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In optical diffraction tomography, the multiply scattered field is a nonlinear function of the refractive
index (RI) of the object. The Rytov method relies on a single-scattering propagation model and is
commonly used to reconstruct images. Recently, a reconstruction model was introduced based on the
beam propagation method that takes multiple scattering into account. We refer to this method as learning
tomography (LT). We carry out simulations and experiments in order to assess the performance of LT over
the iterative single-scattering propagation method. Each algorithm is rigorously assessed for spherical and
cylinderical objects, with synthetic data generated using Mie theory. By varying the RI contrast and the size
of the objects, we show that the LT reconstruction is more accurate and robust than the reconstruction based
on the single-scattering propagation model. In addition, we show that LT is able to correct distortions that
are evident in the Rytov-approximation-based reconstructions due to limitations in phase unwrapping.
More importantly, the ability of LT to handle multiple scattering is demonstrated by simulations of multiple
cylinders using Mie theory and is confirmed by experiment.

DOI: 10.1103/PhysRevApplied.9.034027

I. INTRODUCTION

Quantitative-phase-imaging (QPI) microscopy measures
sample-induced phase delay, which relates to the refractive
index (RI) contrast and the sample thickness. Each material
has its own distinct RI value, and QPI can therefore provide
physiological information [1] such as the structure and
dynamics of cells [2,3], the quantification of specific
molecules [4,5], and the dry mass [6,7]. Optical diffraction
tomography (ODT) is a QPI method that enables us to
visualize 3D RI distributions from multiple 2D scattered
fields acquired at various illumination angles [8—10]. It
provides the physiological information by measuring the
3D RI distribution without any exogenous labeling agents,
making it a powerful tool for various physiological studies.

One limitation of ODT comes from the fact that views
far from the optical axis are usually not accessible due to
the limited numerical aperture of the optics. This is referred
to as the missing cone problem. It generally causes an
underestimation of the RI values and an elongation of RI
tomograms along the optical axis [11,12]. The missing
cone problem can be mediated using sparsity-based
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regularization algorithms [11,13]. A more fundamental
problem is the inherent nonlinearity in scattering through
inhomogeneous media [14]. These nonlinear effects are
assumed to be negligible in conventional linear ODT
frameworks (Born and Rytov approximations). Even
though the approximations could be valid for a week
scatterer such as a single cell [15], the validity of the
approximations [16,17] restricts the application of ODT in
complex samples. Distortions caused by multiple scattering
can be especially severe for thick or high-contrast samples
when several scattering objects are aggregated [18].

Reconstruction algorithms that consider the nonlinear
process have recently been proposed [19-21]. We focus on
the beam propagation method (BPM), which can be used as
the propagation model combined with sparsity-based regu-
larization in the iterative reconstruction scheme [20]. The
BPM consists of a sequence of two substeps: diffraction
followed by refraction [22]. The BPM can implement
multiple scattering at different depths within the medium.
Therefore, iterative reconstruction algorithms that combine
the BPM and a sparsity-based regularization can outper-
form the conventional single-scattering model (Rytov
approximation) [20,23].

The same reconstruction framework should be used,
except for the propagation model, in order to fairly inves-
tigate the performance of the multiple-scattering model
compared to that of the single-scattering model. In order
to differentiate the performance of learning tomography (LT)
from the effects of sparsity-based regularization, it should be

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.9.034027&domain=pdf&date_stamp=2018-03-27
https://doi.org/10.1103/PhysRevApplied.9.034027
https://doi.org/10.1103/PhysRevApplied.9.034027
https://doi.org/10.1103/PhysRevApplied.9.034027
https://doi.org/10.1103/PhysRevApplied.9.034027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

LIM, GOY, SHOREH, UNSER, and PSALTIS

PHYS. REV. APPLIED 9, 034027 (2018)

compared with single-scattering tomography, which utilizes
the same reconstruction algorithm scheme including
sparsity-based regularization. In addition, in order to quan-
titatively compare any improvements made by the multiple-
scattering propagation model, we use Mie theory to provide
the ground truth of the 3D RI distribution of the object.

In this paper, exactly the same algorithmic scheme
[20,23,24] is used for the single-scattering and multiple-
scattering algorithms except for the propagation model part.
Simulated measurements are generated using Mie theory,
whose analytical solution serves as the ground truth [25].
The two propagation models (single scattering and multiple
scattering) are tested under three different schemes: (1) var-
iable RI contrast with fixed size, (2) variable size with fixed
RI contrast, and (3) different RI contrast and size with fixed
sample-induced phase delay. In addition, we compare the
ability of each model to deal with multiple scattering caused
by multiple objects by testing the two models using the
Mie theory for multiple cylinders [26]. After that, the
performance of each model when phase unwrapping fails
is discussed. Finally, we apply the algorithms to various
experimental data and compare the experimental data to the
simulation results. In order to obtain a direct comparison
between the experiment and a computer simulation, we
conduct experiments on optical fibers which can be consid-
ered cylinders. We conduct experiments on two fibers for
three different configurations, and also for simulations using
Mie theory for multiple cylinders to make a direct com-
parison between the single-scattering and multiple-scattering
models. Experimental data are obtained for a sample
consisting of two beads to confirm the capacity of LT to
successfully handle multiple scattering. A more important
issue is what the Mie theory results obtained for cylinders
and spheres tell us about how well we can image objects
such as cells. There has been prior research on applying
Mie theory to spheroidal scatterers such as cell nuclei in
biological materials [27]. We can think of biological cells as
a rough aggregation of multiple spheres or cylinders. We
carry out an experiment in which we image two cells
arranged such that the light scattered from one of them
illuminates the other. We observe clear tomographic recon-
structions for the two-cell sample from LT, which we could
not get using the single-scattering propagation model.

II. THEORY
A. Optical diffraction tomography

The Helmholtz equation describing scattering in an
inhomogeneous medium can be written as

U,(r) = —4zF(r)U(r), (1)

where U(r) is the total electric field: the sum of the incident
field U,(r) and the scattered field U(r). F(r) = [k*/(4x)]
{[n(r)?/(n3)] — 1} is the scattering potential of a sample

V2U,(r) + k*

with refractive index n(r) immersed in a medium with
refractive index ny. The optical wavelength in free space
is A, resulting in the wave number k = [(27ng)/4]. The
integral solution of Eq. (1) can be obtained using the
homogeneous Green’s function resulting in

U,(r) —/VF(r’)U(r’)G(r—r’)dr’, (2)

where G(r — ') = [(e*F"1)/|r — r’|] is the Green’s func-
tion of the 3D Helmholtz equation, Eq. (1).

B. Single-scattering propagation model

The scattered field U (r) in Eq. (2) is linear in U,(r)
but nonlinear in F(r). We can linearize the problem
by replacing the total field, U(r), with the incident field,
U,(r) [14]:

which is the Born approximation. We can expand it to
the Rytov approximation by simply changing the left
term of Eq. (3) to U;(r)log{[U(r)]/[U;(r)]}, which can
be thought of as the following first-order Taylor
expansion of the scattered field: U,(r) = U,;(r){[U(r)]/
U(r)] = 1} = U,(e)(e W0~ 1) = Uj(r) log
{[U(r)]/[U;(r)]}. The two approximations share the same
propagation model, which was originally derived from the
Born approximation. Therefore, we refer to the right term
of Eq. (3) as the single-scattering propagation model.
However, these approximations (Born and Rytov) are
only valid under the assumption of weak scattering.
Necessary conditions of the approximations were well
studied in Ref. [16] as follows:

A
An(r)L < 3 (Born approximation), (4)

2
An(r) > <V2¢ Sl) (Rytov approximation),  (5)
/3

where An(r) = n(r) —ng, L is the radius of an object,

and ¢,(r) = log{[U(r)]/[U;(r)]}.

Under the assumption of plane-wave incidence, U;(r) =
e™®" T Eq. (3) can be transformed as follows [14]:

o

_// (I‘) —i(k—k™") )T gy /. (6)

) _i(k*‘x+k)'y)dxdy

where U (r;z =0) is the measurement in the image

plane and k, = /k* — k? — k3. Equation (6) is a linear
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relationship between the measurements U (r;z = 0) and
F, and it can be directly or iteratively inverted to obtain F.
It is equivalent to the 3D k space of the object filled with
the 2D Fourier transform of the measured fields over the
Ewald sphere. In terms of computational implementation,
this mapping, Eq. (6), requires interpolation in the Fourier
domain, and it can cause pixelation errors [28,29]. To avoid
such errors, we directly define the single-scattering model
in the spatial domain using Eq. (3). Specifically, we can
propagate U,(r; z = 0) to the plane located outside of the
sample at 7 = d using the propagation kernel [30]. The
scattered field can be expressed in terms of the scattering
potential using the Green’s function resulting in

Us(r;z=4d) —/F(r’)Ui(r’)G(r;z—d—r’)dr’. (7)
v

Throughout this paper, we simulate the projections mea-
sured experimentally using the single-scattering propaga-
tion model of Eq. (7). We use this information to compare
with the quantity, U;(r)log{[U(r)]/[U;(r)]}, which is
necessity for the implementation of the Rytov
reconstruction algorithm.

C. Multiple-scattering propagation model (BPM)

We evaluate the performance of ODT with a nonlinear
propagation model based on the BPM [23]. We can
propagate the light through an inhomogeneous medium
by splitting the process in multiple fine steps, where each
step consists of diffraction followed by refraction. Denoting
the slowly varying envelope of the wave as A(r), the total
field can be written as U(x, y, z) = A(x, y, z)e™**. The BPM
can be written as follows:

Initial guess

<

A(x,y,z + dz) _ eikoAn(x,y,z)[dz/@os9)]F53{F2D[A(x,y,z)]

x emidl(G+k)/ (ktk)]y (8)

where An is the contrast between the RI of the sample
2 — k2 - k3. 6 is the angle of
the illuminating beam as cos™![(ki")/k], given k" =
(k}“,k;?, kiz“) [31]. Again, the 2D Fourier-transform
operator (F,p) and the 2D inverse Fourier-transform
operator (F5)) are defined as Fjpla(x,y,z)]=

Jfa(x.y,2)e” &tk dxdy and F3ha(ky, ky,2)] =[1/(27)?]
Jfaky,ky,z)e” 52 ThD) dk, dk,, respectively [23,32].

[n(x,y,z)] and ng, k, = 4 /k

D. Iterative reconstruction algorithm

Once the propagation model is determined as either
a single-scattering or a multiple-scattering propagation
model, we can specify a cost function that combines
an error term and a regularization that incorporates
prior knowledge regarding the sample. We impose the
total-variation (TV) and non-negativity constraints [23].
Specifically, the cost function is defined as

2LZ||9

where ¢!/ € CM denotes the experimental measurements
for a certain illumination angle /, f € RV denotes the
object function (the RI contrast), AV :RN — CM is the
propagation model which can be either single scattering

DIz +D(f) + N (). (9)

or multiple scattering for a certain angle I, D(f) =

(VP + (Vf P+ (Vo) (Ve 9,

and V_ are

Iterative reconstruction schemes

Single scattering

Multiple scattering (BPM)

Measurements

Mie or experiment

FIG. 1.

i
/
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The overall scheme of the paper.

034027-3



LIM, GOY, SHOREH, UNSER, and PSALTIS

PHYS. REV. APPLIED 9, 034027 (2018)

finite-difference operators in the x, y, and z dimensions,
respectively), N(f) is the indicator function, N(f) =
oo(f <0)or N(f) =0 (f >0), and 7 is the regularization
parameter setting the relative weight of the regularization
term. To minimize the cost function, Eq. (9), in both
cases, we use the fast iterative shrinkage-thresholding
algorithm (FISTA) [24].

The overall scheme of the paper is summarized in Fig. 1.
Measurements are acquired using either the Mie simulation
or the experiment. The measurements are used in two ways.
It is used to generate the initial guess (Rytov) via direct
inversion and also to compare with estimated measure-
ments generated by propagation models (single scattering
or multiple scattering). As long as the error between the
estimated and true measurements is large, we iteratively
update the RI contrast while also exploiting prior knowl-
edge (smoothness and positivity) in regularizations until
the solution converges.

II1. METHOD

A. Simulation setup

To obtain the equivalent experimental measurements, we
use Mie theory to derive the scattered field by a single
sphere [25,26]. In the simulations, the sample is illuminated
at 95 different angles. The k space representation of
illumination angles is shown in Fig. 2. We test the
algorithms on the following three different schemes. The
first is the case of variable RI contrast with a fixed size
(case 1), the second is the case of variable size with a fixed
RI contrast (case 2), and the third is the case of differing RI
contrast and size with a fixed sample-induced phase delay
(case 3). We also investigate the ability of LT in handling
multiple scattering using Mie theory for multiple cylinders
[26]. Uniformly distributed 101 angles (three cylinders) or
161 angles (two cylinders) between —z/4 and /4 are used
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FIG. 2. k space representation of normalized illumination k
vectors.

to scan the samples. To quantitatively evaluate the perfor-
mance, we calculate the error defined as

||nrecon - ntrue”% (10)

error(nrecon’ntrue) = ||n n H2 ’
true — 0112

where 7., is the reconstructed solution (RI) and n,, is
the ground truth (RI) used in the Mie simulation. The error
metric accounts for discrepancies in the shape of the object
as well as in the index values. In addition, to compare the
relative performances of the two propagation models, the
relative error is used and is defined as

error(nsgl ’ ntrue)

, (11)

relative error(ngg, N, Nirue) =

g error My, Myye )
where ng, and np,, are solutions acquired from the single-
scattering and multiple-scattering propagation models,
respectively.

B. Experimental setup

The experimental apparatus consists of a Mach-Zehnder
interferometer [20]. The signal and reference arms are
recombined at an angle of 1.43° before the detector in order
to record off-axis digital holograms. The light source is a
continuous-wave laser diode at 406 nm with a coherence
length of 250 um. The light is spatially filtered and
collimated. A sample is placed in the signal arm between
two infinity-corrected 100x oil-immersion microscope
objectives (UPlanApo NA1.4 on the detection side and
UplanFI NA1.3 on the illumination side). The effective
numerical aperture of the system is 1.3. The image is
projected on a scientific CMOS camera (Andor Neo) with
an effective magnification of 111. The samples are illumi-
nated with plane waves through the illumination objective
at different incidence angles. Angular scanning of illumi-
nation is achieved by placing two galvo mirrors (one for the
x axis and the other one for the y axis) in conjugate image
planes of the sample.

In this paper, we consider three types of samples. The
first sample consists of two silica fibers tapered down to a
diameter of 9 um using a hot flame. The fibers are placed
between the two objectives attached to an independent
three-axis stage so that they could be moved with respect to
each other. No coverslip is used in this case and the gap
between the two objectives is filled with immersion oil.
For the fiber experiment, the light source is a laser diode at
a wavelength of 450 nm. The second sample is a pair of
polystyrene microspheres with a nominal diameter of
4.45 ym. The spheres are placed on two 150-um-thick
glass coverslips facing each other, with each sphere sitting
on a different coverslip. The gap between the coverslips is
filled with a low fluorescence immersion oil (Nikon type N,
n0 = 1.518 at 546.1 nm and we = 41). The coverslip
holding the second sphere (close to the detector) can be
moved and aligned with respect to the first bead using a
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piezoelectric-driven stage (PI instruments). The third sam-
ple is a pair of live yeast cells immersed in water. The cells
are placed and controlled in the same way using the
piezoelectric-driven stage so that they overlap in the
z axis. We acquire 160 views equally spaced either on a
line along the x axis when the two fibers are aligned along
the y axis or on a circle for the two beads and two cells in
the k, ,, plane at an angle of 42° from the optical axis (the
effective angle on the sample).

C. Reconstruction setup

The algorithms are implemented using custom scripts in
MATLAB R2017a (MathWorks, Natick, Massachusetts) on a
desktop computer (Intel Core i7-6700 CPU, 3.4 GHz,
32 gigabytes of RAM). For faster computation, a graphics
processing unit (GeForce GTX 1070) is utilized. The com-
putational space is sampled with step size (Ax = Ay = Agz)
of 0.08 um (single bead and three cylinders) or 0.0856 ym
(two fibers, two beads, and two cells). The regularization
parameter, 7, is manually set as described in Table I. For both
models, the step size is reduced after every iteration, y**! =
0.985y* (single sphere, two beads, and two cells) or y¥*! =
0.99y% (multiple cylinders), and the iteration numbers for TV
and FISTA are 20 and 200, respectively. For both propagation
models, the stochastic gradient method is used with eight
randomly chosen angles out of the total recorded angles at
each iteration. In each case, the reconstruction obtained with
direct inverse scattering based on the first-order Rytov
approximation is used as the initial condition. The computa-
tional times of each model for various samples are also
provided in Table 1.

TABLE I. Parameters.
Data (single type) Size Single Multiple
XxYx2Z) Parameter  scattering scattering
Single sphere 14 0.001 0.001
(350 x 350 x 128) T 0.3 0.1
Time (sec) 1204 1218
Three cylinders 4 0.001 0.001
(1024 x 256) T 0.3 0.1
Time (sec) 90 217
Two cylinders (Mie) y 0.001 0.001
(1024 x 512) T 2 2
Time (sec) 179 411
Two cylinders (experiment) y 0.005 0.005
(1024 x 512) T 2 1
Time (sec) 174 409
Two beads y 0.001 0.001
(256 x 256 x 256) T 3 1.5
Time (sec) 989 1902
Two cells y 0.001 0.001
(256 x 256 x 256) T 0.01 10-3
Time (sec) 993 1946

(a) Real{log [U(r) / U]} (b) Imag {log [U(r) / U]}

55

BPM  Single scat.

FIG. 3. (a),(b) Log of amplitude and phase images of a single
bead. The first through fourth rows display the single-scattering,
BPM, Mie, and experimental data. The first through third
columns show illumination angles of 42°, 20°, and 0°. The scale
bars are 2 ym.

IV. RESULTS

We simulate the two propagation models (the single-
scattering model and the BPM) and then compare them
with the two methods (Mie and experiment) with which we
generate the projection data. Figure 3 shows the log of
amplitude and the phase of the 2D projections obtained by
different methods for different illumination angles. Log-of-
amplitude and phase maps can be obtained by taking the
real (log of amplitude) or imaginary (phase) part of
log{[U(r)]/[U;(r)]}. For simulations (single scattering,
BPM, and Mie), a 5-um bead (n = 1.605) is used with
immersion oil (n, = 1.537).

Looking at the experimental data in Fig. 3(a), we can
observe that a dark rim around the sample becomes
pronounced as the illumination angle increases. In addition,
Mie shows more fluctuation in the amplitude maps with an
increase in angle. The patterns of the dark rim and the
fluctuation are more similar to the BPM than to the single-
scattering model. For the phase maps, both single scattering
and the BPM are similar to Mie and the experiment,
as shown in Fig. 3(b). The sample-induced phase map
becomes elongated along the illumination direction.

A. Case 1: Variable RI contrast with a fixed size

Case 1 shows the effect of RI contrast on the perfor-
mance of each propagation model. Both models show a
gradual distortion with the increase of RI contrast in Fig. 4
(YZ cross sections of RI tomograms are provided in
Appendix A, Fig. 17). To be specific, with the increase
of RI contrast, the single-scattering model results in a lower
estimation of RI values and distorted RI profiles. The
multiple-scattering model shows a slight overestimation of
RI values but more consistent profiles. The performance of
each model is quantified by the error curve as in Fig. 5(a),
showing lower errors of the multiple-scattering model for
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FIG. 4. z axis profiles of RI tomograms of a single bead using
two different propagation models. From (a)—(e), the RI contrast
increases proportionally so that the sample-induced phase delay
equals to the number written on each column.

(a)

10°
— Single
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_ S
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" E Ts
o
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Number of iterations Number of iterations
FIG. 5. (a) Errors of the single-scattering and multiple-scattering

models for a 5-uym bead inducing 0.5z phase delay. (b) Relative
errors for various beads which differ in the RI contrast.

all cases (for the other cases, errors are in Appendix B,
Fig. 20). The relative effect of the increase in RI contrast
can be investigated by looking at relative errors [Fig. 5(b)].
As the RI contrast gradually increases, relative errors
increase in the range 0.57—1.5z. This result indicates that
the multiple-scattering model breaks more slowly than the
single-scattering model given the RI contrast changes.

B. Case 2: Variable size with a fixed RI contrast

For case 2, we assess the validity of the models by
increasing the diameter of the sphere. It can be clearly
observed that the reconstruction results from the single-
scattering model are lower in the RI values than the ground

— Single — Multiple Truth

g (@25um g (0)375um g (©50mm o  (@)625um  m  (€)7.5um
| J
25 25 25 25 25 25 25 25 25 25
zaxis zaxis Zzaxis zaxis zaxis
FIG. 6. z axis profiles of RI tomograms of a single bead using

two different propagation models. From (a)—(e), the diameter
increases proportionally. Each diameter is written on each
column.

(a)

10° 8
— Single
— Multiple
6
N s
S . 1 o
o
2
1072 0
0 50 100 150 200 O 50 100 150 200
Number of iterations Number of iterations
FIG. 7. (a) Errors of the single-scattering and multiple-scatter-

ing models for a 2.5-um bead inducing a 0.5z phase delay.
(b) Relative errors for various beads which differ in diameter.

truth but accurate in shapes. With an increase of the
diameter, the RI values increase but distortions along the
optical axis become pronounced, as shown in Fig. 6 (YZ
cross sections of RI tomograms are provided in Appendix A,
Fig. 18). Compared to single scattering tomography, LT
shows a good estimation of values overall and shows fewer
distortions in shape. We observe lower error values than
those of the single-scattering model [Fig. 7(a); for the other
cases, the errors are in Appendix B, Fig. 21]. The advantage
of LT against the single-scattering tomography can be
clearly seen in Fig. 7(b). We can observe the gradual
increase in relative-error values with an increase of the
diameter, indicating the gradual breakdown of the single-
scattering model is faster than the one of the multiple-
scattering model.

C. Case 3: Different RI contrast and size
with a fixed sample-induced phase delay

The purpose of case 3 is to see the relation between
the two different factors, the RI contrast and the size of the
sample. Here, the size of the sphere varies, keeping the
sample-induced phase delay at z. Therefore, each sample
differs in both RI contrast and size, but the product of the
two factors remains the same. In Fig. 8(a), the single- and
multiple-scattering models show an underestimation and
an overestimation of the RI values, respectively (YZ cross

— Single — Multiple Truth

g @25um g (0)375um o (c)50um 5 (@625um o (€)7.5um
- - - - = = =
’ | [ |
725.57 25 725,5 2‘,5 25 25 -2.5 25 -2.5 25
zaxis (um) zaxis (um) zaxis (um) zaxis (um) zaxis (um)
FIG. 8. z axis profiles of RI tomograms of a single bead using

two different propagation models. From (a)—(e), the diameter
increases proportionally and the RI contrast decreases, keeping
sample-induced phase delay at z. The diameter is written atop
each column.
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(a) (b)
10° - 8
— Single —2.5um
— Multiple — 3.75 um
6 5.0 um
5 | —625um
S S, 75um
b 10 - 4
o
2
1072 0
0 50 100 150 200 O 50 100 150 200
Number of iterations Number of iterations
FIG. 9. (a) Errors of the single-scattering and multiple-scattering

models for a 2.5-um bead inducing a 1z phase delay. (b) Relative
errors for various beads which differ in both the RI contrast and
the diameter.

sections of RI tomograms are provided in Appendix A,
Fig. 19). The inaccuracy decreases with an increase of the
diameter (with a decrease of the RI contrast). However, at
the same time, both models show more distortion in profiles
with an increase of the diameter. In case 3, the increase in
the diameter (the decrease in the RI contrast) has counter-
effects since the RI values become more accurate but the
shapes become more inaccurate. To numerically analyze
the results, the errors are calculated as in Fig. 9(a) (for the
other cases, the errors are in Appendix B, Fig. 22). In case
3, where the two effects have compensatory effects on the
errors, it is possible to observe that the relative-error values
converge [Fig. 9(b)] with the number of iterations.
However, the fact that the points converge around the
value of 4 indicates that LT is still more accurate than
single-scattering tomography is.

D. Comparative analysis

The converging points, which are defined as the end
points of errors and relative errors after 200 iterations,
are plotted in Fig. 10. Figures 10(a), 10(c), and 10(e)
give us more information about how the error of each
model is affected by changes in the individual factor
explaining changes in the relative errors in Figs. 10(b),
10(d), and 10(f). Overall, the breakdown of the single-
scattering propagation model is faster than the one of the
multiple-scattering propagation model with either an
increase of the RI contrast or the size, as you can see in
Figs. 10(b) and 10(d). When both the RI contrast and the
size change [Figs. 10(e) and 10(f)], the situation becomes
more complex. The converging points of the relative errors
stay almost constant, as shown in Fig. 10(f), because of the
different effectiveness of each factor. To be specific, in
terms of relative errors, when the RI contrast increases and
the size decreases, the effect of each factor compensates for
the opposite effect.

E. Simulation of the reconstruction
of three cylinders

To test the capacity for handling multiple scattering,
simulated measurements for multiple cylinders are
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0
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0
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FIG. 10. Converging points of errors and relative errors for (a),
(b) case 1, (¢),(d) case 2, and (e),(f) case 3.

generated using Mie theory [26]. A set of three cylinders
whose diameters are 4 ym and whose RI contrasts are
0.0254 is considered. The set of cylinders is rotated from 0°
to 90°, resulting in the gradual increase of the multiple-
scattering effect. As shown in Fig. 11, we can clearly see
that LT outperforms the single-scattering propagation
model for all cases. While the single-scattering tomography
shows smearing between cylinders, the LT maintains a
clear distinction among the three cylinders. It can be
quantitatively confirmed through the errors and relative
errors (For the other cases, the errors are in Appendix A,
Fig. 23), as shown in Fig. 12.

Single

Multiple

FIG. 11. XZ cross sections of RI tomograms of three cylinders
using two different propagation models. (Upper row) Single
scattering. (Lower row) Multiple scattering. From (a)—(e), the
sample is gradually rotated from 0° to 90°. The scale bars are
4 ym and An is 0.0254.
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FIG. 12. (a) Error of the single-scattering and multiple-scatter-

ing models for multiple cylinders rotated 90°. (b) Relative errors
for three cylinders rotated from 0° to 90°.

F. Phase-unwrapping simulations

The Rytov algorithm that we use in this paper as the
initial condition for the LT algorithm, and also as the core
of the single-scattering model algorithm, relies on the
measurement of the phase of each projection. If the optical
thickness of the sample exceeds 2z, then the measured
phase must be unwrapped. Here, we compare the perfor-
mance of two propagation models when the phase-
unwrapping algorithm fails. We perform simulations
using Mie theory to simulate the 2D projections that
are holographically recorded in the real system. The RI
contrast is increased so that the sample-induced phase
delay results in 3z. It is then difficult to properly unwrap
the phase, even with a state-of-the-art algorithm such as
the Phase Unwrapping Max-flow Algorithm, which is
used throughout this paper [33]. Since the Rytov approxi-
mation requires unwrapped phases for the reconstruction,
failure in unwrapping directly relates to severe distortions
in Rytov reconstructions, as shown in Fig. 13(a). Accurate
phase unwrapping is critical not only to single-scattering
tomography but also to LT because phase-wrapped mea-
surements result in undesirable local minima in the
minimization algorithm. Compared to single-scattering
tomography, which shows only smoothing effects

[Fig. 13(b)], LT is able to successfully reconstruct the
tomograms [Fig. 13(c)], even though it uses Fig. 13(a) as
the initialization. The effect is more dramatic in terms of
error, as in Fig. 13(d).

G. Comparison of simulations to experiments
1. Two fibers

We place two polystyrene fibers in three different
configurations, which are 0°, 40°, and 90°, where 0°
indicates that the two fibers are placed side by side and
90° indicates that they are one after the other along the light
propagation axis (z). Just as we compare the propagation
models for a single sphere in Fig. 3, we compare the ones
for two fibers placed in the different configurations and
added in Appendix C. In Fig. 11, we conclude that LT is
more robust to the rotation angle, showing clear distinctions
among cylinders, than the single-scattering propagation
model. This finding is experimentally confirmed again. In
Fig. 14, the single-scattering model suffers from a gradual
smearing between two fibers with an increase of the
rotation angle. By contrast, LT shows not only two distinct
fibers but also more consistency in the shapes and values
of the fibers, regardless of the rotation angle. Furthermore,
to confirm the experimental results, we simulate the same
configurations by placing two fibers whose diameters are
9 pm and An s are —0.055 at three different rotation angles,
0°,40°, and 90°. It is possible to clearly observe not only the
capacity of LT but also similar distortion patterns in the
single-scattering model in Fig. 14. Therefore, the capacity
of LT in handling multiple scattering is again confirmed.

2. Two beads

We prepare a sample consisting of two spherical beads so
that we can experimentally record the holographic projec-
tions and use the data to compare two propagation models.
Two 4.45-um beads are placed in a row so that they overlap
in the z axis. In the case of single-scattering tomography
which is based on Rytov, the location of the image plane is
very important [29]. Figure 11(c) confirms this fact. As the
sample is placed farther from the image plane, RI tomo-
grams become either smaller in size and higher in RI
contrast or bigger in size and lower in RI contrast, depend-
ing on the direction of defocus. This result is confirmed
again with two beads. It comes from the fact that the single-
scattering propagation model based on Rytov causes dis-
tortions moving away from the focal plane, as reported in

(a) Rytov (b) Single (c) Multiple (d) 37 FIG. 13. XY and YZ cross sections of RI
- tomograms of a high-contrast bead from

— Single . : . .

— Multiple (a) Rytov approximation, (b) single-scattering
tomography, and (c) LT. (d) Error of single-
scattering and multiple-scattering propagation
models. The scale bars are 2 um and An
is 0.1218.

50 100 150 200

Number of iterations
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FIG. 14. XZ cross sections of RI tomograms of two fibers using
two different propagation models. (Upper row) Single scattering.
(Lower row) Multiple scattering. From (a)-(c), the sample is
rotated for three angles, 0°, 40°, and 90°. The scale bars are 10 ym
and An is —0.055.

Ref. [29]. As shown in Figs. 15(a)-15(c), the image
obtained before the image plane becomes smaller in size
and higher in RI contrast, and the one after the image plane
becomes bigger in size and lower in RI contrast. By

contrast, LT clearly reconstructs two beads of equal
size and contrast [Figs. 15(d)-15(f)]. Since the BPM

An

Single

Multiple

FIG. 15. (a),(b) YZ and (b),(e) XY (left bead), and (c),(f) XY
(right bead) cross sections of RI tomograms of two beads using
different propagation models. (Upper row) Single scattering.
(Lower row) Multiple scattering. The white dotted lines represent
slices of the complementary figures. The scale bars are 2 ym and
An is 0.0894.

An

Single

&'.._','_____.

Multiple

FIG. 16. (a),(b) YZ, (b),(e) XY (left cell), and (c),(f) XY (right
cell) cross sections of RI tomograms of two cells using different
propagation models. (Upper row) Single scattering. (Lower row)
Multiple scattering. The white dotted lines represent the slices
of the complementary figures. The scale bars are 2 ym and
An is 0.125.

describes the propagated field itself through the sample,
it is not only unaffected by the location of the image plane
but also able to handle multiple scattering.

3. Yeast cells

To confirm the capability of LT with complex objects, we
also apply LT on biological cells rather than on the samples
whose RI values are homogeneous. Two yeast cells are
placed in a row, so the overall configuration is similar to the
previous two-bead case, but the cells have more complex
internal structures. Since the samples have more fine
structures, it restricts us from using a high regularization
parameter, making the cost function more dependent on the
propagation models. When looking at the cells in Fig. 16,
the one before the focal plane becomes smaller [Fig. 16(b)]
and the other grows larger [Fig. 16(c)]. This distortion has
been already observed in the two-bead case, Fig. 15. This
problem becomes more severe when a sample has fine
structures because many structures out of the focal plane
are differently distorted depending on the distance from
the focal plane and because the distorted parts interact with
one another. Therefore, the resolution deteriorates. By
contrast, LT tomography which makes use of the electric
field itself does not suffer from the problem, showing clear
cell structures even out of the focal plane, as shown in
Figs. 16(d)-16(f).

V. CONCLUSION

In this paper, we rigorously compare LT against conven-
tional single-scattering tomography. Mie theory provides
the analytical solution for the scattered field, given a sphere
so that we are able to evaluate the reconstruction fidelity
of each model accurately. To investigate the capability of
each model in dealing with nonlinearity, two factors which
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are directly related to nonlinearity, the RI contrast and the
size, are controlled either independently or simultaneously.
In all of the cases, LT consistently outperforms single-
scattering tomography. We attribute this improvement to
the fact that the BPM used by LT captures multiple
forward-scattering events. In general the BPM performs
relatively well in the simulation of inhomogeneous media
with small index contrast since the main limitation of the
method is the assumption that reflections can be neglected.
The improvement in performance becomes more pro-
nounced as the index or the diameter of the beads increases.
The most dramatic improvement is observed when we
image multiple objects (three cylinders). This result con-
firms the observation that object size matters since we can
consider the set of three cylinders a single large object. For
samples whose optical path exceed 2z, phase unwrapping
must be deployed in the Rytov algorithm. When the phase-
unwrapping algorithm fails as the optical path across the
5-pum sphere increases to 3z, single-scattering tomography
becomes severely distorted. For this case, we observe
that the iterations of the LT algorithm are able to correct
the distortions that are evident in the Rytov reconstru-
ction due to phase-unwrapping limitations. Finally, the
reconstruction of the Rytov algorithm is in focus only at the
plane of best focus of the optical system. For thick samples,
the sample becomes blurry away from the focal plane. This
defocusing is evident in Fig. 14. The distortion is a
combination of two factors: defocusing and multiple
scattering. The BPM helps to alleviate both of these
problems, allowing us to keep the entire sample in focus.
This result is experimentally confirmed using various
samples, two fibers, two beads, and two cells. As the
sample becomes more complex (thicker and with a higher
index contrast), ultimately, the BPM provides an inad-
equate estimate for the scattered field by the object since
reflections are neglected and the vectorial nature of the
optical field is ignored. In this case, the only way to realize
an improvement in performance is by adopting a more
sophisticated scattering model. There is an intermediate
level of sample complexity, however, at which the BPM
still provides a reasonably accurate prediction of the
scattered field but at which the nonlinear inversion problem
becomes very difficult due to the emergence of strong local
minima. In this regime, we believe that there is a global
minimum which is a good approximation of the true object,
but the LT algorithm cannot find it. It is possible that more
powerful optimization algorithms than the stochastic
method we use in this paper can provide a significant
improvement in performance.

APPENDIX A: FIGURES OF RI TOMOGRAMS

As supplementary figures, RI tomograms of a single
bead are provided for each case.

(d) 1.257

(e) 1.57

FIG. 17. YZ cross sections of RI tomograms of a single bead
using two different propagation models. (Upper row) Single
scattering. (Lower row) Multiple scattering. From (a)—(e), the RI
contrast increases proportionally so that the sample-induced
phase delay equals the number written atop each column. The
scale bars are 2 ym and An = [(phase delay)/z] x 0.0406.

(@) 2.5um (b)3.75um (c)5.0um (d)6.25um (e) 7.5 um

+[e0/0]
eoo00]

FIG. 18. YZ cross sections of reconstructed RI tomograms of a
single bead using two different propagation models. (Upper row)
Single scattering. (Lower row) Multiple scattering. From (a)—(e),
the diameter increases proportionally. The diameter is written
atop each column. The scale bars are 2 ym and An is 0.0406.

‘b‘375um ‘ciSOum ‘dISZSpm ‘ei?Sym An
nnnn 0

FIG. 19. YZ cross sections of RI tomograms of a single bead
using two different propagation models. (Upper row) Single
scattering. (Lower row) Multiple scattering. From (a)—(e), the
diameter increases proportionally and the RI contrast decreases,
keeping sample-induced phase delay at z. The diameter is
written atop each column. The scale bars are 2 ym and
An = [(5 pm)/diameter] x 0.0406.

a) 2.5 um
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APPENDIX B: FIGURES OF MODEL ERRORS

As supplementary figures, the errors for the sample are provided in detail for each case.

10° " T 10° . . 10° . .
(@) 0.5wr — single (b) 0.75r — single (c)1.00r — Single
— Multiple — Multiple — Multiple
s —1 S —1| 18 =1
= x o k o
1072 : : : 1072 : : : 1072 : : :
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Number of iterations Number of iterations Number of iterations
10° 10°
(d) 1.25r  — single (e) 1.5wr — single
— Multiple — Multiple
5o 5o
1072 : : : 1072 : : :
0 50 100 150 200 0 50 100 150 200
Number of iterations Number of iterations

FIG. 20. Errors of the single-scattering and multiple-scattering models for various beads with differing RI contrasts. From (a)—(e), the
RI contrast increases proportionally, so sample-induced phase delay equals the number written in each subfigure.
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FIG. 21. Errors of the single-scattering and multiple-scattering models for various beads with differing diameters. From (a)—(e), the
diameter increases proportionally. The diameter is written in each subfigure.
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FIG. 22. Errors of the single-scattering and multiple-scattering
From (a)-(e), the diameter increases proportionally and the RI
diameter is written in each subfigure.
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models for various beads differing in both RI contrast and diameter.
contrast decreases, keeping sample-induced phase delay at z. The
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FIG. 23. Errors of the single-scattering and multiple-scattering models for three cylinders which are gradually rotated (a)—(e) 0°-90°

with respect to the optical axis.

APPENDIX C: COMPARISON OF PROPAGATION
MODELS OF TWO FIBERS

We simulate two different propagation models, single-
scattering propagation and the BPM, and then compare
them with Mie and experimental data for two fibers placed
in different configurations. In Fig. 24, we can clearly see

differences among the single-scattering model, Mie, and
experimental data, especially in regions where the cylinders
intersect. On the other hand, interestingly, the BPM shows a
very similar log of amplitude and phase map to those of the
Mie and experimental data. We attribute this finding to the
capacity of the BPM to capture multiple scattering, which is
confirmed through the following results.
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FIG. 24. Sinograms of log of (a) amplitude and (b) phase
images of two fibers. The first through fourth rows indicate
single-scattering, BPM, Mie, and experimental data. The first
through third columns display rotation configurations of 0°, 40°,
and 90°. The scale bars are 5 ym.

APPENDIX D: NOISE SIMULATION FOR
THREE CYLINDERS

We add shot noise to the interferograms. The SNR in
decibels of shot noise can be defined as follows: 10 log VN,
where N is the number of photons per pixel. We generate
shot noise on interferograms of the three cylinders in the
paper from a Poisson distribution with a mean parameter
of N[I/(I)], where I is the intensity of the simulated
interferogram and (- - -) is the average. Figure 25 shows the
converging points of errors for both noiseless and noisy
cases. In noisy cases, we simulate two different cases of N,
5000 and 500. The converging points of the noisy cases are

(a) Number of photons: 5000 (b) Number of photons: 500

— — Single (noiseless)
© - Single (noise)
Multiple (noiseless)
@ Multiple (noise) —

— — Single (noiseless)
© - Single (noise)
Multiple (noiseless)
-+ Multiple (noise) T '

o
S
o
N

=3
L}

Converging points of errors
o
Y
~
Converging points of errors
N\

0° 22.5° 45° 67.5° 90° 0° 22.5° 45° 67.5° 90°
Rotation angle Rotation angle

FIG. 25. Converging points of errors for three cylinders which
are gradually rotated from 0°-90°. Two different average numbers
of photons per pixel, (a) 5000 and (b) 500, are used to generate
the shot noise.

not significantly different from the noiseless case. We can
conclude that the iterative reconstruction scheme with TV
regularization can handle the shot noise effectively unless
the light level is very low.
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