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An optoelectromechanical system formed by a nanomembrane capacitively coupled to an LC resonator
and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf
signals [T. Bagci et al., Nature (London) 507, 81 (2013)]. We propose and experimentally demonstrate how
the bandwidth of such a transducer can be increased by controlling the interference between two
electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle

device operating at room temperature, we achieve a sensitivity of 300 nV=
ffiffiffiffiffiffi
Hz

p
over a bandwidth of

15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of

10 nV=
ffiffiffiffiffiffi
Hz

p
over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device,

showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth
significantly larger than that for a single-mode one.
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I. INTRODUCTION

Optomechanical and electromechanical systems have
recently experienced impressive development [1], and they
have entered a quantum regime of late in which quantum
states of nanogram-size mechanical resonators and/or
electromagnetic fields have been generated andmanipulated
[2–10]. They have also been suggested for—and are already
employed in—testing fundamental theories [11,12], and for
quantum-limited sensing [13,14]. Furthermore, nanome-
chanical resonators can be simultaneously coupled to a large
variety of different degrees of freedom, and they can therefore
transduce signals at disparate frequencieswith high efficiency
[15–20], in either the classical or the quantum domain.
Reversible transduction between optical and radio-

frequency–microwave (rf-MW) signals is currently
particularly relevant, both in classical and quantum com-
munication systems, and promising demonstrations with
classical signals were recently conducted [21–23].
Specifically, the conversion of rf-MW signals into optical
ones can be exploited for the highly sensitive detection of
weak rf-MW signals by taking advantage of the fact that
the homodyne detection of laser light can be quantum-noise
limited with near-unit quantum efficiency. This transducer
could help us to avoid many of the noise sources present for
low-frequency signals and could be useful, for example, in

radio astronomy, medical imaging, navigation, and classical
and quantum communication.
Bagci et al. [21] reported a first important demonstration

of this idea with an optical interferometric detection of
rf signals with 800 pV=

ffiffiffiffiffiffi
Hz

p
sensitivity, which could be

improved to 5 pV=
ffiffiffiffiffiffi
Hz

p
in the limit of strong electro-

mechanical coupling. In this device, weak rf signals drive
an LC resonator quasiresonantly interacting with a nano-
mechanical transducer, whose motion induces an optical
phase shift which is then detected with quantum-limited
sensitivity. An application of an optoelectromechanical
transducer for nuclear-magnetic-resonance detection was
recently demonstrated [24].
In Ref. [21], the detection bandwidth depends upon the

LC bandwidth and the electromechanical coupling [17,21],
and it is an important figure of merit in such transducers
[25]. Finding systematic ways of increasing the detection
bandwidth is of fundamental importance in many of
the abovementioned applications: for example, more
radio-astronomical sources could be detected, while, in
communication networks, rf signals could be detected and
processed more quickly.
Here, we show with a proof-of-principle experiment

that a viable way to increase the bandwidth of optoelec-
tromechanical transducers is to couple the LC circuit
simultaneously to two (or more) mechanical modes with
nearby frequencies, and to suitably engineer the two
electromechanical couplings in order to realize constructive
interference between the two rf-to-optical signal transduc-
tions mediated by each mechanical mode [see Fig. 1(a)].
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Multimode optomechanical [26] and electromechanical
[27–29] systems have recently been studied and utilized in
a quantum regime, but here we exploit them with the aim of
improving bandwidth and sensitivity of an optoelectro-
mechanical transducer. The mechanical transducer is a
(1 × 1)-mm SiN membrane of 50 nm thickness, coated

with a 27-nm Nb film with a central circular hole (Norcada;
see the inset of Fig. 1), capacitively coupled through Cu
electrodes to an LC resonator and operated at room
temperature. The mechanical modes exploited are the split
doublet (1,2) and (2,1) revealed by optical homodyne
detection. The achieved sensitivity of the two-mode trans-
ducer is 300 nV=

ffiffiffiffiffiffi
Hz

p
over a bandwidth of 15 kHz in the

presence of rf noise, and the optimal shot-noise-limited
sensitivity is 10 nV=

ffiffiffiffiffiffi
Hz

p
over a bandwidth of 5 kHz. The

sensitivities are obtained in the case of electromechanical
couplings for two modes equal to G1 ¼ 118.41 Vm−1 and
G2 ¼ −115.31 Vm−1. However, as we show in Sec. II, the
method is general and could be exploited to reach larger
bandwidths at a sensitivity comparable to that of single-
mode transducers [21].
This paper is organized as follows. In Sec. II, we

introduce the multimode transducer theoretical framework.
In Sec. III, we show and discuss the experimental result
showing the performance of our device, and we also see
how one can improve the design so that a two-mode
transducer can achieve a larger bandwidth at the same
sensitivity as a single-mode electromechanical transducer.
Concluding remarks are provided in Sec. IV.

II. THEORETICAL FRAMEWORK

The system studied here is formed by a nanomechanical
system capacitively coupled to an LC resonator. We
generalize here the treatment of Ref. [21] to the multimode
case. The nanomechanical system has a number of vibra-
tional normal modes which can be described in terms of
effective mechanical resonators with mass mi, frequency
ωi, displacement xi, and momentum pi, so the effective
Hamiltonian of the system is

H ¼
X
i

p2
i

2mi
þmiω

2
i x

2
i

2
þ ϕ2

2L
þ q2

2CðfxigÞ
− qV; ð1Þ

where ϕ is the flux in the inductor, q is the charge on the
capacitors, and V is the voltage bias across the capacitor.
The coupling arises due to the displacement dependence

of the capacitance CðfxigÞ. This Hamiltonian directly leads
to the Langevin equations

ẋi ¼
pi

mi
; ð2Þ

ṗi ¼ −miω
2
i xi −

q2

2

∂
∂xi

�
1

CðfxigÞ
�
− Γipi þ Fi; ð3Þ

q̇ ¼ ϕ

L
; ð4Þ

ϕ̇ ¼ −
q

CðxÞ − ΓLCϕþ V; ð5Þ

(a)

(b)

FIG. 1. (a) Scheme of the rf-to-optical transducer and of the
interference between two transduction pathways through two
mechanical modes, x1 and x2. The two modes are simultaneously
capacitively coupled with the electromechanical couplings G1

and G2 to the same LC resonator q, and eventually through a
direct mechanical interaction, λ. At the same time, the motion of
the two resonators is read out by an optical interferometer using
the light reflected from the membrane, δYout, with optical
couplings α1 and α2. Since modulation of the phase noise of
the optical beam occurs through two different paths (via mode 1
or mode 2), the signal detected by the optical interferometer
depends upon the interference between these two paths, which in
turn can be controlled through the electrode configuration of the
membrane capacitor. (b) Experimental setup. A rf resonator is
constituted by an inductor and a membrane capacitor placed in a
vacuum chamber evacuated at 1 × 10−7. The mechanical dis-
placement is revealed by homodyne detection of the light
reflected by the membrane. The electromechanical coupling is
controlled by applying a dc bias, Vdc, over two electrodes. The
system is driven inductively through two capacitors, with a rf
signal Vac using an antenna. HWP, half wave plate; QWP, quarter
wave plate; PBS, polarizing beam-splitter. (Inset) A (1 × 1)-mm
SiN membrane coated with a 27-nm Nb film stands on top of four
segment electrodes, forming a capacitor CmðxÞ modulated by the
membrane motion.
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in which the terms corresponding to the damping rate Γi of
the ith membrane mode and to the resistive dissipation rate
ΓLC ¼ R=L of the LC resonant circuit have been included,
as well as driving forces Fi acting on each membrane
mode.
Assuming that Fi represents zero-mean thermal

Langevin forces, and writing the applied voltage as a large
dc offset and a small fluctuating input

VðtÞ ¼ Vdc þ δVðtÞ; ð6Þ
we can linearize the Langevin equations around an equi-
librium state of the system characterized by ðx̄i; p̄i; q̄; ϕ̄Þ
and satisfying the conditions

miω
2
i x̄i ¼ −

q̄2

2

∂
∂xi

�
1

CðfxigÞ
�����

xi¼x̄i

¼ q̄2

2

∂CðfxigÞ
∂xi

����
xi¼x̄i

1

Cðfx̄igÞ2
; ð7Þ

q̄ ¼ VdcCðfx̄igÞ; ð8Þ

p̄i ¼ ϕ̄ ¼ 0: ð9Þ

The dynamical equations for the small fluctuations, pro-
vided that the system is stable, are given by

δẋiðtÞ ¼
δpiðtÞ
mi

; ð10Þ

δṗiðtÞ¼−miω
2
i δxiðtÞ

− q̄2

2

∂2

∂2xi

�
1

CðfxigÞ
�����

xi¼x̄i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2mωiΔωi

δxiðtÞ

−
q̄2

2

X
j≠i

∂2

∂xi∂xj
�

1

CðfxigÞ
�����

xi¼x̄i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
λij

δxjðtÞ

−Γiδpi− q̄
∂
∂xi

�
1

CðfxigÞ
�����

xi¼x̄i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gi

δqðtÞþFi; ð11Þ

δq̇ðtÞ ¼ δϕðtÞ
L

; ð12Þ

δϕ̇ðtÞ ¼ −
δqðtÞ

Cðfx̄igÞ
− ΓLCδϕðtÞ þ δVðtÞ

−
X
j

q̄
∂
∂xj

�
1

CðfxigÞ
�����

xi¼x̄i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gj

δxjðtÞ: ð13Þ

Here, we introduce the electromechanical coupling
parameters

Gi ¼ q̄
∂
∂xj

�
1

CðfxigÞ
�����

xi¼x̄i

; ð14Þ

the mechanical coupling between the vibrational normal
modes induced by the second-order dependence of the
capacitance upon the membrane deformation,

λij ¼
q̄2

2

X
j≠i

∂2

∂xi∂xj
�

1

CðfxigÞ
�����

xi¼x̄i

; ð15Þ

and the mechanical frequency shifts,

Δωi ¼
q̄2

4miωi

∂2

∂x2i
�

1

CðfxigÞ
�����

xi¼x̄i

: ð16Þ

Absorbing the frequency shifts into a redefined ωi quantity
and transforming to the Fourier domain yields

−iΩδxiðΩÞ ¼ δpiðΩÞ=mi; ð17Þ

−iΩδpiðΩÞ ¼ −miω
2
i δxiðΩÞ −

X
j

λijδxjðΩÞ

− ΓiδpiðΩÞ −GiδqðΩÞ þ FiðΩÞ; ð18Þ

− iΩδqðΩÞ ¼ δϕðΩÞ=L; ð19Þ

− iΩδϕðΩÞ ¼ −δqðΩÞ=C − ΓLCδϕðΩÞ þ δVðΩÞ
−
X
j

GjδxjðΩÞ: ð20Þ

These algebraic equations can be used to calculate the
response of the system to excitations through a force or
voltage drive. For notational convenience, we define the
susceptibilities

χiðΩÞ ¼
1

miðω2
i −Ω2 − iΩΓiÞ

; ð21Þ

χLCðΩÞ ¼
1

LðΩ2
LC −Ω2 − iΩΓLCÞ

ð22Þ

of the ith mechanical mode and of the LC resonator,
respectively, and we define the circuit resonance frequency
ΩLC ¼ ðLCÞ−1=2. In the general case of many membrane
modes, the solution can be easily derived when λij ¼ 0, i.e.,
without the direct mechanical coupling mediated by the
capacitance and in the presence of only the indirect
coupling through the LC resonator.

A. Two mechanical modes

We restrict ourselves now to the case of our system in
which the detection bandwidth includes only two mechani-
cal modes and where the effect of the other spectator modes
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is negligible (i.e., it falls below the noise level). Using
Eqs. (17)–(22), one can write

χ1ðΩÞ−1δx1ðΩÞ ¼ −λδx2ðΩÞ −G1δqðΩÞ þ F1ðΩÞ; ð23Þ

χ2ðΩÞ−1δx2ðΩÞ ¼ −λδx1ðΩÞ −G2δqðΩÞ þ F2ðΩÞ; ð24Þ
χLCðΩÞ−1δqðΩÞ¼−G1δx1ðΩÞ−G2δx2ðΩÞþδVðΩÞ: ð25Þ
From the last equation, we have

δqðΩÞ¼−χLCðΩÞ½G1δx1ðΩÞþG2δx2ðΩÞ−δVðΩÞ�: ð26Þ
Substituting in the first two, we get

ξ1δx1ðΩÞ ¼ βδx2ðΩÞ − G1χLCδVðΩÞ þ F1ðΩÞ; ð27Þ

ξ2δx2ðΩÞ ¼ βδx1ðΩÞ − G2χLCδVðΩÞ þ F2ðΩÞ; ð28Þ

with ξi¼χiðΩÞ−1−G2
i χLCðΩÞ and β ¼ ½G1G2χLCðΩÞ − λ�.

Then we have (i ¼ 1, 2)

δxiðΩÞ ¼
ξ3−iFiðΩÞ
ξ1ξ2 − β2

þ βF3−iðΩÞ
ξ1ξ2 − β2

−
ξ3−1Gi þ βG3−i

ξ1ξ2 − β2
χLCðΩÞδVðΩÞ: ð29Þ

The signal detected by the optical interferometer is the
phase quadrature δYout of the light reflected from the
membrane, which can bewritten in the frequency domain as

δYoutðΩÞ ¼ α1δx1ðΩÞ þ α2δx2ðΩÞ þ δY inðΩÞ; ð30Þ

that is, it is the sum of the vacuum phase noise, δY inðΩÞ,
and the displacement fluctuations of the two mechanical
modes weighted by the optomechanical couplings αi,
which depend upon the overlap of the selected membrane
mode with the transverse profile of the optical field.
We calibrate the output signal as a displacement spec-

trum so that δYðΩÞ has the same units of δxjðωÞ, that is,
m=

ffiffiffiffiffiffi
Hz

p
. As a consequence, the couplings αj coincide with

the dimensionless transverse overlap parameters defined in
Eq. (A6) (see Appendix A). Using the fact that the four
noises F1, F2, δV, and δY in are uncorrelated, we can write
the output optical phase spectrum as the sum of four
independent terms,

SoutðΩÞ ¼
���� α1ξ2 þ α2β

ξ1ξ2 − β2

����2SF1ðΩÞ
þ
���� α2ξ1 þ α1β

ξ1ξ2 − β2

����2SF2ðΩÞ þ SinðΩÞ

þ
���� α1ðξ2G1 þ βG2Þ þ α2ðξ1G2 þ βG1Þ

ξ1ξ2 − β2

����2
× jχLCðΩÞj2SδVðΩÞ; ð31Þ

where SFjðΩÞ ¼ 2mjΓjkBT and j ¼ 1, 2 are the Brownian-
force noise spectra, T is the system temperature, SδVðΩÞ is
the noise voltage at the input of the LC circuit, and SinðΩÞ
is the optical shot-noise spectrum.
Let us now try to readjust and rewrite this general

expression for the detected spectrum in order to get some
physical intuition from it. We first define the effective
mechanical susceptibilities of the two modes, modified by
the interaction with the LC circuit (i ¼ 1, 2),

χeffi ðΩÞ ¼ ξ3−i
ξ1ξ2 − β2

; ð32Þ

½χeffi ðΩÞ�−1 ¼ χ−1i ðΩÞ −G2
i χLCðΩÞ

−
β2

χ−13−iðΩÞ −G2
3−iχLCðΩÞ

: ð33Þ

The detected spectrum of Eq. (31) can then be rewritten as

SoutðΩÞ ¼ jα1 þ α2μ2ðΩÞj2jχeff1 ðΩÞj2SF1ðΩÞ
þ jα2 þ α1μ1ðΩÞj2jχeff2 ðΩÞj2SF2ðΩÞ
þ jIðΩÞj2jχLCðΩÞj2SδVðΩÞ þ SinðΩÞ; ð34Þ

where

IðΩÞ ¼ α1χ
eff
1 ðΩÞ½G1 þ G2μ2ðΩÞ�

þ α2χ
eff
2 ðΩÞ½G2 þ G1μ1ðΩÞ�; ð35Þ

with

μiðΩÞ ¼
β

ξi
¼ G1G2χLCðΩÞ − λ

χiðΩÞ−1 −G2
i χLCðΩÞ

: ð36Þ

It is evident from Eq. (34) that the transduction of voltage
input signals into the optical output signal is determined
mainly by the quantity IðΩÞ of Eq. (35), which is the sum
of the two mechanical resonator contributions, i.e., the
result of the interference between the two excitation path-
ways associated with each mechanical mode of Fig. 1(a).
The quantity jIðΩÞj determines the voltage sensitivity of the
transducer, and a larger jIðΩÞj value indicates a higher
sensitivity for our transducer; therefore, one has to engineer
the couplings Gj in order to realize constructive interfer-
ence between the transduction of the two modes and
maximize jIðΩÞj.
The explicit expression of the detected spectrum at the

output of the transducer simplifies considerably in the
following limit: (i) λ ¼ 0 (which we verify is actually
satisfied by our experimental setup with a very good
approximation), and (ii) we stop at first order in Gi; i.e.,
we neglect second-order terms in Gi. In this limit,
χeffi ðΩÞ → χiðΩÞ and μiðΩÞ ¼ 0, and one has the following
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much-simpler output spectrum, and a simpler form of the
interference function IðΩÞ in particular:

SoutðΩÞ ¼ jα1j2jχ1ðΩÞj2SF1ðΩÞ
þ jα2j2jχ2ðΩÞj2SF2ðΩÞ þ SinðΩÞ
þ jα1G1χ1ðΩÞ þ α2G2χ2ðΩÞj2jχLCðΩÞj2SδVðΩÞ:

ð37Þ

The amplitudes and the relative signs of the couplings
G1, α1, G2, and α2 determine the output spectrum—and
therefore the behavior of the transducer itself. In fact, since
the two effective mechanical susceptibilities χjðΩÞ halfway
between the two mechanical resonance peaks are real and
have the opposite signs, we see from Eq. (37) that the
products α1G1 and α2G2 must have the same sign, in
the case of destructive interference, and opposite signs, in
the case of constructive interference, between the two
transduction pathways. In the first case, we would observe
a spectrum region where the rf signal is canceled out by the
destructive interference between the transduction of the two
mechanical modes. In the second case, we would observe a
spectrum region between the two resonance peaks where
the output signal is flat and is enhanced by the constructive
interference between the two electromechanical couplings.
Experimentally, we observe both behaviors. We refer the
reader to Sec. III for further details and discussion.

B. Relation between sensitivity and bandwidth

The transducer voltage sensitivity can be quantified by
appropriately rescaling the detected noise spectrum of
Eqs. (34) and (37), i.e., by defining the spectral voltage
sensitivity as [21]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SoutδV ðΩÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SoutðΩÞ

p
jIðΩÞjjχLCðΩÞj

: ð38Þ

One expects that the better the sensitivity, the narrower the
corresponding bandwidth; we confirm that this is, in fact,
the case by quantifying this trade-off with a simple formula
that is valid for the constructive interference case.
Equation (38) shows us that the minimum detectable

voltage signal corresponds to the situation of minimum
output noise SoutðΩÞ, and the maximum value of the
product jIðΩÞjjχLCðΩÞj. Minimum output noise is achieved
when the contribution of all technical noises, that is,
thermal and rf ones, are negligible with respect to the
unavoidable shot-noise contribution, i.e., when the first,
second, and fourth terms in Eq. (37) are negligible with
respect to the third term, so that SoutðΩÞ ≃ SinðΩÞ. The
denominator of Eq. (38) is instead maximal when the LC
circuit resonance peak (which is typically much broader
than the mechanical peaks) is centered between the
mechanical doublet, and when jIðΩÞj is largest, showing

why constructive interference is needed for a sensitive
transducer.
Actually, jIðΩÞj is exactly maximal at the two mechani-

cal resonance frequencies, where, in principle, one can get
the best sensitivity. However, in order to get a physically
meaningful and practical estimation of the optimal detect-
able voltage, we make here a conservative choice and
consider the flat response region obtained by constructive
interference between the two mechanical resonances.
In fact, the latter resonances do not represent a conven-

ient working point because they are very narrow and are
extremely sensitive to small frequency shifts, and one
expects a quite unstable transducer response there (see
also the experimental results in Sec. III). Therefore, we take
as the optimal detectable signal the expression of Eq. (38)
when SoutðΩÞ ≃ SinðΩÞ, evaluated halfway between the two
mechanical resonances, at Ω̄ ¼ ðω1 þ ω2Þ=2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SoptδV ðΩ̄Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SinðΩ̄Þ

p
jIðΩ̄ÞjχLCðΩ̄Þj

: ð39Þ

In the simple case of a symmetric electromechanical
system, that is, by assuming same masses (m ¼ m1 ¼ m2),
electromechanical couplings (G ¼ jG1j ¼ jG2j), and
damping rates (Γ ¼ Γ1 ¼ Γ2) for the two mechanical
modes, and assuming also optimal optical detection
(α ¼ α1 ¼ α2 ¼ 1), IðΩ̄Þ is given by

jIðΩ̄Þj ¼ G
mΩ̄

���� 1

iΓþ ΔΩ
−

1

iΓ − ΔΩ

����; ð40Þ

where ΔΩ ¼ ω2 − ω1. In typical situations, one has
ΔΩ ≫ Γ, so one can safely write

jIðΩ̄Þj ¼
�

2G
mΩ̄ΔΩ

�
; ð41Þ

and, substituting the latter expression into Eq. (39), one
finally gets the desired sensitivity-bandwidth-ratio limit

ffiffiffiffiffiffiffiffi
SoptδV

q
ΔΩ

¼ mΩ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SinðΩ̄Þ

p
2jGχLCðΩ̄Þj

: ð42Þ

This relation shows that, as expected, there is a trade-off
between the voltage sensitivity and the bandwidth for an
optoelectromechanical transducer with a given set of
parameters. We can also see that, for a given shot-noise
level and fixing a desired voltage sensitivity SoptδV , one can
increase the bandwidth either by decreasing the mechanical
resonator mass or by increasing the electromechanical
coupling, always keeping the LC circuit at resonance so
that jχLCj is maximal.
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III. EXPERIMENT

A schematic description of the experiment is given in
Fig. 1(b). A laser at 532 nm is split into a 10-mW beam
(a local oscillator), and a few-hundred-microwatt one for
probing the mechanical oscillator. The beam reflected by the
membrane is superposed to the local oscillator for detecting
the phase fluctuations. The low-frequency region of the
voltage spectral noise of the homodyne signal is exploited to
lock the interferometer to the gray fringe (i.e., in the
condition where the interferometer output is proportional
to the membrane displacement) by means of a proportional-
integral-derivative controller. The thermal displacement of
the metalized membrane modes are revealed in the high-
frequency range, as shown in Fig. 2 (bottom panel).
Calibration and fitting of the enlarged spectra of the

fundamental and doublet modes shown in Fig. 2 (top

panels) allows us to obtain the optical massesmð1;1Þ
opt , mð1;2Þ

opt ,

andmð2;1Þ
opt of each mode. As explained in Appendix A, they

are given by mði;jÞ
opt ¼ meff=αði;jÞ2, that is, by the effective

mass of these three membrane modes, which are all equal,
divided by the square of the respective optomechanical
coupling. One can estimate from them the most likely value
of the center of the laser beam (and therefore of the
optomechanical couplings αði;jÞ), and of the effective mass.
The latter is equal to meff ≃ 67.3 ng, in very good agree-
ment with the prediction made from a finite-element
method (FEM) numerical analysis of the metalized mem-
brane (see Fig. 2, middle panel).
The membrane is placed on top of a four-segment copper

electrode to form a variable capacitor CmðfxigÞ, which
depends upon the transversal displacement of the mem-
brane, and therefore on the two mode displacements, xi.
The distance h0 between the metalized membrane and the
four-segment electrodes is determined to be 31.0ð1Þ μm by
the measurement of the frequency shift of the membrane
fundamental mode (1,1) as a function of the applied Vdc,
and the estimation of the effective area of the membrane
capacitor (see Appendix B and Ref. [21]). This capacitor is
added in parallel to the rest of capacitors of the LC circuit
C0, and the total capacitance,CðfxigÞ ¼ C0 þ CmðfxigÞ, is
connected in parallel to a ferrite-core inductor with an
inductance of L ≃ 427 μH. Taking into account the total
series resistance of contacts and wires R, we have an LC
resonator with the resonance frequency ΩLC=2π≃383kHz,
which is therefore quasiresonant with the two mechanical
modes, and a quality factor Q ≃ 81.
We study the behavior of our device as a high-sensitive

optical detector of rf signals by fixing the applied dc bias at
Vdc ¼ 270 V. A broadband rf signal is injected into the
system inductively using an auxiliary inductor in front of
the main LC inductor, and the corresponding displacement
spectral noise (DSN) is detected. The nonzero voltage bias
couples the LC circuit with the two mechanical modes
whose motion, in turn, modulates the phase of the light; as a

result, the input rf signal is transduced as an optical phase
modulation readout by the interferometer. The results are
shown in Fig. 3, where the two plots correspond to two
different electrode configurations.
The comparison evidences that by changing the

electrodes on which the bias voltage is applied, we are
able to control the interference between the two

FIG. 2. (Top panels) Calibrated displacement spectral noise
(DSN) obtained from the homodyne measurement of the optical
output when the system is driven by thermal noise only,
i.e., without any electromechanical coupling. (Top-left panel)
DSN of the first mode (the light-red dots) and the theoretical

curve (the red line) obtained with the best-fit values ωð1;1Þ
m ¼

2π×271.269 kHz, Γð1;1Þ ¼2π×0.9Hz, andmopt
ð1;1Þ ¼70.0ð2Þng.

(Top-right panel) The mode doublet exploited for the trans-

duction, with best-fit values ωð1;2Þ
m ¼ 2π × 382.690 kHz, Γð1;2Þ ¼

2π × 4.9 Hz, mð1;2Þ
opt ¼ 1.73ð1Þ μg, and ωð2;1Þ

m ¼ 2π×387.836 kHz,

Γð2;1Þ ¼ 2π × 2.6 Hz, mð2;1Þ
opt ¼ 1.18ð1Þ μg (see Appendix A).

(Middle panel) Relative error between the detected frequencies
(obtained from the peaks within the broader homodyne spectrum
shown at the bottom of the figure) and those obtained from a
numerical finite-element analysis of the vibrational modes of the
metalized membrane. The relative error found for the first five
detected modes is less than 1%, and for the higher modes less
than 3%. The black crosses indicate modes which are uncoupled
to the light beam and are therefore unobservable. (Bottom panel)
Voltage spectral noise (VSN) of the homodyne signal. Each peak
is associated with the corresponding vibrational mode shape
obtained from the finite-element analysis. Light-gray and dark-
gray curves denote shot- and electronic-noise contributions,
respectively.
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transduction pathways associated with each mechanical
mode schematically illustrated in Fig. 1. Specifically, by
changing the electrodes, we are able to change the effective
areas of the membrane capacitor, thereby changing the
relative sign between the two electromechanical couplings
G1 and G2 (see Appendix B). As discussed in Sec. II, this
relative sign flip corresponds to switching from construc-
tive interference [Fig. 3(a)] to destructive interference
[Fig. 3(b)]. In fact, in our case, the two optomechanical
couplings αi are positive numbers (see below), and G1 and
G2 have the same sign in the case of destructive interfer-
ence [Fig. 3(b)], and opposite signs in the case of
constructive interference [Fig. 3(a)]. This fact is confirmed
by the theoretical curves which best overlap with the
experimental data, corresponding to the following values
of the electromechanical couplings: G1 ¼ 118.41 Vm−1
and G2 ¼ −115.31 Vm−1 for the red line in Fig. 3(a), and
G1 ¼ 117.63 Vm−1 and G2 ¼ 110.89 Vm−1 for the green
line in Fig. 3(b). These values are confirmed within an 8%
error, with an independent method based on the explicit
evaluation of the membrane-electrode capacitance and its
derivatives from the knowledge of the device geometry (see
Appendix B and Ref. [21]). This geometrical estimation of
the electromechanical coupling crucially depends upon the
overlap between the electrodes and the positive and
negative portions of the chosen membrane vibrational
eigenmode, and it therefore also provides an idea of
how one can control the relative sign between the two
electromechanical couplings by applying the voltage bias to
different electrodes.
The position of the laser beam with respect to the

membrane determines the transverse overlap between the
optical laser field and each mechanical mode—and there-
fore the optomechanical couplings αi giving the weight of
the two interference pathways. As shown in Appendix A,

we find for the constructive interference case the best
values α1 ¼ 0.196 and α2 ¼ 0.240, while, for destructive
interference, we find α1 ¼ 0.196 and α2 ¼ 0.121. The
theoretical prediction is less accurate away from the
mechanical resonances for the destructive case; in the latter
case, in fact, one has constructive interference effects
between the doublet modes and the fundamental and higher
mechanical modes, which are not fully taken into account
by our model.
We remark that the possibility of tuning the performance

of our two-mode transducer by controlling the relative sign
of the electromechanical couplings and the associated
interference effect is available only when the two mechani-
cal modes are simultaneously coupled to two distinct
electromagnetic modes. In fact, if we were to simplify
the scheme and use a unique electromagnetic (either radio-
frequency or optical) mode both for coupling the modes
and reading out the signals, we would always get a
destructive interference pattern in the output spectrum,
and the constructive case of Fig. 3(a) would be impossible.
In such a case, αi andGi (i ¼ 1, 2) share the same sign, and
therefore the response of the two mechanical modes in the
frequency band within the two resonances is always out of
phase [30,31]. Our two-mode transducer is analogous to the
devices recently proposed in Refs. [32–34] for nonrecip-
rocal conversion between microwave and optical photons,
and demonstrated in Refs. [33,35], in which two mechani-
cal modes are simultaneously coupled via four appropriate
drives with two different microwave cavity modes, for
nonreciprocal signal conversion between the latter. In our
case, the configuration corresponding to the constructive
interference of Fig. 3(a) realizes the unidirectional trans-
duction of rf signals into optical ones, while the one
corresponding to the destructive interference of Fig. 3(b)
realizes an isolator which, within the bandwidth where
IðΩÞ ≃ 0, inhibits the transmission of rf signals to the
optical output. The device demonstrated here has the
advantage that it does not require driving with four different
tones and the validity of the rotating-wave approximation.
Moreover, the device is easily reconfigurable because one
can switch from one configuration to the other by simply
switching electrodes [36].
As we discuss in Sec. II, under the condition of con-

structive interference, the mechanical modes are respon-
sible for an improved transduction of rf signals into the
optical output within the frequency band between the two
mechanical resonances. Therefore, we expect that, under
the conditions of Fig. 3(a), the device acts as a transducer
with an increased bandwidth. This improvement is con-
firmed by Fig. 4, where we show the voltage sensitivity
(VS) defined in Eq. (38), i.e., the minimum detectable
voltage, corresponding to the total noise spectrum of
Fig. 3(a) divided by the interface response function.
The light-red circles correspond to the broader band
voltage sensitivity of our transducer, which is equal to

(a) (b)

FIG. 3. Displacement spectral noise (DSN). Light-red and
light-green dots correspond to the detection of (a) constructive
and (b) destructive interference between the two mechanical
transduction pathways, respectively, in the presence of an applied
voltage bias Vdc ¼ 270 V and an input rf signal. The light-blue
dots refer to the optical output spectrum due to thermal noise and
without any rf input to the LC circuit. The solid red and green
lines are the theoretical expectations without noise. The dashed
red, green, and blue lines account for the shot-noise contribution.
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300 nV=
ffiffiffiffiffiffi
Hz

p
over a bandwidth of 15 kHz between the two

modes, obtained in the case where rf noise dominates over
thermal and shot noise. The blue dots and lines instead
correspond to the optimal sensitivity of our device, which is
around 10 nV=

ffiffiffiffiffiffi
Hz

p
over a bandwidth of 5 kHz, achieved

in the opposite limit when the contribution of the input rf
noise is negligible with respect to the thermal and shot
noise. In the latter limit, in the flat region between the two
resonance peaks, thermal noise is also negligible, and the
data (the blue dots) exactly satisfy the optimal sensitivity-
bandwidth ratio of Eq. (42). Conversely, the data (the red
dots) in the presence of a non-negligible noise contribution
from the LC circuit corresponds to a larger value for the
sensitivity-bandwidth ratio compared to the optimal value.
For example, in Fig. 4, the red data correspond to a
bandwidth ratio 10 times larger than the optimal one
achieved for the blue data.
For comparison, in Fig. 5 we show the minimum

detectable voltage in the destructive interference case of
Fig. 3(b). Even though, in the case of large rf noise, we
have a sensitivity of about 300 nV=

ffiffiffiffiffiffi
Hz

p
, which is com-

parable to that of the constructive interference case, the
situation is completely different in the regime of negligible
rf input noise (the blue dots and the theoretical curve). As
expected, in the latter case, the sensitivity significantly
worsens between the two mechanical resonances, and the
minimum detectable voltage tends to diverge in correspon-
dence to the destructive interference condition, where the
device acts as an isolator with respect to the rf input. It is
evident that, in the presence of destructive interference,

the device cannot be operated as a rf-to-optical transducer,
and that a sensitivity-bandwidth ratio cannot even be
defined here.
We also remark that the present transducer can also be

treated as a radio-frequency amplifier, transforming a
voltage input signal into a voltage signal at the output of
the optical detector, but at a much higher signal-to-noise
ratio, with a given gain and a given input impedance.
At the working point described here and corresponding
to Figs. 4 and 5, we measure for our device a gain of
30 dB at the mechanical frequencies, and a gain of 10 dB in
the frequency range between them. Moreover, we charac-
terize the input impedance by obtaining a value Zin ¼
ð51.2þ 19.5iÞ kΩ.
A. Improving the two-mode transducer performance

Using the theoretical description provided in Sec. II, we
now see how much one could improve the performance of
our transducer in the constructive interference configura-
tion. The voltage sensitivities achievable in a device similar
to that experimentally demonstrated here, but with tunable
electromechanical couplings jG1j ¼ jG2j ¼ G and fre-

quency separation Δνm ¼ ½ωð2;1Þ
m − ωð1;2Þ

m �=2π, are shown
in Fig. 6. We show the transducer voltage sensitivity as a
function of the electromagnetic coupling G at a fixed
mechanical-mode frequency separation Δνm in Fig. 6(a),
and versus the mechanical-mode splitting at a fixed G in
Fig. 6(b) in the case of negligible rf noise.
The voltage sensitivity is calculated from Eqs. (34)

and (38) while considering the following experimental
parameters: equal effective mass meff ¼ 67.3 ng, equal

FIG. 4. Voltage sensitivity (VS) of the rf-to-optical transducer.
The light-red dots correspond to the inferred voltage sensitivity of
our transducer from the blue data of Fig. 3(a), that is, the square
root of the DSN divided by the interface response function, which
is equal to 300 nV=

ffiffiffiffiffiffi
Hz

p
over a bandwidth of 15 kHz. The light-

blue dots represent the optimal sensitivity achieved by our device
in the case of negligible rf noise, equal to 10 nV=

ffiffiffiffiffiffi
Hz

p
over a

bandwidth of 5 kHz (the dotted black line). The dashed and solid
lines represent the corresponding theoretical expectations, as in
Fig. 3. In the latter case, the sensitivity-bandwidth ratio is in
agreement with the optimal limit given by Eq. (42).

FIG. 5. Voltage sensitivity (VS) of the rf-to-optical transducer
in the presence of destructive interference, from the data of
Fig. 3(b). The light-green dots correspond to the inferred voltage
sensitivity of our transducer, that is, the square root of the DSN
divided by the interface response function, which is equal to
300 nV=

ffiffiffiffiffiffi
Hz

p
over a bandwidth approximately equal to 5 kHz.

The light-blue dots represent the sensitivity achieved in the case
of negligible rf noise, which tends to diverge at the frequencies
where one has destructive interference and the device is not
sensitive to the input rf signal. The dashed and solid lines
represent the corresponding theoretical expectations.
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mechanical damping rates Γ ¼ 2π × 3.6 Hz, equal opto-
mechanical couplings α1 ¼ α2 ¼ 0.194, an LC circuit
resonating halfway between the two mechanical reso-
nances with a quality factor Q ¼ 81.5, and a shot-noise

level Sin¼ 1.8×10−29 m2=Hz. In Fig. 6(a), the two reso-

nance frequencies are fixed at ωð1;2Þ
m =2π ¼ 381 kHz and

ωð2;1Þ
m =2π ¼ 385.5 kHz. The solid blue line denotes the

electromechanical coupling in our device,G ¼ 118 Vm−1,
while the dashed line denotes the electromechanical cou-
pling G ¼ 5 kVm−1, which is used to calculate Fig. 6(b).
Figure 6(a) shows that, as expected, both the sensitivity and
the bandwidth can be increased by increasing the electro-
mechanical coupling and that one can achieve sensitivities
comparable to those of Ref. [21] over a larger bandwidth in
the strong-coupling regime where the LC and the mechani-
cal modes hybridize, which occurs in our case when
G > 10 kVm−1.
A feasible way to achieve these values for the coupling is

to decrease the distance d between the electrodes and the
metalized SiN membrane since the coupling scales as the
inverse square of d, and this strong-coupling regime could
be achieved with a distance d ≃ 3 μm. Figure 6(b) instead
shows that, even in a regime away from the strong-coupling
regime, the transduction bandwidth can be increased
simply by increasing the mechanical-mode frequency
splitting.
With a coupling G ¼ 5 kVm−1, about a factor of 30

larger than the one showed by our device, a sensitivity on the
order of 1 nV=

ffiffiffiffiffiffi
Hz

p
is reachable over a bandwidth that

depends essentially only upon the mechanical-mode split-
ting. In practice, by improving the device demonstrated here,
for example, by operating at a membrane capacitor distance
of around d ≃ 3 μm in order to reach G ≃ 10 kVm−1 and
increasing the mechanical-mode frequency splitting by
using a rectangular membrane of (0.9 × 1.1)-mm sides,
one could achieve the same sensitivity of 800 pV=

ffiffiffiffiffiffi
Hz

p
as

Ref. [21] over a larger bandwidth of 40 kHz.

IV. CONCLUSIONS

We theoretically show and experimentally demonstrate
in this paper that one can engineer constructive interference
between two or more mechanical modes coupled to the
same resonant LC circuit in order to increase the trans-
duction bandwidth of a rf-to-optical transducer with a target
voltage sensitivity equal to that of a single-mechanical-
mode transducer. We present here a proof-of-principle
experiment with a first-generation device proving the
reliability of the proposed technique and its physical
insight. We see that an improved version of the same
device could outperform an existing single-mode optoelec-
tromechanical transducer in terms of sensitivity—and
especially in terms of bandwidth.
The proposed multimode transducer based on construc-

tive interference is advantageous and more flexible than the
one based on a single mechanical mode. In fact, in single-
mode optoelectromechanical transducers, bandwidth and
sensitivity are strongly related and are determined only by
electromechanical coupling. In the case of capacitive

(a)

(b)

FIG. 6. Theoretical prediction for the voltage sensitivity (VS) of
a rf-to-optical transducer based on a two-mode mechanical
resonator in the case of negligible rf noise with a shot-noise level
Sin ¼ 1.8 × 10−29 m2=Hz. (Top panel) VS as a function of the
frequency and of the electromechanical couplingG (assumed to be
equal in modulus for the two modes). The other parameters are
chosen to be very close to those of our experimental device. The
two vertically brighter features represent the mechanical-mode

resonance frequencies at ωð1;2Þ
m ¼2π×381kHz and ωð2;1Þ

m ¼
2π × 385.5 kHz, with the same damping rate Γð1;2Þ

m ¼ Γð2;1Þ
m ¼

2π × 3.6 Hz, the same effective mass meff ¼ 67.3 ng, and the
same optomechanical coupling α1 ¼ α2 ¼ 0.194. The LC circuit

resonates at ωLC ¼ ðωð1;2Þ
m þ ωð2;1Þ

m Þ=2 with a quality factor
Q ¼ 81.5. The blue solid line denotes the electromechanical
coupling in our device, G ¼ 118 Vm−1, while the black dashed
line denotes the value G ¼ 5 kVm−1 needed to obtain a mean
voltage sensitivity on the order of 1 nV=

ffiffiffiffiffiffi
Hz

p
over a bandwidth of

15 kHz. For largerG values, both the sensitivity and the bandwidth
increase. (Bottom panel) VS as a function of the frequency and of

the mechanical-mode separation Δνm ¼ ðωð2;1Þ
m − ωð1;2Þ

m Þ=2π
evaluated for the same parameters as the plot above, with a value
of the electromechanical couplingG indicated by the black dashed
line of the top figure. The vertical black dashed lines represent the
two resonance frequencies chosen above. We see that one can
achieve and maintain a voltage sensitivity of around 1 nV=

ffiffiffiffiffiffi
Hz

p
over a bandwidth which increases with increasing frequency
separation between the two mechanical modes.

SENSITIVITY-BANDWIDTH LIMIT IN A MULTIMODE … PHYS. REV. APPLIED 9, 034031 (2018)

034031-9



coupling, it is extremely hard to achieve very large values
for such a coupling because the bias voltage and the
membrane capacitor area cannot be too large, and it is
hard to reach membrane capacitor distances well
below 1 μm.
On the contrary, in multimode optoelectromechanical

transducers in the constructive interference configuration,
for a given voltage sensitivity, the bandwidth is determined
mainly by the mechanical frequency splitting, and it there-
fore can be significantly increased even without entering
the strong electromechanical coupling regime.
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APPENDIX A: DATA ANALYSIS

1. Determination of mechanical parameters
from thermal-noise spectra

The mechanical properties of the membrane vibrational
modes, that is, their resonance frequency, damping rate, and
mass, can be extracted from the measured homodyne
spectra in the presence of thermal noise only—that is, in
the absence of the electromechanical coupling—occurring
when Vdc ¼ 0 and the rf signal is turned off. For a generic
harmonic oscillator of massm, frequency ωm, and damping
Γ in the presence of thermal noise at temperature T, the
variance of its mechanical displacement, hx2i¼kBT=mω2

m,
is related to the DSN SxxðωÞ by the relation

hx2i ¼
Z þ∞

−∞
SxxðωÞ

dω
2π

¼
Z þ∞

0

S̄xxðνÞdν; ðA1Þ

where

SxxðωÞ ¼
2mΓkBT

jmðω2
m − ω2 − iωΓÞj2 ; ðA2Þ

and, defining ω ¼ 2πν, ωm ¼ 2πνm, and Γ ¼ 2πγ, one has

S̄xxðνÞ ¼
1

πm
2γkBT

jν2m − ν2 − iνγj2 : ðA3Þ

The measured DSN, S̄ðmÞ
xx ðνÞ, is obtained from the cali-

bration of thevoltage spectral noiseSVVðνÞ that is effectively
detected at the output of our optical interferometer,

S̄ðmÞ
xx ðνÞ ¼ SVVðνÞG2

xV; ðA4Þ

with the calibration factor GxV ¼ λ=ð2πVppÞ, where
λ ¼ 532 nm is the laser wavelength used and Vpp is
the peak-to-peak voltage value of the interferometer
interference fringes. Then the measured DSN is fitted
with the theoretical S̄xxðνÞ of Eq. (A3) obtaining the best-
fit values for ωm and Γ.
Because of the effect of the optical transduction [see

Eq. (30)], for each mechanical mode, the fit provides for the
mass the value of what can be called the optical mass

mðn;mÞ
opt , which is related to the physical effective mass of

each mode and the optomechanical coupling αðn;mÞ by the

relation mðn;mÞ
opt ¼ mðn;mÞ

eff =α2ðn;mÞ. The variance of the

mechanical displacement hx2i is instead equal to the size
of the step in the measured displacement noise (DN), that
is, the marginal of the DSN (see the blue curves in Figs. 7
and 8). We perform such a fit for the fundamental vibra-
tional mode of the membrane (1,1) (see Fig. 7), and for the
first excited vibrational doublet (1,2) and (2,1) exploited
here for our transducer (see Fig. 8).
For the (1,1) mode we obtained the best-fit values

ωð1;1Þ
m ¼ 2π × 271.269 kHz, Γð1;1Þ ¼ 2π × 0.9 Hz, and

mð1;1Þ
opt ¼ 70.0ð2Þ ng. The size of the step in the DN yields

hx2ið1;1Þ ≃ 24.18 pm2. For the (1,2)-(2,1) doublet, we

instead obtain the best-fit values ωð1;2Þ
m ¼ 2π ×

382.690 kHz, Γð1;2Þ ¼ 2π × 4.9 Hz, mð1;2Þ
opt ¼ 1.73ð1Þ μg,

and ωð2;1Þ
m ¼2π×387.836kHz, Γð2;1Þ ¼2π×2.6Hz,mð2;1Þ

opt ¼
1.18ð1Þ μg. The variances of the mechanical displacement
are hx2ið1;2Þ ≃ 0.397 pm2, and hx2ið2;1Þ ≃ 0.590 pm2.

FIG. 7. Displacement spectral noise (DSN) for the fundamental
mode (1,1). The calibration parameter is Vpp ¼ 2.7 V, and the

best-fit values are ωð1;1Þ
m ¼2π×271.269kHz, Γð1;1Þ¼2π×0.9kHz,

and mð1;1Þ
opt ¼ 70.0ð2Þ ng. The size of the step in the displacement

noise (DN) (the blue curve), that is, the marginal of the DSN,
determines the variance of the mechanical displacement
hx2ið1;1Þ to be 24.18 pm2.
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2. Determination of the effective mass
and of the optomechanical couplings

The effective mass meff associated with a vibrational
mode depends, in general, upon the mode volume and, in
the case of a thin membrane, it can be written as

mðn;mÞ
eff ¼

Z Z
dxdyσðx; yÞuðn;mÞðx; yÞ2; ðA5Þ

where σðx; yÞ is the average mass surface density of the
membrane and uðn;mÞðx; yÞ is the dimensionless eigenfunc-
tion of the vibrational mode with indices ðn;mÞ [40].
As discussed in the previous subsection, the masses

obtained from the fitted thermal-noise spectra instead
depend upon the optomechanical couplings αðn;mÞ, which
differ from one mode to another because the laser beam
illuminates a certain spot on the membrane, where different
modes have different displacement amplitudes. After cal-
ibration of the DSN, the couplings αðn;mÞ coincide with the
dimensionless transverse overlap parameters [40], given by

αðn;mÞðx; yÞ ¼
Z

L

0

dx0
Z

L

0

dy0uðn;mÞðx0; y0ÞIðx; y; x0; y0Þ;

ðA6Þ
where Iðx; y; x0; y0Þ is the normalized intensity profile of a
laser beam centered at ðx; yÞ, and L is the length of the side
of the square membrane.
In the case of our experiment, the theoretical value

of Eq. (A6) can be analytically evaluated because we
use a TEM00 Gaussian beam with waist w at the membrane
position, and we verify with a finite-element-method analy-
sis that, for the first three vibrational modes studied here,
the homogeneous membrane eigenmodes, uðn;mÞðx;yÞ ¼
sinðnπx=LÞsinðmπy=LÞ, provide a very good approxima-
tion. Assuming negligible optical losses from clipping, the

domain of integration can be extended to the entire plane,
and one gets, from Eq. (A6),

αðthÞnm ðx; yÞ ¼ e−w
2ðk2nþk2mÞ=8 sinðknxÞ sinðkmyÞ; ðA7Þ

where kn ¼ nπ=L and km ¼ mπ=L, both of which depend
upon the unknown beam center ðx; yÞ.
One can get a very good estimate of the beam center

position ðx; yÞ (and therefore of the transverse overlaps and
the physical effective masses mðn;mÞ

eff ) in our setup by
applying a treatment analogous to that in Ref. [26]. For
each of the three detected vibrational modes, the variance of
the mechanical displacement hx2iðn;mÞ provides an indirect
estimate ðx̄; ȳÞ of ðx; yÞ because

hx2iðn;mÞ ¼ kBT

mðn;mÞ
opt ω2

nm

¼ α2nmðx̄; ȳÞ
kBT

mðn;mÞ
eff ω2

nm

; ðA8Þ

from which one derives the experimental estimate

αðexÞnm ðx̄; ȳÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2iðn;mÞmðn;mÞ

eff ω2
nm=kBT

q
; ðA9Þ

which depends upon the measured quantities hx2iðn;mÞ,
ω2
nm, and T, and the unknown effective mass of the mode

mðn;mÞ
eff . However, since unmðx;yÞ¼sinðnπx=LÞsinðmπy=LÞ

is a very good approximation, Eq. (A5) yields mðn;mÞ
eff ¼

mT=4 independent of ðn;mÞ, where mT is the total mass of
the membrane. Moreover, we expect that, for the funda-
mental mode, α211ðx̄; ȳÞ ≃ 1 because the measured waist
w ¼ 53.2ð4Þ μm is much smaller than L ¼ 1 mm and the
beam is centered very close to the membrane center. As a

consequence, we can safely assume that mðn;mÞ
eff ≃mð1;1Þ

opt ¼
70.0ð2Þ ng for the three modes in Eq. (A9), which is also
consistent with the value obtained from Eq. (A5) and with
the membrane specifications (1 × 1 mm square, a 50-nm-
thick SiN membrane, and coated with a 27-nm Nb film with
a 300-μm-diameter central circular hole).
We then construct the χ2 quantity

χ2ðx; yÞ ¼
X
n;m

½αðexÞnm ðx̄; ȳÞ − αðthÞnm ðx; yÞ�2 ðA10Þ

and minimize it over ðx; yÞ. The minimizing points ðx0; y0Þ
are the most likely points, and the corresponding likelihood
density function of where the beam is positioned is given
by [26]

Lðx; yÞ ¼ 1

2πσ2
Y
n;m

e−f½α
ðexÞ
nm ðx̄;ȳÞ−αðthÞnm ðx;yÞ�2=ð2σ2Þg; ðA11Þ

with σ2 ¼ χ2ðx0; y0Þ, whose contour plot is shown in
Fig. 9. The corresponding best estimation of the transverse
overlap for the modes is

FIG. 8. Displacement spectral noise (DSN) for the doublet (1,2)
and (2,1). The calibration parameter is Vpp ¼ 2.8 V. The best-fit

values are ωð1;2Þ
m ¼ 2π × 382.690 kHz, Γð1;2Þ ¼ 2π × 4.9 Hz,

mð1;2Þ
opt ¼ 1.73ð1Þ μg, and ωð2;1Þ

m ¼ 2π × 387.836 kHz, Γð2;1Þ ¼
2π × 2.6 Hz, and mð2;1Þ

opt ¼ 1.18ð1Þ μg. The variances of the
mechanical displacement are hx2ið1;2Þ ≃ 0.397 pm2 and hx2ið2;1Þ ≃
0.590 pm2.
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α11 ¼ 0.980; α12 ¼ 0.196; α21 ¼ 0.240; ðA12Þ

yielding the best estimate for the physical effective mass of

the three modes,mð1;1Þ
eff ≃mð1;2Þ

eff ≃mð2;1Þ
eff ≃ 67.3 ng, within a

3% error, and confirmed by FEM numerical analysis.

APPENDIX B: THE ELECTROMECHANICAL
COUPLINGS

As shown in Eq. (14), the electromechanical couplings
Gi depend upon the explicit expression of the capacitance
of the LC circuit and its dependence upon the transverse
displacement associated with each vibrational normal mode
of the membrane. We can write for the total capacitance
C ¼ C0 þ CmðfxigÞ, whereC0 is the capacitance of the LC
circuit (including fixed and tunable capacitors), acting in
parallel with the membrane capacitance CmðfxigÞ. We
verify that, in our case, C0 ≫ CmðfxigÞ, so that, from
Eq. (14), one can also write

Gi ≃ −
Vdc

C0

∂CmðfxigÞ
∂xi

����
xi¼x̄i

: ðB1Þ

Following Ref. [41] and exploiting the geometry of our
membrane-electrode arrangement, one can derive a theo-
retical model of the capacitance CmðfxigÞ based on a
quasielectrostatic calculation, which allows us to derive
both the electromechanical couplings Gi and the frequency
shifts of Eq. (16) and satisfactorily reproduces the data.
As shown in Fig. 2, the membrane capacitor is formed by

a four-segment electrode in front of the partially metallized
membrane. Since the membrane-electrode separation h0 is
significantly smaller than the interelectrode gaps, we can
neglect the direct capacitance between electrode segments;
the capacitance is then given by a series of two local
contributions, one associated with the positive electrode
segments and the membrane in front of it, Cþ, and the

second corresponding to the negative electrode segments,
C−, i.e.,

Cm ¼
�
1

Cþ
þ 1

C−

�
−1
: ðB2Þ

For the calculation of C�, we assume that the curvature
of the membrane is sufficiently small that we can take it to
be locally flat. We also neglect edge effects, so that for
symmetry—and assuming perfect alignment—we may
model the membrane-electrode capacitance locally as that
of conducting parallel plates. This local capacitance per
area depends only upon the local membrane-electrode
separation along the direction normal to the plane defined
by the electrodes, and we can write

C� ¼
ZZ

dxdy
ε0ξ�ðx; yÞ

h0 þ δzðx; yÞ ; ðB3Þ

where the integral is taken over the membrane surface,
ξ�ðx; yÞ is a mask function that equals 1 for points in the
membrane plane that are metalized and overlap with the
fixed positive or negative electrode (and zero otherwise),
δzðx; yÞ is the membrane displacement field relative to the
steady-state configuration, and ε0 is the vacuum dielectric
constant.
We can always expand this field in terms of the vibra-

tional eigenmodes uiðx; yÞ introduced in Eq. (A5)

δzðx; yÞ ¼
X
i

βiuiðx; yÞ; ðB4Þ

where the eigenmodes uiðx; yÞ are dimensionless and the
coefficients βi are canonical drum mode position coordi-
nates. With this notation, the derivatives appearing in the
expression for the couplings of Eq. (B1) become

∂CmðfxigÞ
∂xi

����
xi¼x̄i

→
∂Cm

∂βi
����
eq
; ðB5Þ

where the subscript eq indicates that the derivative
should be evaluated at the static displacement equilibrium
configuration of the membrane, δzðx; yÞ ¼ 0. We have,
explicitly,

∂Cm

∂βi
����
eq
¼

1
C2
þ

	∂Cþ∂βi


þ 1

C2
−

	∂C−∂βi



	
1
Cþ

þ 1
C−



2

������
eq

; ðB6Þ

so that, using Eqs. (B3) and (B4) and inserting the results
into Eq. (B1), one finally gets

Gi ¼
Vdcϵ0
C0h20

Aeff
i ; ðB7Þ

where we define the effective mode area

FIG. 9. Position estimates from the χ2 minimization, showing
the most likely points.
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Aeff
i ¼

Oð1Þ
þ;i

½Oð0Þ
þ �2 þ

Oð1Þ
−;i

½Oð0Þ
− �2	

1

Oð0Þ
þ
þ 1

Oð0Þ
−



2
; ðB8Þ

in terms of the quantities

OðjÞ
�;i ≡

ZZ
dxdyξ�ðx; yÞ½uiðx; yÞ�j; j ¼ 0; 1: ðB9Þ

The explicit values of the two electromechanical cou-
plings G1 and G2 associated with the two mechanical
modes used for our transducer can be obtained with the
knowledge of C0, Vdc, the distance h0, and the various

integrals OðjÞ
�;i. We evaluate the latter integrals numerically

from the calibrated image of the electrode and from the
properly normalized finite-element numerical solution of
the two vibrational eigenmodes, while C0, and Vdc are
easily measured. The membrane-electrode equilibrium
distance h0 is instead evaluated from the measurement
of the mechanical frequency shift of the fundamental
vibrational mode.

1. Derivation of the membrane-electrode distance

Equation (16) shows that each mechanical mode is
shifted quadratically as a function of the applied dc voltage.
A measurement of this quadratic phase shift provides a
quite accurate indirect method for the determination of the
distance h0 between the metalized membrane and the
electrode. In our case, we measure the frequency shift of
the fundamental mode (1,1) (see Fig. 10). Denoting
with i ¼ 0 the fundamental mode (1,1), recalling
that C ¼ C0 þ CmðfxigÞ, with C0 ≫ CmðfxigÞ, so that
q̄ ≃ C0Vdc, and using Eq. (B5) and ω0 ¼ 2πν0, one can
rewrite Eq. (16) as

Δν0 ¼ −
V2
dc

16π2meffν0

� ∂
∂β0

∂Cm

∂β0
�����

eq
; ðB10Þ

where Eq. (B6) has to be used for the evaluation of
∂Cm=∂β0. It is possible to verify that

� ∂
∂β0

∂Cm

∂β0
�����

eq
≃
2ε0Aeff

0

h30
; ðB11Þ

where Aeff
0 is the effective area for the fundamental mode,

and one can write

νðVdcÞ ¼ ν0

�
1 −

ε0Aeff
0

8π2meffν
2
0h

3
0

V2
dc

�
: ðB12Þ

On the other hand, we can fit the experimental data of
Fig. 10 with

νðVdcÞ ¼ ν0

�
1 −

Λ
8π2meffν

2
0

V2
dc

�
; ðB13Þ

where Λ is a fitting parameter. Using the best-fit values
derived above, ν0 ¼ 2.712 69 kHz and meff ¼ 67.3 ng, the
best-fit value of the parameter Λ ¼ 105.2ð9Þ μFm−2, and
using Aeff

0 ¼0.3546mm2 and ϵ0¼8.854×10−12 Fm−1, the
distance between the membrane and the electrode is
evaluated to be

h0 ¼
�
ε0Aeff

0

Λ

�
1=3

≃ 31.0ð1Þ μm: ðB14Þ

With this derivation of the membrane-electrode distance
h0, we can finally estimate the electromechanical couplings
G1 and G2 using Eq. (B7) once the effective areas Aeff

i are
estimated using Eqs. (B8) and (B9). For the mode-electrode
configuration of Fig. 11, our numerical estimation gives the
values of −0.0178 mm2 for Fig. 11(a), 0.0189 mm2 for
Fig. 11(b), 0.0185 mm2 for Fig. 11(c), and 0.0190 mm2 for
Fig. 11(d). These values of the effective area can be
understood from the fact that the blue and yellow lobes
denote, respectively, the negative and positive parts of the
vibrational mode function. In each of the four configura-
tions, one of the two electrodes has approximately the same
overlap with the positive and negative lobes, therefore
yielding a negligible contribution to the effective area of
Eq. (B8). The other electrode yields the main contribution to
the effective area, which is therefore negative for Fig. 11(a)
and positive for the other three cases, so that the upper
configurations correspond to the constructive interference
case and the lower ones to the destructive interference case.
Using these values for the effective areas and inserting

C0 ¼ 404 pF, Vdc ¼ 270 V, and h0 ¼ 31.0 μm into
Eq. (B7), we get G1¼116.4Vm−1 and G2¼−109.6Vm−1
for the upper electrode configurations corresponding to the
constructive interference case [see Figs. 11(a) and 11(b)].
Conversely, we getG1¼117.0Vm−1 andG2¼113.9Vm−1

FIG. 10. Mechanical resonance frequency shift of the funda-
mental mode as a function of the applied dc voltage Vdc.
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for the lower electrode configurations corresponding to the
destructive interference case [see Figs. 11(c) and 11(d)].
These values are in very good agreement with the values
given in themain text and are obtained as best-fit parameters
of the measured output spectra.
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