single-carrier device in the low-
voltage regime in the presence of traps. The following
derivation follows from the assumptions of trapped and free
charge-carrier-density statistics in exponential tails given
by Mark and Helfrich [8]. For simplicity, the derivation is
given for the case of electron transport. The derivation in
the case of hole transport is completely analogous.
The density of localized states in the band gap (electron

traps) per unit volume and energy interval h far away from
the device contacts, i.e., in the middle of the device
(x ¼ L/2), is described by

h ¼ nt exp

�
E
Ech

�
; ð12Þ

where nt ¼ Nt/Ech is the trap density per unit energy right
below the conduction-band edge, and E is the energy
measured below the conduction-band edge [note that the
conduction-band edge is set to zero Ec ¼ 0, and the energy
increases upwards in energy, as shown in Fig. 2(c)]. Given
that Nt is much larger than the total amount of charge
carriers at absolute zero n0 (T ¼ 0 K), it is safe to assume
that approximately all of these charge carriers will be
trapped and will fill the exponential tail states up to a quasi-
Fermi-level, EF;t. Within this assumption, we can write

n0 ¼
ZEF;t

−∞

Nt

Ech
exp

�
E
Ech

�
dE ¼ Nt exp

�
EF;t

Ech

�
: ð13Þ

As the temperature is increased (T > 0 K), some charge
carriers will escape the traps and will be free to conduct.

Given that the Fermi level governing free charge carriers is
more than a few kBT away from the conduction-band edge,
we can describe the free charge-carrier density using
Boltzmann statistics (again implying Ec ¼ 0),

nfree ¼ NC exp

�
EF

kBT

�
; ð14Þ

where NC is the effective density of electron states at the
conduction band. Assuming that EF ¼ EF;t, which is a fair
assumption given that Ech > kBT, we can combine the
above two expressions and describe the free charge-carrier
density in terms of the total charge-carrier density as

nfree ¼ NCN−l
t nl0; ð15Þ

where l ¼ Ech/kBT. Figure 2(d) shows a comparison of
Eq. (15) with the numerical calculations of the charge-
carrier density as the characteristic energy is varied from
0.04 to 0.08 eV (with a fixed NC and Nt). Since the current
is governed only by the free charge-carrier density, we can
now describe the drift current as

J ¼ qμnnfree
V
L
¼ qμnNCfN−l

t nl0g
V
L
: ð16Þ

Since we are concerned only about the trap density far
away from the contacts, we can describe the total charge-
carrier density by Eq. (9). We then obtain

J ¼ q1−2lμnNC

�
4π2εrε0kBT

Nt

�
l V
L2lþ1

; ð17Þ

which describes the current density at low applied voltages
when some charge carriers are trapped in exponential tails.
Note that in this case, we do not need to introduce the concept
of an effective mobility since the reduction of free charge
carriers is included implicitly through nfree ¼ NCN−l

t nl0. μn
is, for that reason, a bandlikemobility. Equation (17) reduces
to Eq. (6) in the trap-free limit. The accuracy of estimating
trap densities and energies using Eq. (17) in the low-voltage
regime is compared to the accuracy of estimating traps with
the MH equation in the intermediate-voltage regime in the
Supplemental Material [25]. It is shown that Eq. (17) is more
precise in describing charge transport in a semiconductor
containing traps (in the investigated parameter space), and it
can estimate the characteristic energy and trap density more
accurately. The reason why Eq. (17) works especially well is
due to the fact that the free charge-carrier density is verywell
described in the middle of the device using the surprisingly
simple trap statistics [see Figs. 2(a) and 2(b)] and the fact that
this middle region of the device dominates the ME current.

IV. EXPERIMENTAL RESULTS

In order to make a comparative evaluation of the
different analytical approaches and the numerical drift-
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diffusion simulation, we prepare and measure a set of hole-
only devices based on the small molecule semiconductor
spiro-OMeTAD [Fig. 3(a)]. We fabricate both symmetric
and asymmetric hole-only devices in order to test the
theoretical models over a wide voltage range of J-V data for
the different device types. All devices are fabricated using a
similar front contact consisting of a thin layer of PEDOT:
PSS (approximately 30 nm) spin cast on top of a predefined
tin-doped indium-oxide- (ITO) covered glass slide. The
ITO is cleaned by ultrasonication in acetone and isopro-
panol for 10 min, respectively, prior to PEDOT:PSS
deposition. Thin films of spiro-OMeTAD of varying
thicknesses are spin cast from chlorobenzene onto the
ITO/PEDOT:PSS contacts under atmospheric conditions.
For the asymmetric devices, a back contact consisting
of a thick layer of aluminum (150 nm) is evaporated under
high vacuum (of approximately 10−6 mbar). For the
symmetric devices, a thin layer of MoO3 (30 nm) followed
by a thick layer of Al (150 nm) is used as a back contact.
Two types of steady-state J-V experiments are performed:
at room temperature and at varying temperature using a
cryostat. The current of the samples is recorded using a
Keithley SMU 236 in a nitrogen atmosphere for the room-
temperature measurements and in a helium atmosphere for
the cryostat-based temperature-dependent measurements.
The structures of the studied single-carrier devices are
depicted in Fig. 3(b).
Based on the values for the contact WFs shown in

Fig. 3(b), one can expect that the Vbi of the so-called
symmetric spiro-OMeTAD device is around 1 V, actually
rendering the device asymmetric. However, Fermi-level
pinning between a metal contact and an organic compound
whose HOMO level is shallower than the contact WF will
shift this contact WF to match the HOMO level (upon
thermodynamic equilibration), rendering both effective WFs
to be equal to the HOMO level and the built-in voltage,

therefore, to be zero. Again, assuming Fermi-level pinning,
the built-in voltage is estimated to be approximately 0.9 V
for the asymmetric device (using a WF value for PEDOT:
PSS of 5.2 eV). However, interfacial states (potentially
bearing considerable dipole moments) between the contacts
and the organic material, and the reactive nature of alumi-
num under ambient atmosphere, might give rise to deviations
from these estimated Vbi values.
Figure 4(a) shows the experimental J-V curves of a

symmetric 200-nm hole-only device and an asymmetric
230-nm device. In contrast to the nonrectifying behavior
observed for the current density between the forward and
reverse bias in the symmetric device, a significant rectify-
ing behavior is present for the asymmetric device. Since a
large asymmetry between the forward- and reverse-bias
current is observed, a built-in voltage is present, and the
current at low voltage must be given by Eq. (4) [or Eq. (5)
given the current is not limited by injection]. The local
slope of the J-V curve on a log-log scale can be given by

m ¼ d log J
d logV

; ð18Þ

such that J ∝ VmðVÞ. It is seen from the slopes of the J-V
curves on a log-log scale in Fig. 4(b) that the forward-bias
current for the asymmetric device goes from a linear
dependence at low voltages (m ¼ 1), to a large peak at
intermediate voltages (m ≅ 30), and eventually approaches
values (m ≅ 3.7) which are larger than what is expected
from trap-free behavior (m ¼ 2) at high voltages [7]. Also,
the reverse-bias current is seen to be linear with the voltage
over the whole regime for the asymmetric device. From the
observation of the linear regime in both the forward- and
reverse-bias regime of the symmetric device, it is clear that
the low-voltage current cannot be explained by Eq. (4)

(a) (b)

FIG. 3. (a) Molecular structure of spiro-OMeTAD. (b) Symmetric and asymmetric hole-only devices employingMoO3/Al and Al back
contacts, respectively (energy levels are taken from the literature). The WFs of MoO3 and PEDOT-PSS will shift to match the HOMO of
the organic compound through Fermi-level pinning, resulting in estimated built-in voltages of 0 and 0.9 V, respectively, for the two
devices. The energy levels are all given relative to the vacuum level.
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alone (Supplemental Material [25] Fig. S1). However, the
current can be modeled as a combination of diffusion
currents due to a large Vbi and a shunt current [Eq. (7)].
That the current must include a shunt term at low voltages
can also be seen from the very sharp onset to the large peak
at forward bias (Supplemental Material [25] Fig. S2) along
with the large overlap between the forward- and reverse-
bias current at low voltages. Based on this reasoning,
the linear currents at very low voltages can be described in
both forward and reverse bias using Eq. (7) (dashed lines),
and a value for the shunt resistivity of RP ¼ 18 MΩ cm2

can be extracted. The deviation of the power-law depend-
ence of the J-V curves away from m ¼ 2 at high voltages
[Fig. 4(b)] gives evidence that the charge transport is
governed by traps [6,8], as traps in the form of exponential
tail states give rise to an increase in the slope away from 2
[Eq. (3) and Supplemental Material [25] Fig. S1].
Since it is quite evident from the slope at high voltages

that a proper charge-transport analysis cannot be achieved
using the simple MG theory, we carry out numerical fitting
using a drift-diffusion solver (see the Supplemental
Material for details [25]). To reduce the uncertainty in

fitting parameters, especially regarding trap states, we
analyze J-V data as a function of both the temperature
and semiconductor thickness. Figure 4(c) shows the series
from a 190-nm spiro-OMeTAD symmetric hole-only
device at temperatures varying from 200 to 300 K along
with linear fits with the ME equation or Eq. (17) (dashed
lines) and fits with the MG law (solid lines). m-V curves of
the J-V curves in Fig. 4(c) are shown in Fig. 4(d). The linear
regime and the apparent Mott-Gurney regime are shown as
dashed lines (the linear equations are fitted in the low-
voltage regime, and the MG law is fitted at the point where
m ¼ 2). If a fit with the MG law is performed in the trap-
influenced regime, as is sometimes seen in the literature, the
values for the effective charge-carrier mobilities between
ð1–3Þ×10−4 cm2/Vs for the symmetric devices are obtained
(at room temperature). These values are similar to what has
been presented in the past using SCLCs [22] [a fit to the
asymmetric data shown in Fig. 4(a) gave a mobility with a
comparable value of 1.1 × 10−4 cm2/Vs]. The results of the
ME and MG fits as a function of the temperature are shown
in Fig. 6(a).
Figure 5(a) shows the fits from the drift-diffusion

simulations to both the forward- and reverse-bias

(a)

(c) (d)

(b)

Forward

Reverse

Reverse

Forward

Linear fits Linear regime

×

p

FIG. 4. (a) Forward- and reverse-bias J-V curves obtained from SCLC measurements of symmetric (gray circles) and asymmetric spiro-
OMeTAD hole-only devices (orange and red circles) of 200 and 230 nm, respectively. Since the forward- and reverse-bias curves overlap for
the symmetric device, only the forward-bias curve is shown.Mott-Gurney law forced “fits” andOhm’s law fits are shown as solid and dashed
lines, respectively. (b) Plots ofm ¼ ðd log JÞ/ðd logVÞ of the asymmetric data in (a) against the voltage. (c) J-V curves of symmetric spiro-
OMeTADdevices at temperatures varying from200 to 300K in steps of 20K, showing fittingwith theMott-Gurney law [Eq. (1), solid lines]
and either themoving-electrode equation [Eq. (6), dashed lines] or Eq. (17). (d)m-V curves of the J-V curves shown in (c). The high-voltage
slope values approach a value larger than 2 in both (a) and (c).
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asymmetric device data. Figure 5(b) shows the fits to the
forward-bias current of the symmetric device (the for-
ward- and reverse-bias currents overlap). Since the shunt
resistivity is determined from a fit with Ohm’s
law [Fig. 4(a)], this value can be used as input for the
drift-diffusion fit along with the measured device thick-
ness. The field-, temperature-, and charge-carrier-density-
independent hole bandlike mobility μh, characteristic tail
energy Ech, tail state density nt, and injection and
extraction barrier heights qϕinj and qϕext are allowed to
vary during the fitting process for both the symmetric and
asymmetric device data. Figure 5(c) shows the fits using

the drift-diffusion model to the temperature series with the
inclusion of exponential tails and injection barriers as
those obtained in Fig. 5(b). (The fitting results along with
additional fits performed on 115- and 290-nm devices are
shown in the Supplemental Material [25] Figs. S3–S5.
These results are consistent with the results shown in
Fig. 5. A deviation from the trend is observed for the
115-nm device at low temperature, which is assigned to be
due to the experimental conditions.] Note that the param-
eters obtained from this fitting vary slightly with the
temperature. The relative insensitivity of the parameters
to the temperature indicate that the underlying transport
model is valid. However, a moderately good set of fits to the
SCLC J-V data can be obtained by making the fit with the
constraint that all parameters are completely temperature
independent, as shown in the Supplemental Material [25]
Figs. S6(b)–S6(d). Whereas the values for the trap charac-
teristics and barrier heights affect the slope of the J-V
curves, since no recombination occurs and themeasurement
is performed under steady-state conditions, μh affects only
the magnitude of the current density, meaning that them-V
curves can be fitted prior to the J-V curves.

V. DISCUSSION

The Vbi for the symmetric device [Fig. 5(b)] is found
to be zero, as expected, with barrier heights for both
injection and extraction of 0.11 eV. The Vbi for the
asymmetric device [Fig. 5(a)] is determined to be
1.78 V with an injection barrier height of 0.11 eV. The
determined Vbi for the asymmetric device is, therefore,
0.88 V higher than the value expected from the nominal
energy-level offset [Fig. 2(b)]. This is likely due to
oxidation of the aluminum contact forming a thin alumi-
num oxide layer at the contact-semiconductor interface
[42]. An underestimation of the Vbi using Eq. (5) is
observed [Supplemental Material [25] Figs. S7(b) and
S7(c)], since this equation does not account for both traps
and injection barrier heights.
Both the symmetric and asymmetric devices show evi-

dence of shallow exponential tails (Ech ≅ 0.045 eV)
obtained from the drift-diffusion simulations, with trap
densities extending from the band edges of 4.49 × 1019

and 7.02 × 1019 cm−3 eV−1 for the asymmetric and sym-
metric device, respectively. The MH equation (3) gives a
much higher estimate of Ech (J ∝ Vlþ1 with l ¼ Ech/kBT)
[11] of 0.070 eV if fit to the asymmetric device data shown
in Fig. 5(a). Note that using the MH equation to the
temperature-dependent data yields a value for the character-
istic energy, which decreases with increased temperature
[Fig. 4(d)] since the slope decreases. A temperature-
dependent characteristic energy is, however, not observed
when we analyze the data using the numerical model
[Supplemental Material [25] Figs. S3(c), S4(c), and S5(c)].
For the devices in Fig. 4(a), the hole bandlike mobility μh

is determined to be 3.22 × 10−3 and 4.56×10−3cm2V−1s−1

(a)

(b)

(c)

Forward

Reverse

×

bi

bi

inj, ext

inj, ext

inj

FIG. 5. Numerical fits to SCLC data. (a) Forward- and reverse-
bias current of an asymmetric device, (b) forward-bias current of a
symmetric device (the forward- and reverse-bias currents overlap),
and (c) forward-bias current of a symmetric device at varying
temperatures. Results of the fits in (a) and (b) are shown in the
graphs. An injection barrier of 0.11 eV and an exponential tail of
trap states are required to consistently fit to the temperature series.
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for the asymmetric and symmetric devices, respectively,
which is orders of magnitude higher than the effective
mobility obtained from the MG evaluation [Fig. 6(a)] and
an order of magnitude higher than the effective hole

mobility reported in the past from SCLC characterization
of spiro-OMeTAD [22].
Figure 6(a) compares the hole mobility values obtained

from fits with the numerical model to the data [Fig. 5(c)] to
mobilities obtained by fitting Eq. (1) or (6) [Fig. 4(c)].
The obtained trap characteristics from the numerical fits
are shown in the Supplemental Material [25] Figs. S3–S5.
Where a temperature-dependent mobility is obtained
using analytical fits with Eqs. (1) and (6), a temperature-
independent bandlike mobility is obtained using numerical
fits with the inclusion of traps and the inclusion of injection
limitation at the device interfaces. From the numerical
model, the obtained charge-carrier mobility at room tem-
perature (300 K) is found to be more than an order of
magnitude higher than the effective mobility and more than
4 orders of magnitude higher at 200 K. While the mobility
returned by the numerical model is a bandlike mobility, the
mobility returned by the analytical equations represents the
bandlike mobility weighted by the effects of trapping and
poor charge injection, i.e., an effective mobility. The temper-
ature dependence of the charge transport then originates from
injection limitation along with detrapping being a thermally
activated process that becomes more difficult at lower
temperatures andnot froma temperature-dependent bandlike
mobility.
Figure 6(b) compares the temperature-independent band-

like mobility with the mobility obtained from Eq. (17) and
the effective mobility extracted from fitting with the MG
law (modified by the ratio of the arithmetic means of the
total to free charge carriers obtained from the drift-diffusion
simulations, μMGhntotali/hnfreei). Note that the MG law
modification is only possible by simulating the densities
of free and trapped holes in the device. Thus, this
modification is not available if a purely analytical approach
is used. The ratio hntotali/hnfreei is evaluated at the same
applied voltage as the Mott-Gurney law (the voltage at
whichm ¼ 2) (see the Supplemental Material [25] Fig. S8).
Good agreement is found between the mobility obtained
from Eq. (17) and the mobility obtained from the numerical
fits when the average value for the characteristic energy
and trap density from the simulations averaged over all
thicknesses and temperatures is used in Eq. (17) (nt¼1.31×
1020cm−3eV−1 and Ech ¼ 0.044 eV, respectively). Similar
to fitting with the MH equation, in order to use Eq. (17) for
determining the mobility and trap characteristics, without
any prior knowledge of either the mobility or trap charac-
teristics, a thickness and temperature series should be
analyzed to reach a convergence of the parameters as
shown in Fig. 6(b). However, the much-improved accuracy
of determining the bandlike mobility Ech and nt using
Eq. (17) compared to the MH equation is shown in the
Supplemental Material [25] Fig. S9. Contrary to the good
agreement between Eq. (17) and the numerical calculations,
the overall magnitude of the effective mobility from the
modified MG law is seen to approach only the bandlike
mobility at 300 K.

(a)

(b)

(c)

Eq. (17)

FIG. 6. (a) Resulting mobility values using various techniques
[red for numerical fitting, blue for the Mott-Gurney law fitting
Eq. (1), and green for the moving-electrode equation fitting
Eq. (6)]. The set of various symbols refers to values inferred from
devices with different semiconducting layer thicknesses: 290 nm
(squares), 190 nm (circles) and 115 nm (triangles), respectively.
(b) Comparison of the bandlike mobility with the effective
mobility from the MG law modified by the ratio of total to free
charge carriers [Supplemental Material [25] Figs. S7(a) and S7
(b)], and with the value estimated using Eq. (17). (c) Comparison
of the bandlike mobility with the MG mobility modified for both
traps and injection limitation at the metal-semiconductor inter-
faces. If the MG mobility is used to fit the entire voltage range for
the 190-nm device, an apparent field dependence is observed, as
shown in the Supplemental Material [25] Fig. S7(d).
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Figure 6(c) compares the bandlike mobility with the
effective mobility now corrected for both trapping and
a term for injection limitation μMGhntotali/hnfreei exp
ðqϕinj/kBTÞ. Interestingly, the temperature independence
of this effective charge-carrier mobility is now comparable
to that of the bandlike mobility, however, with the overall
magnitude being an order of magnitude too high.
From the above discussion, it is evident that a proper

(non-ad-hoc) inclusion of traps is important to correctly
extract trap characteristics, such as the application of
Eq. (17) or the numerical approach. Furthermore, proper
inclusion of traps and injection limitation is crucial for
fitting to the entire voltage range, i.e., for the correct
determination of the bandlike charge-carrier mobility using
a numerical drift-diffusion simulator, since the probed
current-voltage behavior is affected by these effects at
higher voltages simultaneously in a nontrivial manner.

VI. CONCLUSIONS

By allowing the charge-carrier mobility, trap character-
istics, injection barrier heights, and the shunt resistivity to
vary, we show that a numerical fit can be obtained to the
entire J-V curve measured from both symmetric and
asymmetric single-carrier devices made from an organic
semiconductor (spiro-OMeTAD). The obtained charge-
carrier mobilities and trap densities for both the symmetric
and the asymmetric devices agree within a factor of less
than 2 across several device thicknesses and over a large
range of temperatures. Moreover, the hole bandlike mobil-
ity obtained from numerical fitting is more than an order
of magnitude higher (4.56 × 10−3 cm2 V−1 s−1) than the
effective hole mobility determined using the Mott-Gurney
law (2.30 × 10−4 cm2V−1 s−1) at room temperature (300K)
and more than 4 orders of magnitude at 200 K. We further
show that while simple analytical equations require a
temperature-dependent mobility to achieve fits to the exper-
imental data, the use of either an analytical model that
accounts for traps—such as the analyticalmodel presented in
this paper—or a numerical model give rise to a temperature-
independent bandlike mobility while simultaneously yield-
ing information about trap characteristics and injection
statistics. Our analysis and results highlight the importance
of either showing and using a numerical model to fit to the
entire J-V curve while accounting for traps, the built-in
voltage, and injection limitation, or to use a more sophisti-
cated analytical model which can correctly account for traps,
such as the model presented herein.
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