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We present a graphene-based metasurface that can be actively tuned between different regimes of
operation, such as anomalous beam steering and focusing, cloaking, and illusion optics, by applying
electrostatic gating without modifying the geometry of the metasurface. The metasurface is designed by
placing graphene ribbons on a dielectric cavity resonator, where interplay between geometric plasmon
resonances in the ribbons and Fabry-Perot resonances in the cavity is used to achieve a 2π phase shift. As a
proof of concept, we demonstrate that the wave front of the field reflected from a triangular bump covered
by the metasurface can be tuned by applying electric bias so as to resemble that of a bare plane and of a
spherical object. Moreover, reflective focusing and the change of the reflection direction for the above
mentioned cases are also shown.
DOI: 10.1103/PhysRevApplied.9.034021

I. INTRODUCTION

A gradient metasurface is a planar arrangement of
subwavelength scatterers of different shapes and sizes
designed to structure wave fronts of reflected or trans-
mitted optical beams by means of spatially varying the
optical response [1–5]. Light interaction with the meta-
surfaces defies the conventional laws of geometrical
optics, such as Snell’s law or the law of reflection,
and reveals a variety of nontrivial physical effects useful
for practical applications. Specifically, efficient beam
steering of the incident light in reflection and/or trans-
mission modes was reported for metasurfaces operating
in both narrow [6,7] and broad [8–11] frequency ranges.
Moreover, pronounced polarization dependence of the
steering directions and/or amplitudes of beams deflected
by metasurfaces has been demonstrated [12–18], thus
paving the way for the creation of ultrathin optical
polarizers and quarter- and half-wave plates [19–21]. A
great deal of attention has also been devoted to devel-
oping viable alternatives to conventional focusing devices
in transmission (lenses) [7,22–25] and reflection (para-
bolic reflectors) [26–31] geometries. In fact, reflectarrays
allow for the implementation of a parabolic phase
gradient along a planar surface, thus avoiding the
technologically complicated process of creating parabolic
surfaces for reflected light.

Recently, it was learned that metasurfaces can
replace transformation optics [32–34] when it comes to
implementing efficient cloaking devices. The essence of
optical cloaking is to surround the object to be hidden by a
material with carefully designed spatially varying dielectric
permittivity (optical cloak) so that the far-field radiation
pattern of the object-cloak system is as close as possible to
that of empty space. The efficient hiding of 2D and 3D
bumps by metasurface carpet cloaks has been reported
[35–40]. The advantage of metasurface-based cloaking is
that control of the polarization, phase, and amplitude of the
wave reflected by a cloaked object can be achieved [41]
without modifying all of the components of permittivity
and permeability tensors, which is required when using the
transformation optics approach.
The operational characteristics (angle of beam steering,

focal distance, angular efficiency, losses, etc.) of optical
devices based on metasurfaces designed using conventional
dielectric or metal materials is typically predefined by the
metasurface geometry and cannot be changed on the fly
during the device operation. This might be a significant
limitation when tuning of the device characteristics is
essential for device operation, particularly with the tunable
steering angle for optical switches. Attempts to overcome
this limitation using gate-tunable conducting oxides [42],
temperature-tunable nematic liquid crystals [43], or strain-
tunable elastic polymers [44] as metasurface building
blocks have been reported. Graphene plasmonic resonators
[45–51] provide a viable alternative [52–55] to design of*tlow@umn.edu
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an active metasurface that can be tuned by applying gate
voltage. Dynamic tuning of Fermi energy in graphene
plasmonic structures has been reported for optical switch-
ing [56] and infrared beam steering via acoustic modulation
[57]. Active tuning of the steering angle using graphene-
based metasurfaces operating in the reflection regime has
been reported [54,58].
The gradient metasurfaces are typically designed to

perform a particular specialized task, such as tuning, focus-
ing, or cloaking. In this paper, we demonstrate that it is
possible to design a versatile active metasurface using gate-
tunable graphene ribbons [59,60] on an arbitrary substrate
surface which is capable of performing each of the above-
mentioned specialized tasks depending on the electric bias
profile across the surface of the metasurface, i.e., without
changing the metasurface geometry. Specifically, we dem-
onstrate that far-field distribution of the electric field of the
wave reflected from a bump covered by such a metasurface
can resemble either that of bare plane (the cloaking case) or
that of an object of a different shape (illusion), depending on
the applied bias. In addition, we show that such wave-front
engineering—as anomalous reflection and focusing—can
also be achieved in conjunction with cloaking and illusion.
In what follows, we discuss general metasurface design

strategy in Sec. II, followed by theoretical and simulation
results for the abovementioned functionalities in
Secs. III–V. We end with some general discussions on
the experimental realization and performance issues of
the device in Sec. VI.

II. DESIGN OF THE METASURFACE

Figure 1(a) shows a schematic of the graphene-based
metasurface device. In general, the metasurface can be
implemented on a nonplanarized surface. At the desired
frequencies, midinfrared light incident on the metasurface
can be reflected in a nontrivial fashion to achieve various
functionalities. For example, the light can be reflected as
if the surface is planar [see Fig. 1(b)] or disguised as a
different surface morphology [see Fig. 1(c)]. The former is
often referred to in the literature as cloaking [61,62], the
latter as illusion optics [63]. The light can also be
anomalously reflected to far field as a plane wave in a
predetermined direction [see Fig. 1(d)], or onto a focal
point at the near field [see Fig. 1(e)], all achieved on a
nonplanar substrate.
The general implementation of these various reflection

modes can be achieved with the appropriate phase dis-
continuities, ϕ, at the graphene metasurface. The phase
discontinuity for any arbitrary reflection beam wave front
can be derived from ray-optics arguments. Let us consider a
general surface in 3D space, with coordinates of a point P
on the surface defined as

P ¼ ðu1; u2; u3Þ; ð1Þ

where u1 ¼ x1, u2 ¼ x2, u3 ¼ gðXÞ, X ¼ ðx1; x2Þ [see
Fig. 1(a)]. The normal to the metasurface, νðPÞ, is

νðPÞ ¼ ( − ∇gðXÞ; 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇gðXÞj2

p : ð2Þ

Suppose, αðPÞ and βðPÞ are unit direction vectors for
incident and reflected waves. Absent any phase disconti-
nuity along the surface, we can write the vector form of the
conventional Snell’s law as [64]

αðPÞ × νðPÞ ¼ βðPÞ × νðPÞ; ð3Þ
which is equivalent to ½αðPÞ − βðPÞ� × νðPÞ ¼ 0; i.e.,
αðPÞ − βðPÞ is parallel to νðPÞ. Therefore, we can write
[64,65]

αðPÞ − βðPÞ ¼ λνðPÞ;
where λ is a scalar factor, λ ∈ R. When we have a phase
discontinuity, given by a function ϕ, defined in the

FIG. 1. Illustration of the metasurface design and applications.
(a) Structure of the graphene ribbon (GR) array metasurface
covering a nonplanar surface. α and β are the directions of the
incident and reflected rays. (b)–(e) Depictions of different
reflection jobs discussed in the work. They are (b) cloaking with
specular reflection, (c) illusion optics, (d) cloaking with anoma-
lous reflection, and (e) reflective focusing.
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neighborhood of the surface, the generalized law of
reflection in vector form [65] is given by (Appendix A)

αðPÞ − βðPÞ ¼ ∇ϕðPÞ
k0

þ λνðPÞ; ð4Þ

where k0 is the free-space wave number. Based on the
desired operation, one would stipulate the required scatter-
ing beams α and β, and, starting from Eq. (4), we can
calculate the respective phase profiles ϕ. We defer these
calculations to Secs. III–V.
In practice, design of a phase-control metasurface

involves two steps [3]. First, a phase profile or phase mask
for the desired wave-front modification is calculated, and
then individual pixels of the phase profile, which locally
tailor the phase of the impinging wave, are designed.
The scattering phase is achieved with graphene ribbons
[45–48,50], whose plasmon resonance is tunable with
doping or width. In this work, we fix the ribbon widths
and vary the doping to achieve the desired phase, ϕ.
Figure 1(a) provides an illustration of the graphene-

ribbon-based metasurface on a dielectric layer. There is a
metal mirror below the dielectric layer separated at quarter-
wavelength distance from the graphene arrays. This quarter-
wavelength condition maximizes the field at the graphene
surface, hence enhancing light-matter interactions [54]. To
have total control over the wave front, the phase shift along
the metasurface needs to encompass the full 2π range. A
graphene ribbon, with its Lorentzian-like response, provides
a phase shift of only π. The interference between the
graphene resonator and the Fabry-Perot cavity provides
the extra phase shift to make the total range of phase
variation very close to 2π [54]. From the phase profile
function, ϕðPÞ, which we derive in Secs. III–V, we will be
able to assign the required phase to each respective ribbon.
In this work, graphene conductivity is described with the

finite-temperature Drude formula which accounts for the
intraband optical processes,

σðEFÞ ¼
2e2

πℏ2
kBT log

�
2 cosh

�
EF

2kBT

��
i

ωþ iτ−1
: ð5Þ

EF is the Fermi level of the ribbon, which is chosen
according to the desired scattering phase, ω is the angular
frequency taken to be equal to a free-space wavelength of
22 μm, τ is the graphene relaxation time, e is the electronic
charge, and T ¼ 300 K is the temperature. While choosing
the value for relaxation time, the fact that plasmon damping
increases due to the interaction with optical phonons from
graphene and the substrate should be considered [59]. In
this work, we assume a free-space wavelength of 22 μm,
which is significantly lower than the optical phonon energy
(about 0.2 eV) in graphene. Moreover, we assume a
substrate that does not have surface optical phonons at
the operating frequency, so a choice of relaxation time

> 0.1 ps to ensure the availability of a 2π shift (see
Appendix B) is justified. For example, CaF2 is transparent
in the midinfrared frequency region. We use a value of
τ ¼ 0.6 ps [59]. For the dielectric layer, we assume a
lossless refractive index of n ¼ 1.4, with a thickness of
3.93 μm corresponding to the quarter-wavelength
condition.
Simulations are performed using the Maxwell equa-

tion solver COMSOL Multiphysics [66] rf module. We model
each graphene ribbon in terms of its 2D current density.
To do so, we need to translate the spatial phase profile
into the corresponding conductivity profile. First, we
define the position of each ribbon by the coordinates of
its center. Then, using the phase profiles ϕ derived in
Secs. III–V, we get the discrete phase values for the
ribbons. Using these phase values, we can determine the
corresponding Fermi energy (EF) for the individual
ribbons. Then we get the required conductivity by
putting the EF values in the Drude equation [Eq. (5)].
Finally, in COMSOL, we use this spatial conductivity
profile, defined for each ribbon, as the conductivity of
the surface current densities. A fixed ribbon width of
500 nm and an inter-ribbon distance of 750 nm are used.
EF is varied between 0.15 and 0.8 eV. Perfectly matched
layer conditions are used at the simulation domain
boundaries, and the metal reflector is modeled with a
perfect electric conductor.

III. CLOAKING: SPECULAR AND
ANOMALOUS REFLECTION

In this section, we derive the phase function, ϕðPÞ,
required for cloaking with specular or anomalous reflected
beams. We assume that the metasurface is parametrized by
Eqs. (1) and (2). Following Eq. (4), we seek ϕ such that the
metasurface reflects all incident rays with direction α into
rays with direction β, where α and β are constant with
respect to P. Taking a double cross-product of Eq. (4) with
νðPÞ yields

0 ¼ ν × ½ðα − β − ∇ϕ=k0Þ × ν�
¼ ðα − β − ∇ϕ=k0Þ − ½ν · ðα − β − ∇ϕ=k0Þ�ν: ð6Þ

We seek ϕ such that ∇ϕðPÞ ¼ (ϕu1ðPÞ;ϕu2ðPÞ;ϕu3ðPÞ) is
tangential to the surface, i.e., ν · ∇ϕ ¼ 0. Here and in rest of
the paper, the notation ϕuiðPÞ indicates the derivative of
ϕðPÞ with respect to ui. Therefore, from Eqs. (2) and (6),
we obtain

∇ϕðPÞ ¼ k0fα − β − δ( − ∇gðXÞ; 1)g; ð7Þ
where

δ ¼
�ðα − βÞ · ( − ∇gðXÞ; 1)

1þ j∇gðXÞj2
�
: ð8Þ
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Equation (7) is a system of three differential equations
for an unknown phase function, ϕðPÞ, written in vector
form (see Appendix C for the coordinate form), which can
be reduced to two equations by taking into account that
ϕðPÞ is, in fact, a function of two variables, x1 and x2 [see
Eq. (1)]. Using the chain rule, we obtain

∂ϕ
∂xi¼

∂ϕ
∂uiþ

∂ϕ
∂u3

∂u3
∂xi ¼k0½αi−βiþðα3−β3ÞgxiðXÞ�; ð9Þ

where i ¼ 1 and 2, gxiðXÞ ¼ ∂gðXÞ=∂xi, and ∂ϕ=∂ui are
defined by Eq. (7). Integrating, we obtain the phase

ϕ½X; gðXÞ� ¼ k0½ðα1 − β1Þx1 þ ðα2 − β2Þx2
þ ðα3 − β3ÞgðXÞ� þ C; ð10Þ

with C being an arbitrary constant. For a 2D geometry, i.e.,
where the equations are independent of x2, the last equation
can be written as

ϕðx1Þ ¼ k0½ðα1 − β1Þx1 þ ðα3 − β3Þgðx1Þ� þ C: ð11Þ

In terms of the incident angle θi and the reflection angle
θr, we have α ¼ ð− sin θi;− cos θiÞ, β ¼ ð− sin θr; cos θrÞ.
Therefore, in terms of θi and θr, Eq. (11) becomes

ϕðx1Þ ¼ k0½ðsinθr − sinθiÞx1 − ðcosθr þ cosθiÞgðx1Þ� þC:

ð12Þ

This is the general phase equation for cloaking. When
θr ¼ θi, we have the phase for cloaking with specular
reflection.
Figure 2 shows simulation results for the specular

cloaking case. We have a triangular bump with a base
length of 100 μm and a height of 40 μm as the object to be
cloaked. Results are shown for a normal incidence of light.
Figures 2(a) and 2(b) show scattered-field (magnetic field
Hy) plots for the bare bump and the bare ground plane,
respectively. Next, the bump is cloaked by the metasurface
designed with the abovementioned ϕ value, and the
scattered-field plot is shown in Fig. 2(c). The accompany-
ing angle-resolved far-field intensity plots are shown in
log scale in Fig. 2(d). As we can see, within the angular
window of �40°, the angle-resolved intensity spectrum for
the cloaked bump and bare ground plane far field match
very well. The presence of sidelobes in the far field for the
bare ground plane can be attributed to the finiteness of the
simulation domain. If we increase the size of the simulation
domain, both the mainlobes and the sidelobes become
narrower and, ideally, with an infinitely large simulation
domain, we can expect only one narrow mainlobe.
In similar fashion, we can also implement an extended

version of the cloak, but with a nonspecular reflection
angle. Figure 3(a) demonstrates such an implementation,

designed with a 30° angle of reflection off normal. In
Figs. 3(a) and 3(b), the scattered fields are shown for a
normal and a 45° angle of incidence, respectively. The
white and black arrows show the incident and reflected
wave directions. There are some distortions in the wave
fronts, predominantly due to specular reflections from the
ground plane. In addition, we can also notice specular
reflection on the right side of the bump. As we can see, the
main beam is scattered at 30° off normal per the design,

FIG. 2. Simulation results for cloaking with specular reflection.
The cloaked object is a triangle-shaped bump. (a)–(c) Scattered-
field plots for the bare bump, the ground plane, and the cloaked
bump, respectively. (d) Corresponding far-field plots.

(a) (b)

(c)

FIG. 3. Simulation results for cloaking with anomalous reflec-
tion. (a),(b) Scattered-field plots for a normal and a 45° incidence,
respectively. For both cases, the angle of reflection is designed to
be 30°. (c) The corresponding far-field plots.
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while the power flow in specular directions (0° and 45°) is
more than an order of magnitude smaller.

IV. ILLUSION OPTICS

Suppose that a surface Γ0 in 3D space is parametrized by
a function (X; fðXÞ), and no phase discontinuity is given
on Γ0. The reflection of the rays by such a surface is
governed by the standard Snell’s law of reflection,

βðP0Þ ¼ α − 2½α · ηðP0Þ�ηðP0Þ; ð13Þ

where P0 ¼ (X; fðXÞ) is a point on Γ0, α and βðP0Þ are the
unit direction vectors for the incident and reflected waves,
and ηðP0Þ ¼ ½( − ∇fðXÞ; 1)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇fðXÞj2

p
� is the unit

normal.
We consider another metasurface, Γ, parametrized by

Eqs. (1) and (2) and derive a phase discontinuity, ϕðPÞ,
such that the metasurface ðΓ;ϕÞ does the same reflecting
job as the surface Γ0. That is, at each point P, the incident
ray with unit direction α is reflected into the ray with unit
direction βðP0Þ given in Eq. (13). From Eq. (4), we then
seek ϕ such that

α − βðP0Þ − ∇ϕðPÞ
k0

¼ λνðPÞ: ð14Þ

As in Sec. III, making a double cross-product of this
equation with ν and assuming that ∇ϕ · ν ¼ 0 yields

∇ϕðPÞ
k0

¼ α − βðP0Þ − f½α − βðP0Þ� · νðPÞgνðPÞ

¼ 2½α · ηðP0Þ�fηðP0Þ − ½ηðP0Þ · νðPÞ�νðPÞg; ð15Þ

where we use Eq. (13) to obtain the second line.
Equation (15) is a vector form of a system of three
differential equations (see Appendix C for coordinate form)
which, once again, can be simplified using the chain rule,

∂ϕ
∂xi ¼

∂ϕ
∂ui þ

∂ϕ
∂u3

∂u3
∂xi

¼ 2k0½α · ηðP0Þ� gx1ðXÞ − fx1ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇fðXÞj2

p ≔ AiðXÞ; ð16Þ

where i ¼ 1 and 2. Integrating a system of two differential
equations, Eq. (16), we obtain (see Appendix D for details)

ϕ(X;gðXÞ)¼
Z

x1

a
A1ðs;x2Þdsþ

Z
x2

b
A2ða;tÞdtþC: ð17Þ

For the case where the configuration is independent of x2,
Eq. (17) can be simplified to

ϕðx1Þ ¼ 2k0

Z
x1

a

½−α1f0ðsÞ þ α3�½g0ðsÞ − f0ðsÞ�
1þ f0ðsÞ2 dsþ C;

ð18Þ

which gives the phase required to be applied along a
surface gðx1Þ to mimic the reflection pattern of another
surface, fðx1Þ.
Figure 4 shows the simulation results implementing the

abovementioned ϕ for illusion optics. We have the same
triangular bump as the object to be cloaked (i.e., Γ0), and a
circular segment with chord length of 100 μm and height
of 40 μm as the desired illusion object (i.e., Γ).
Figures 4(a) and 4(b) show scattered-field plots for the
bare bump and the illusion object, respectively. When
the triangular bump is cloaked by the designed metasur-
face, the scattering pattern becomes similar to that of the
illusion object, which would make the triangular bump
appear to be a circular bump to an external observer. The
field plot for the cloaked object is shown in Fig. 4(c).
Angle-resolved far-field intensity plots are shown in
Fig. 4(d) for a comparison of these three cases. There is
good agreement between the cloaked bump and the illusion
object in the far field, especially within the angular window
of �50°.

V. REFLECTIVE FOCUSING

In this section, we consider focusing a plane wave onto
a point Dðd1; d2; d3Þ using a metasurface parametrized by
Eqs. (1) and (2) [see Fig. 1(e)]. Assuming that α is the
constant unit incident vector, we rewrite Eq. (4) as

(a) (b)

(c) (d)

FIG. 4. Simulation results for illusion optics. The cloaked
object is a triangle-shaped bump, and the illusion object is a
circular segment. (a)–(c) show the scattered-field plots for the
bare bump, the bare illusion object, and the cloaked bump,
respectively. (d) The corresponding far-field plots.
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α −
D − P
jD − Pj −

∇ϕðPÞ
k0

¼ λνðPÞ;

where ϕðPÞ is the phase discontinuity along the metasur-
face and ðD − PÞ=jD − Pj is the unit reflected vector.
Making the double cross-product with ν yields

∇ϕðPÞ
k0

¼ α −
D − P
jD − Pj −

��
α −

D − P
jD − Pj

�
· ν

�
ν: ð19Þ

The system of differential equations (19) (see Appendix C
for the coordinate form) can be simplified by calculating
derivatives of the phase function, ϕðPÞ, with respect to x1
and x2, using the chain rule [see Eq. (9)],

∂ϕ
∂xi ¼ k0

�
αi −

di − xi
jD − Pj þ

�
α3 −

d3 − gðXÞ
jD − Pj

�
gxiðXÞ

�

¼ k0

� ∂
∂xi jD − Pj þ ∂

∂xi ½αixi þ α3gðXÞ�
�
;

with i ¼ 1 and 2. Therefore, we obtain the phase

ϕ(X; gðXÞ) ¼ k0½jD − Pj þ α · (X; gðXÞ)� þ C:

For a 2D geometry independent of x2, D ¼ ðxd; zdÞ, and
α ¼ ð− sin θi;− cos θiÞ, the phase equation reduces to

ϕðx1Þ ¼ k0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − xdÞ2 þ ½gðx1Þ − zd�2

q
− x1 sin θi

− gðx1Þ cos θi
�
þ C: ð20Þ

In a similar way, we can demonstrate (see Appendix E)
that the phase discontinuity

ϕðx1Þ ¼ k0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − xsÞ2 þ ½gðx1Þ − zs�2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − xdÞ2 þ ½gðx1Þ − zd�2

q �
þ C ð21Þ

should be imposed on the metasurface for focusing rays
radiated by a point source located at S ¼ ðxs; zsÞ.
Simulation results for reflective focusing of incident

parallel beams (the plane wave) and the point dipole source
are shown in Fig. 5. In the scattered-field intensity plots of
Figs. 5(a), 5(b), and 5(c), we have incident parallel beams
focused on a point at a distance of 150 μm from the base of
the triangular bump (i.e., the ground plane). First, we
consider normal incidence. Figures 5(a) and 5(b) show the
simulation results for normal incidence. Last, we consider
oblique incidence with a 30° angle in Fig. 5(c). The
direction of incidence is indicated by white arrows
and the position of the focusing point is indicated
with an ×. Flat gradient metasurfaces allow high-NA

diffraction-limited focusing without spherical abberation
[2,7]. The size of the focal spot in Figs. 5(a)–5(c) is
comparable to the free-space wavelength of 22 μm.
In Fig. 5(d), an example shows the focusing of a point

source. The source is at ð−50; 250Þ μm and the focusing
point is at ð50; 150Þ μm. The point source is modeled by a
electric point dipole in COMSOL, with its dipole moment
oriented along the x1 direction. As there is no straightfor-
ward way to use a point source for scattered-field calcu-
lation in COMSOL, we simulate for the total field instead,
with a point dipole acting as a point source. The plotted
quantity in Fig. 5(d) is the total field intensity; i.e., both the
incident and reflected fields are present. We can see a
higher intensity of field around the designed focus point,
indicating the focusing effect.

VI. DISCUSSION AND CONCLUSION

In conclusion, we demonstrate in this paper the versa-
tility of a graphene-based metasurface that is capable of
active switching between regimes of operation—such as
anomalous beam steering, focusing, cloaking, and illusion
optics—simply by changing the electric bias applied to the
graphene constituents of the metasurface without changing
the metasurface geometry. These various functionalities
are usually available in a disparate manner in the existing
literature, and we show in this work that they can be
described within a general framework for an arbitrary
surface morphology. The proposed approach, particularly
in the context of a graphene metasurface, makes perfect

FIG. 5. Simulation results for reflective focusing off of an
arbitrary surface. (a)–(c) Field intensity plots for focusing of an
incident plane wave to a focal distance of 150 μm from the
ground plane. (a),(b) show normal incidence while (c) shows the
result for 30° incidence. In (a) and (c), the focal point is located
150 μm away in the normal direction, while, in (b), the focal
point is at an angle of 30°. (d) Focusing of a point dipole source.
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sense since graphene can be electrically tunable to achieve
arbitrary phase function and it conforms to any surface
morphology. As an example, we consider in the paper a
triangular bump covered by a graphene metasurface, made
from graphene ribbons on the dielectric resonator, and
demonstrate that, by applying an electric bias, the wave
front of the wave reflected by the bump can be tuned to
match that of the bare plane (cloaking) or the hemisphere
(illusion optics). Moreover, the possibility of anomalous
steering and focusing of the wave reflected by a graphene-
metasurface-covered bump is shown. The slight distortion
of the metasurface far-field radiation pattern from that of
the bare plane or hemisphere can be attributed to the
specular reflection from the parts of the metasurface not
covered by graphene ribbons, as well as to the fact that the
reflectivity of the graphene ribbon depends on the applied
electric bias. Finite-size effects also show up in the field
profile due to the finiteness of the simulation domain, the
discretization of the metasurface, and the contribution
from the apex of the triangle [37,67]. We expect that, by
optimizing the metasurface geometry, these distortions can
be reduced.
The device configuration considered here can be fab-

ricated with conventional film deposition and nanopattern-
ing technologies. The transfer of graphene [68,69] onto the
bump structure and its patterning by electron-beam lithog-
raphy would be straightforward, as demonstrated elsewhere
[70,71]. Nevertheless, there are a few issues that need to be
addressed in terms of practical implementation. First, we
should select a proper material for an optical spacer which
is transparent over the concerned frequency range and
compatible with conventional thin-film-deposition technol-
ogies. In addition, it is important to have limited roughness
on the film surface for the graphene transfer that follows.
For midinfrared applications, silicon oxide (SiO2) [72] and
hexagonal boron nitride [73] have been popularly used as
substrates for graphene, although plasmon losses due to
strong plasmon-phonon coupling should be taken into
consideration to determine the operation wavelength.
Diamondlike carbon [59] and calcium fluoride (CaF2)
[74] can be good candidates, as they do not have polar
phonons in this frequency range. The issue involving
graphene and substrate losses is discussed in Appendix B.
The insulating property and dielectric strength of the
material used for the optical spacer becomes one of the
important design parameters, from which the tunable range
of graphene conductivity is largely determined. Another
important aspect is addressing individual ribbons for sepa-
rate doping. A recent work [75] demonstrated that having
embedded local gating structures with graphene is exper-
imentally feasible. The large dielectric thickness arising
from the quarter-wavelength requirement could potentially
impede electrical gating, as a voltage of about 700 V is
required to achieve EF ¼ 0.3 eV, with a dielectric thickness
of 3.93 μm and a static dielectric constant of 6.8 (for CaF2).

The dielectric breakdown limit of CaF2 is 14.44 MV=cm
[76], which, in this case, gives a breakdown voltage of
approximately 5600 V. Despite being below the breakdown
limit, such high values of gate voltages could be impractical
from an experimental point of view. We could employ
several strategies to make this electrical gating more exper-
imentally favorable. We could decrease the operating wave-
length and/or choose a spacer layer with a higher dielectric
constant, which would decrease the thickness. Moreover,
other techniques of doping graphene, such as chemical
doping [77] and using ion gel [78], could also be explored.
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APPENDIX A: GENERALIZED SNELL’S LAW
IN VECTOR FORM

Let rays of light be incident from point S ¼ ðs1; s2; s3Þ,
at a point Pðx1; x2; x3 ¼ aÞ on a plane, Γ, parallel to the
x1-x2 plane, located at x3 ¼ a. Incident rays are then
reflected to a point D ¼ ðd1; d2; d3Þ. The normal to P is
ν ¼ k̂≡ ð0; 0; 1Þ (see Fig. 6). Therefore, the incident unit

vector from S into a point P on Γ is α ¼ ðSP	!=jSP	!jÞ, and
the reflected unit vector from P into D is β ¼ ðPD	!=jPD	!jÞ.
Since the ray is propagating in vacuum, from Fermat’s
principle, the least-optical paths for the incident and

reflected rays are given by jSP	!j and jDP
	!j, and the

corresponding accumulated phases are given by k0jSP	!j
and k0jDP

	!j, respectively, where k0 is the free-space wave
number and j · j denotes the Euclidean distance. We
introduce a phase discontinuity ϕ along Γ. According to
the principle of stationary phase [6,79], we then seek to

minimize the total phase k0jSP	!j þ k0jDP
	!j − ϕðPÞ for

P≡ ðx1; x2; aÞ in Γ. Therefore, at the extreme point on
Γ, by differentiating the total phase with respect to x1 and
x2, we must have

k0
x1 − s1

jSP	!j
þ k0

x1 − d1

jDP
	!j

¼ ∂ϕ
∂x1 ;

k0
x2 − s2

jSP	!j
þ k0

x2 − d2

jDP
	!j

¼ ∂ϕ
∂x2 ;

which, from the definitions of α and β above, can be
rewritten as

ðk0α − k0βÞ · î ¼
∂ϕ
∂x1 ; ðk0α − k0βÞ · ĵ ¼

∂ϕ
∂x2
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for x1, x2 and x3 ¼ a. Since the normal ν ¼ k̂, we therefore
obtain the following expression of the generalized reflec-
tion law:

k0α − k0β ¼ ∂ϕ
∂x1 îþ

∂ϕ
∂x2 ĵþ ξν:

Notice that, when there is no phase discontinuity, i.e.,
ϕ ¼ 0, we recover the standard reflection law in vector
form. If ϕ is defined in a small neighborhood of the plane
Γ—i.e., ϕðx1; x2; x3Þ is defined for all x1, x2 quantities and
for very small x3 − a values—then we can write the
formula

α − β ¼ ∇ϕ
k0

þ λν; ðA1Þ

where λ is a scalar. Equation (A1) is the vector form of the
generalized Snell’s law for reflection.

APPENDIX B: THE EFFECT OF LOSS ON PHASE

The attainable range of reflection phase is dependent
upon absorptive losses in the device. The reason for losing
the phase shift of 2π with increased losses can be explained
with arguments based on coupled-mode theory (CMT). The
graphene-substrate-metal device structure creates an asym-
metric Fabry-Perot resonator with a perfectly reflective
mirror (metal) and a partially reflective mirror (graphene–
dielectric layer interface). This can be effectively described
as a one-port single resonator, working at a resonant
frequency of ω0 [80]. According to CMT, when the
resonator is excited by an external excitation of frequency
ω, the reflection coefficient is given by [81]

r ¼ γr − γa − iðω − ω0Þ
γr þ γa þ iðω − ω0Þ

;

where γr ¼ 1=τr is the rate of external or radiative losses
and γa ¼ 1=τa is the rate of internal of absorptive losses.
Figure 7(a) shows the plot of r in a complex plane for
different ω0 values with a fixed ω value. As can be seen in

the plot, when absorptive losses are smaller than radiative
losses (γr > γa), r covers all four quadrants in the complex
plane and the reflection phase covers the whole −π-to-π
range. This situation is referred to as underdamped. But
when absorptive loss surpasses radiative loss, i.e., γr < γa,
the phase of r can no longer go from −π to π and the system
is referred to as overdamped.
In our device, by changing EF, the plasmon resonance

frequency is varied, as ω0 ∝
ffiffiffiffiffiffiffiffiffiffiðEFÞ

p
. The radiative losses

(γr) are constant, as they are dependent on the dimensions
of the device. The absorptive losses (γa) are proportional to
the inverse of the relaxation time, 1=τ, and the imaginary
part of the refractive index of the dielectric cavity, k. Hence,
when τ is decreased or k is increased, the system moves
from underdamped to overdamped and the 2π phase shift
range is lost. In Fig. 7(b), the reflection phase is plotted as a
function of EF for different relaxation times τ. The phase
shift range becomes much smaller than 2π when τ is
decreased below 0.1 ps. Similar behavior can be seen when
k is increased above 0.15. Both τ and k are parameters
related to the total absorptive loss in the device. Similar
phase behavior was observed in Ref. [80] for metal-
insulator-metal–based metasurfaces.

FIG. 6. Ray diagram illustrating the generalized Snell’s law; see
also Eq. (A1).

(a)

(b)

FIG. 7. Effect of intrinsic losses on the achievable phase range.
(a) Complex plane plot of the reflection coefficient for the
analytical model of the structure described in Ref. [81] using
the single-port resonator model. When the intrinsic losses exceed
the external or radiative losses, the phase of r cannot cover all
four quadrants (the blue and red curves) of the complex plane,
and the 2π phase shift is lost. (b) Simulation results of EF vs the
phase for the device with different relaxation times τ. As τ goes
below 0.1 ps, we see a drastic change in phase profile.
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APPENDIX C: COORDINATE REPRESENTATION
OF THE VECTOR EQUATIONS FOR PHASE

FUNCTION

The coordinate form of the vector equation (7) is

∂ϕðPÞ
∂u1 ¼ k0½α1 − β1 þ δgx1ðXÞ�;

∂ϕðPÞ
∂u2 ¼ k0½α2 − β2 þ δgx2ðXÞ�;

∂ϕðPÞ
∂u3 ¼ k0ðα3 − β3 − δÞ:

The coordinate form of the vector equation (15) is

∂ϕðPÞ
∂u1 ¼ 2k0½α · ηðP0Þ�

 
−fx1ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇fðXÞj2

p
þ ½ηðP0Þ · νðPÞ� gx1ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

!
;

∂ϕðPÞ
∂u2 ¼ 2k0½α · ηðP0Þ�

 
−fx2ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇fðXÞj2

p
þ ½ηðP0Þ · νðPÞ� gx2ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

!
;

∂ϕðPÞ
∂u3 ¼ 2k0½α · ηðP0Þ�

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇fðXÞj2
p

− ½ηðP0Þ · νðPÞ� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇gðXÞj2

p
!
:

The coordinate form of the vector equation (19) is

∂ϕðPÞ
∂u1 ¼ k0

(
α1 −

d1 − x1
jD − Pj

þ
��

α −
D − P
jD − Pj

�
· ν

�
gx1ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

)
;

∂ϕðPÞ
∂u2 ¼ k0

(
α2 −

d2 − x2
jD − Pj

þ
��

α −
D − P
jD − Pj

�
· ν

�
gx2ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

)
;

∂ϕðPÞ
∂u3 ¼ k0

(
α3 −

d3 − gðXÞ
jD − Pj

−
��

α −
D − P
jD − Pj

�
· ν

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

)
:

APPENDIX D: INTEGRATING OF A SYSTEM OF
DIFFERENTIAL EQUATIONS (16)

In this section, we integrate a system of differential
equations, Eq. (16), obtained for the illusion optics case,

∂ϕ
∂x1 ¼ 2k0½α · ηðP0Þ� gx1ðXÞ − fx1ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇fðXÞj2
p ≔ A1ðXÞ;

∂ϕ
∂x2 ¼ 2k0½α · ηðP0Þ� gx2ðXÞ − fx2ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇fðXÞj2
p ≔ A2ðXÞ:

If ϕ and g are C2, then the mixed partials ð∂2=∂x1∂x2Þ
½ϕ(X; gðXÞ)� and ð∂2=∂x2∂x1Þ½ϕ(X; gðXÞ)� must be equal.
Therefore, to have a solution ϕ, the following compatibility
condition among α, f, and g must hold:

∂
∂x2 A1ðXÞ ¼

∂
∂x1 A2ðXÞ: ðD1Þ

In fact, if Eq. (D1) holds, we obtain the phase ϕ by
integration as follows. To simplify the notation, set hðXÞ ¼
ϕ(X; gðXÞ). Thus, we need to solve the system

∂h
∂x1 ¼ A1;

∂h
∂x2 ¼ A2:

Integrating the first equation with respect to x1 yields

hðx1; x2Þ ¼
Z

x1

a
A1ðs; x2ÞdsþWðx2Þ:

Differentiating the last equation with respect to x2 gives

∂h
∂x2 ðx1; x2Þ ¼

Z
x1

a

∂A1

∂x2 ðs; x2ÞdsþW0ðx2Þ

¼
Z

x1

a

∂A2

∂x1 ðs; x2ÞdsþW0ðx2Þ ½fromEq:ðD1Þ�

¼ A2ðx1; x2Þ−A2ða;x2Þ þW0ðx2Þ:

Thus, W0ðx2Þ ¼ A2ða; x2Þ and, by integration, Wðx2Þ ¼R x2
b A2ða; tÞdtþ C. Therefore, we obtain

ϕ(X; gðXÞ) ¼
Z

x1

a
A1ðs; x2Þdsþ

Z
x2

b
A2ða; tÞdtþ C:

APPENDIX E: FOCUSING FROM POINT
SOURCE TO POINT

Here, we devise a metasurface for reflective focusing due
to a point source. Let Sðs1; s2; s3Þ and Dðd1; d2; d3Þ be two
points above the surface parametrized by Eqs. (1) and (2).
We seek a phase discontinuity so that all rays incident from
S are reflected into D. Then the incident unit direction
equals ðP − SÞ=jP − Sj and the reflected unit direction
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equals ðD − PÞ=jD − Pj. From Eq. (4), we then seek ϕ
so that

P − S
jP − Sj −

D − P
jD − Pj −

∇ϕðPÞ
k0

¼ λνðPÞ:

Following similar steps as discussed in Sec. V,

∇ϕðPÞ
k0

¼ P− S
jP− Sj−

D− P
jD− Pj−

��
P− S
jP− Sj−

D− P
jD− Pj

�
· ν

�
ν:

Writing in coordinates yields

ϕu1 ¼ k0

(
x1 − s1
jP − Sj −

d1 − x1
jD − Pj

þ
��

P − S
jP − Sj −

D − P
jD − Pj

�
· ν

�
gx1ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

)
;

ϕu2 ¼ k0

(
x2 − s2
jP − Sj −

d2 − x2
jD − Pj

þ
��

P − S
jP − Sj −

D − P
jD − Pj

�
· ν

�
gx2ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

)
;

ϕu3 ¼ k0

(
gðXÞ − s3
jP − Sj −

d3 − gðXÞ
jD − Pj

−
��

P − S
jP − Sj −

D − P
jD − Pj

�
· ν

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇gðXÞj2
p

)
:

Hence, by the chain rule,

∂ϕ
∂xi ¼

∂ϕðu1; u2; u3Þ
∂ui þ ∂ϕðu1; u2; u3Þ

∂u3
∂u3
∂xi

¼ k0

�
xi − si
jP − Sj −

di − xi
jD − Pj

þ gðXÞ − s3
jX − Aj gxiðXÞ −

d3 − gðXÞ
jD − Pj gxiðXÞ

�

¼ k0

� ∂
∂xi jP − Sj þ ∂

∂xi jD − Pj
�
;

with i ¼ 1 and 2. Therefore, we obtain the phase as

ϕ ¼ k0ðjP − Sj þ jD − PjÞ þ C:

For a 2D geometry independent of x2, S ¼ ðxs; zsÞ, and
D ¼ ðxd; zdÞ, the phase equation reduces to

ϕðx1Þ ¼ k0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 − xsÞ2 þ ½gðx1Þ − zs�2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − xdÞ2 þ ½gðx1Þ − zd�2

q �
þ C: ðE1Þ
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