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Recently, it was suggested that the polarization dependence of light absorption to a single-walled carbon
nanotube is altered by carrier doping. We specify theoretically the doping level at which the polarization
anisotropy is reversed by plasmon excitation. The plasmon energy is mainly determined by the diameter of
a nanotube because pseudospin makes the energy independent of the details of the band structure. We find
that the effect of doping on the Coulomb interaction appears through the screened exchange energy, which
can be observed as changes in the absorption peak positions. Our results strongly suggest the possibility
that oriented nanotubes function as a polarization switch.
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I. INTRODUCTION

A carbon nanotube (CNT) [1] absorbs light whose linear
polarization is parallel to the tube’s axis (Ek) but not when
the polarization is perpendicular to it (E⊥) [2–4]. The
optical anisotropy of a CNT enables oriented CNTs to
function as an optical polarizer [5,6]. Recently, it was
theoretically predicted that the polarization dependence is
reversed by charge doping [7]; a doped CNT transmits Ek
and absorbs E⊥ (see Fig. 1).
The absorption of E⊥ originates from the resonant

excitation of collective oscillations of electrons (plasmon),
which differs entirely from the excitation of individual
electrons or excitons by Ek in an undoped CNT [7,8]. This
theory of plasmon resonance accounts qualitatively for the
anomalous absorption peaks observed experimentally in
doped CNTs [9–12]. However, because the theoretical
conclusion was derived using the Drude model, which
takes account only the intraband electronic transitions, the
exact doping and chirality [13] dependences of the absorp-
tion spectrum remain unknown.
In this paper, we elucidate these dependences by inves-

tigating the competition between intra- and interband
transitions with the Kubo formula. On the basis of predicted
doping and chirality dependences, we conclude that doped
CNTs absorb E⊥ over frequencies ranging from infrared to
visible. This expands the application range of CNT polar-
izers and suggests the possibility that the polarization
direction of transmitted light is changed by 90° with doping
rather than by spatial rotation.

This paper is organized as follows. In Sec. II, we explain
the optical selection rule of CNTs. By calculating the
dynamical conductivity, we show that momentum conser-
vation and pseudospin play very essential roles in deter-
mining the possible transitions. In Sec. III, we examine
absorption spectra for armchair and zigzag CNTs, which
are the main result of this paper. The effect of Coulomb
interaction on the absorption spectra is studied in Sec. IV.
Our discussion is provided in Sec. V. The calculation
details, which are necessary to reproduce the results of
Secs. II and III, are given in the Appendix.

II. SELECTION RULE

A. Parallel polarization

The electronic transition caused by Ek is a direct
transition without a change in momentum of a photo-
excited electron [2]. In the band diagram of a (10,10)
armchair CNT shown in Fig. 2(a), each of the band
curves plotted as a function of the wave vector along the
tube’s axis (kk) is an eigenstate of the momentum around
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FIG. 1. Optical anisotropy of oriented CNTs. Oriented and
undoped (doped) CNTs pass E⊥ (Ek) only. Thus, oriented CNTs
function as a polarization switch.*sasaki.kenichi@lab.ntt.co.jp
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it and specified by magnetic quantum number m [14].
The two bands with linear dispersion that cross each
other at E ¼ 0 have vanishing m, while the other curve is
degenerate (�jmj) corresponding to the clockwise and
anticlockwise circumferential motions, and the magnitude
jmj increases with the energy jEj. Because the samem value
appears in the conduction and valence bands symmetrically
with respect to E ¼ 0, there are two possible cases of direct
transition: transition between the valence and conduction
bands (interband transition) or within either band (intraband
transition).
The doping dependence of the direct interband transi-

tion is roughly known from Fermi-Dirac statistics. When
the doping level is low, e.g., EF ¼ 0 eV (undoped), the
direct interband transitions denoted by M11 and M22 in
Fig. 2(a) are both allowed by the Pauli exclusion principle
[15,16], while when the doping level is high, e.g.,
EF ¼ 1 eV, M11 is forbidden, although M22 is still
allowed. In Fig. 2(b), the calculated real part of the

dynamical conductivity ReðσkÞ shows that the M11 peak
disappears when EF ¼ 1 eV. Meanwhile, a Drude peak
corresponding to the direct intraband transition denoted by
D in Fig. 2(a) develops in the zero-frequency limit of
ReðσkÞ. The peak intensity increases with doping because
the density of states at EF increases with doping. The
disappearance of the M11 peak and enhancement of the
Drude peak are evidence of high doping that is provided by
the absorption spectra of Ek.

B. Perpendicular polarization

The electronic transition caused by E⊥ is the indirect
transition, and transitions with an m change of �1,
Δm ¼ �1, are dominant over transitions with jΔmj ≥ 2.
This selection rule is a consequence of momentum
conservation being applied to a case where at the surface
of a CNT, the azimuthal component of E⊥ is approx-
imately written as a sine (or cosine) function of the
azimuthal angle (θ) of the cylinder [2]. More precisely,
this selection rule is a consequence of momentum
conservation being used in combination with the two
facts that a plane wave is a superposition of different
magnetic quantum numbers and that tube diameter dt of
nanometer scale is much shorter than the light wave-
length of micrometer scale [7,17]. The proof goes as
follows.When the light polarization is set perpendicular (ex)
to a tube’s axis (ez), an incident plane wave of frequency ω
and amplitudeEin is written asEineiðky−ωtÞex. In a cylindrical
coordinate system ðr; θ; zÞ, the field is expressed as

E⊥ðr; θ; tÞ ¼ Eineiðkr sin θ−ωtÞ

0
B@

cos θ

− sin θ

0

1
CA: ð1Þ

By using the formula for the Bessel functions
eikr sin θ ¼ P∞

m¼−∞ JmðkrÞeimθ, we obtain the azimuthal
component as

Eθ ¼
X
m

Ein

2i
½Jmþ1ðkrÞ − Jm−1ðkrÞ�eiðmθ−ωtÞ: ð2Þ

Because JnðkrÞ ∝ ðkrÞn, jEθj is dominated by the modes
with m ¼ �1 when kr ≪ 1, which we assume throughout
this paper [18]. Applying the momentum selection rule to
the band diagram in Fig. 2(c), we can expect that the
transitions denoted by A and B to develop the peaks in
Reðσ⊥Þ for an undoped and doped CNT, respectively, and
these are confirmed in Fig. 2(d).
The selection rule Δm ¼ �1 explained above is a result

of the momentum conservation only, and the indirect
transitions are further restricted to the forward scattering
by the symmetry that originates from the two sublattice
nature of the electronic wave function known as the
pseudospin [20]. For example, it suppresses a transition
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FIG. 2. Selection rule of armchair CNTs. (a) The direct
transitions caused by Ek (Δm ¼ 0) are denoted by arrows.
(b) Calculated real part of the dynamical conductivity along
Ek, ReðσkÞ, is shown for different Fermi-energy positions. The
vertical axis is given in units of e2=h, where e is the electron
charge magnitude and h is the Planck constant. (c) The mo-
mentum selection rule of E⊥ is Δm ¼ �1. The interband
transitions with m ¼ 0 → �1 are denoted by A, and these are
allowed (forbidden) for low (high) doping. When EF ¼ 1 eV,
the intraband transitions with m ¼ þ1 → þ2 or −1 → −2 are
allowed, and these are denoted by B. The transition C is
suppressed by the pseudospin. (d) Reðσ⊥Þ is shown for different
Fermi-energy positions.
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(of the backward scattering) denoted by C in Fig. 2(c) to
develop a strong peak in Reðσ⊥Þ like the M11 and M22

peaks, although it is a transition between band edges
with a large density of states. A profound effect of the
pseudospin on the selection rule is more clearly seen for
a doped semiconducting CNT. In the band diagram of a
(16,0) zigzag CNT shown in Fig. 3(a), each of the band
curves is specified by shifted magnetic quantum number
m ¼ �m0 þ n, where m0 is a nonzero integer (m0 ¼ 11)
and n ¼ 0;�1;…. When EF ¼ 0.4 eV, the transition
denoted by C with Δm ¼ 1 is allowed by the momen-
tum selection rule; however, it is actually forbidden by
the pseudospin. Meanwhile, the transition denoted by B
with Δm ¼ −1 is fully allowed. This difference is
peculiar because the transition energy of C is smaller
than that of B. It becomes clear that B (C) is forward
(backward) scattering by drawing the three-dimensional
band diagram in the inset of Fig. 3(b). As a result of the
pseudospin, the peak position in Reðσ⊥Þ is approxi-
mately given by 0.8 eV. The peak position of the doped
zigzag CNT is similar to that of the doped armchair
CNT [B in Fig. 2(d)], regardless of the difference of the
band diagrams of the zigzag and armchair CNTs. It
should be noted that the lack of the transition C with
Δm ¼ 1 does not mean that there is an asymmetry
between the clockwise and anticlockwise circumferential
motions of the electrons. Each band with the index n is
actually degenerate (�m0) corresponding to the different
valleys, and the subband with n in one valley relates
with the subband with −n in the other valley. Thus,
the lack of the transitions with Δm ¼ 1 in one valley
means the transitions with Δm ¼ 1 in different valley
are allowed.

III. DEPOLARIZATION AND THE PLASMON

According to the selection rule only, we may expect the
peaks caused by E⊥, such as A in Fig. 2(d) and Aþ A0 in
Fig. 3(b), to appear in the absorption spectra of undoped
CNTs [21]. However, they do not. The calculated absorp-
tion spectrum, which is given by σ⊥ divided by the
relative permittivity ε⊥ as Reðσ⊥=ε⊥Þ [≡Reðσ̃⊥Þ], does
not exhibit the corresponding peak when EF ¼ 0 eV, as
shown in the inset of Fig. 4. This is widely known as the
depolarization effect [2–4]. As a result of the momentum
transfer from E⊥ to an electron, a nonuniform density
distribution around the tube’s axis similar to an electric
dipole is introduced and induces a depolarization field [2].
When the doping level is low, the depolarization field
almost cancels out the applied field, and the total field
defined by the sum of the applied and depolarization fields
is suppressed. Even though the electronic transition is
allowed by the selection rule, the electron does not
undergo a transition since the electric field by itself almost
disappears due to the depolarization effect.
The main point of this paper is that the efficacy of the

depolarization field depends strongly on doping. When
the doping level is as high as EF ¼ 1 eV, absorption
peaks develop in the region near ℏω ¼ 1.2 eV as shown
in Fig. 4. It can be shown that these peaks originate from
the fact that the depolarization field is strongly enhanced
at the specific frequency. Even if an infinitely small
electric field is applied to a doped CNT, the depolari-
zation field has a finite amplitude. This state is produced
by the self-sustaining collective motion of the electrons
(plasmon or plasmon polariton), which is in sharp
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FIG. 3. Selection rule of zigzag CNTs. (a) The interband
transitions denoted by A and A0 are allowed when EF ¼ 0 eV.
Because A and A0 are forward scattering, a single peak develops
in Reðσ⊥Þ as shown in (b). When EF ¼ 0.4 eV, the peak intensity
halves because A0 is not allowed by the exclusion principle,
whereas A is still allowed. In addition, the intraband transition B
is allowed by the pseudospin. The three-dimensional band
diagram shows that the transitions A, A0, and B are all forward
scattering, while C is backward scattering that is forbidden by the
pseudospin.
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FIG. 4. Calculated absorption spectra for doped armchair
and zigzag CNTs. The absorption spectrum that includes the
depolarization effect is given by the real part of the dynamical
conductivity divided by the relative permittivity ε⊥, Reðσ⊥=ε⊥Þ
[≡Reðσ̃⊥Þ]. The peak originates from a resonant excitation of the
plasmon caused by doping. The inset shows the depolarization
effect in undoped CNTs.
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contrast to the single-particle excitation constituting the
absorption peaks of Ek. Meanwhile, the Drude peak is
absent for E⊥, which is also in contrast to the case
of Ek.
The total electric field that the electrons in a CNT

really “see” is given by the applied field divided by the
relative permittivity E⊥=ε⊥. Mathematically, it is shown
that by solving Maxwell equations while taking account of
the boundary conditions at the tube’s surface [7], ε⊥ is
written as

ε⊥ ¼ 1 −
σ⊥ðEFÞ
iωϵdt

; ð3Þ

where dt is the diameter of a CNT, and ϵ is the permittivity
of the surrounding medium [2]. To observe that the
vanishing real part of ε⊥ is essential for the appearance
of plasmon, we plot the real and imaginary parts of ε⊥ as a
function of energy in Fig. 5(a) for undoped and doped

CNTs. Indeed, when EF ¼ 1 eV, Reðε⊥Þ vanishes at an
energy that corresponds to the absorption peak position
seen in Fig. 4, where a small magnitude of Imðε⊥Þ helps the
total electric field to enhance in a resonant fashion. Note
that in the present calculations, a surrounding medium with
ϵ ¼ 2ϵ0 is assumed [12] where ϵ0 is the permittivity of free
space, and that a large value of ϵ=ϵ0 has the advantage of
decreasing the plasmon energy because Reðε⊥Þ shifts
upward in effect and zero of which shows a redshift.
To understand the cause of the appearance of plasmons

in the doped CNTs more clearly, we consider the relative
significance of the contributions made by intra- and
interband transitions to Reðε⊥Þ [17]. By noting that in
Eq. (3), Reðε⊥Þ is proportional to the imaginary part of the
dynamical conductivity Imðσ⊥Þ, we show each contribution
Imðσintra⊥ Þ and Imðσinter⊥ Þ for the representative case of high
doping level (EF ¼ 1 eV) in Fig. 5(b). Imðσinter⊥ Þ is a
negative value for the frequency range of interest. Thus,
if we neglect the intraband transitions, Reðε⊥Þ > 0 and the
condition for plasmon existence is unsatisfied. When
EF ¼ 1 eV, the contribution made by the intraband tran-
sition (B) causes a peak in Imðσintra⊥ Þ so that Reðε⊥Þ exhibits
a dip at ℏω ≈ 0.8 eV. With increasing ℏω from a dip,
Imðσintra⊥ Þ decreases and −Imðσinter⊥ Þ increases. As a result,
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FIG. 5. Permittivity of ð10; 10Þ armchair CNTs. (a) Reðε⊥Þ
[Imðε⊥Þ] when EF ¼ 1 eV is shown by the solid (dashed) curve.
The results when EF ¼ 0 eV are shown as a reference. (b) The
intraband transitions caused by high doping are essential in the
appearance of a plasmon peak. Meanwhile, the contribution of
interband transitions is not negligibly small.
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FIG. 6. Doping dependences of absorption spectra. Red (blue)
spectra show the absorption ofEk (E⊥). From the change in color
of the absorption peak, it is clear that the polarization dependence
of the peak is reversed by doping. Doping with EF ≈ 1 eV creates
a transient region where the polarization anisotropy starts to be
reversed. The green dotted line shows the boundary of single-
particle excitation, and the green area (ℏω > 2ℏv=dt and ℏω <
2jEFj − 2ℏv=dt where v is the Fermi velocity) shows the region
where single-particle excitation does not exist [22].
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Reðε⊥Þ becomes zero at around 1.2 eV, and the sign of
Reðε⊥Þ changes at the energy. It is interesting that when
combined with the intraband transitions, the contribution of
the interband transitions to the dynamical conductivity is
not negligible since it tends to redshift the plasmon energy
when EF ¼ 1 eV.
Figure 6 shows the details of the EF dependence of the

absorption spectra of a (10,10) armchair (dt ¼ 1.35 nm)
and (16,0) zigzag CNTs (dt ¼ 1.25 nm). There are
several noticeable features that should be mentioned.
First, the plasmon peak starts to develop when the
M11 (S22) peak by Ek starts to disappear for the armchair
(zigzag) CNT. Second, the plasmon peak intensity and
frequency increase as EF increases. Third, the doping
dependence of the plasmon frequency in the armchair
CNT is similar to that in the zigzag CNT. This suggests
that when CNTs are intentionally doped, they will
eventually have a similar excitation structure regardless
of the chirality. Finally, the plasmon peak is present in
the dispersion region (or the vicinity thereof) where
single-particle excitation is not allowed, indicating that
a plasmon cannot collapse into individual electron-hole
pairs, and the kinematic stability is guaranteed for the
plasmon.

IV. COULOMB INTERACTION

In this section, we examine how the Coulomb interaction
affects the results presented in the preceding sections.
Because the Coulomb interaction weakens at high doping
or in a metallic CNT due to the screening effect, we focus
on a semiconducting CNT at low doping level. The results
shown in this section are obtained by extending the existing

framework developed for calculating the exciton of an
undoped CNT [23,24] to a doped CNT. The details are
presented elsewhere [25].
The Coulomb interaction changes the absorption spec-

trum through two main effects: the self-energy correction to
the band diagram (band renormalization) and the formation
of excitons. First, we show the band renormalization.

A. Band renormalization

The thick curved lines in Fig. 7 show the renormalized
band diagram of a (16,0) zigzag CNT, which is given by
adding the screened exchange energy (or self-energy) to
the original (bare) band diagram denoted by the thin
curved lines. When EF ¼ 0 eV, the self-energy makes
the band gap increase significantly. When EF ¼ 0.5 eV,
on the other hand, the self-energy is modest; the band
gap is almost identical to that of the bare band. This is
because the electron-hole pairs within the conduction
band screen the Coulomb interaction more effectively
than the interband electron-hole pairs [22]. Note also that
the self-energy for the states away from the Fermi level
does not vanish, and this tends to blueshift the plas-
mon peak.

B. Absorption spectra

The exciton formation together with the band renorm-
alization changes the absorption spectrum significantly.
When EF ¼ 0 eV, the absorption peaks of Ek are governed
by excitons as shown in Fig. 8. By comparing the result
with the spectrum calculated without the Coulomb inter-
action, the sizable enhancement of oscillator strength is
seen for each peak. Meanwhile, the correction to the
absorption spectrum of E⊥ is minor: a small peak due
to the exciton formation is observed in Reðσ̃⊥Þ. These
results are consistent with Refs. [23,24].
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FIG. 7. Band renormalization of zigzag CNTs. Thick (thin)
curved lines represent the renormalized (bare) band. The self-
energy of the lowest-energy subbands is removed by modest
doping (EF ¼ 0.5 eV) so that the band gap decreases.
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FIG. 8. Absorption spectra calculated with and without Cou-
lomb interaction. Reðσ̃kÞ and Reðσ̃⊥Þ of (16,0) undoped CNTs
are shown.
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Figure 9(a) shows the behavior of the absorption
peaks of Ek under doping. When EF ¼ 0.5 eV, the S11
peak disappears due to the exclusion principle. The peak
intensity of S22 (S33) is suppressed by doping [9].
The further increase of doping results in the S22 and S33
peaks exhibiting redshift due to the band renormalization.
The redshift of the peaks serves as a unique information
of the self-energy because the peak positions should not
change when the self-energy correction is not taken into
account (see Fig. 6). As shown in Fig. 9(b), the exciton
peak of E⊥ disappears soon after EF reaches the bottom
of the first subband (EF ¼ 0.5 eV), and the plasmon
peak develops when EF ¼ 1 eV. Such a transition from
exciton to plasmon may be observed when the broadening
of the exciton of an undoped CNT is sufficiently
suppressed [24].

V. DISCUSSION

We compare the present results with the experimental
ones. Kazaoui et al. found a broad peak in the absorption by
thin films of heavily doped single-walled CNTs [9]. The
pristine films consist of semiconducting and metallic CNTs
since S11 (0.68 eV), S22 (1.2 eV), and M11 (1.8 eV) are all
observed. The doping-induced peak appears when S11, S22,
and M11 disappear by doping, which is consistent with our
results. It was found that the peak energy depends on the
doping level: 1.07 eV (1.3 eV) for CBr0.15 (CCs0.10), while
the details about the dependence was unknown. Igarashi
et al. clarified that using electrochemical doping, the
peak energy increases with increased doping [12]. They
showed further that semiconducting and metallic single-
walled CNTs cause independently the absorption peak at
approximately 1 eV. These are consistent with our results.
However, the calculated peak energy is slightly above
(approximately 0.1 eV) the experimental result. This dis-
crepancy warrants further examination. Petit et al. showed
that doping thin films with naphthalene lithium did not
cause the corresponding absorption peak even though the
doping level is high enough to make an absorption peak
[15]. This suggests an interesting possibility that the
surrounding of CNTs is modulated by the doping and that
doping has an influence on the plasmon absorption (such as
the peak energy and intensity) through a mechanism
beyond the description by static dielectric constant.
When fully verifying the proposed theory, it is desirable

to orient CNTs that are doped and separated into a single
chirality. In the past, the depolarization effect was exper-
imentally verified by absorption and Raman spectroscopy
in which undoped CNTs are oriented by stretching the
organic films on which they are dispersed [4] or by
controlling magnetic effects [26] or CNT growth processes
[27]. Although experiments have already been performed
on the doping dependence of light absorption for CNTs
with a single chirality [12], there are no corresponding
absorption measurements for oriented and doped CNTs.
Recently, He et al. developed a technology for aligning
CNTs spontaneously by improving vacuum filtration [28],
and this approach can be used for the purpose.
If doped CNTs can be oriented, they will provide an

opportunity for searching for novel phenomena even if they
are not separated into a single chirality. Because the
anisotropy of light absorption is related to the anisotropy
of the electron-phonon interaction, there is a strong
possibility that characteristic signals of doping will be
explored by the polarized Raman spectroscopy [29]. For
example, in doped metallic CNTs, phonon frequency
hardening has been observed in the manner that depends
on the phonon eigenvector [30]. A phenomenon similar to
it should be observed also for semiconducting CNTs.
The idea of the polarization reversal of light absorption

in doped CNTs can also be applied to doped graphene
nanoribbons because it has been shown that the optical
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FIG. 9. Doping dependence of absorption spectra with Cou-
lomb interaction. (a) When EF ¼ 0.5 eV, the S11 peak is invisible
due to the exclusion principle, and the doping dependence of the
S22 peak exhibits a redshift as indicated by the horizontal arrow.
(b) The small exciton peak when EF ¼ 0 eV is replaced by a
plasmon peak when EF ¼ 1 eV. This transition may be observed
when the exciton peak is observable. The arrow above the
plasmon peak shows that the plasmon energy increases with
increased doping.
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selection rule of nanoribbons is similar to that of CNTs
[20]. However, a modification of Eq. (3) caused by the edge
is needed for nanoribbons, and the coupling of nanoribbons
to the substrate must be taken into account.
Since the length of a CNT is finite in the axial direction,

there is also a depolarization effect in the axial direction
[31]. The optical selection rule of finite-length CNTs is
obtained by extending the calculations on a nanoribbon.
Indeed, due to the formation of a standing wave by the ends
of a CNT, it can be proved that there is a wavelength shift of
roughly the reciprocal of the axial length, which can
explain why the plasmon peak is formed in the terahertz
region of Ek [31].
Here, we mention a subject closely related to the optical

properties of doped CNTs, that is, quantum wells. The band
diagram of a CNT bears a similarity to that of a quantum
well, and the concepts such as depolarization and exciton
effects are used to understand the optical properties of
quantum wells. The term “intersubband transitions” is
commonly used to describe only the transitions within
the conduction band of quantum wells [32]. This is a
reasonable assumption when the width of doped quantum
wells is approximately 10 nm or longer. For CNTs with
diameter of the order of 1 nm, however, the interband
transitions have very important effects on absorption
spectrum for both undoped and doped cases. Note also
that the pseudospin selection rule is a fundamental new
point of CNTs, not seen in quantum wells.
Two degrees of freedom of the light polarization are

utilized in modern optical transmission technology to
double the amount of information transmitted simultane-
ously. For example, a light is propagated by associating
its parallel polarization with pictorial information and
perpendicular polarization with sound. Nanoscale materials
that respond differently depending on polarization direction
are advantageous for information manipulation in highly
refined structures where light propagates, for example, as
an extremely thin Polaroid film. The fact that the polari-
zation direction of light transmitted through CNTs can be
rotated by 90° simply by doping implies the possibility of
performing further information manipulation by electric
means. From the viewpoint of condensed matter physics,
the doping-induced change in the phase of the excited states
from excitons to plasmons is an intriguing topic. Our
conclusion is, thus, to stimulate both fundamental research

on CNTs and application research related to optical
devices.
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APPENDIX: METHOD

We employ a tight-binding model with the hopping
integral γ ¼ 2.6 eV and atomic distance aCC ¼ 1.42 Å to
calculate the band diagram and wave function of the π
electrons in CNTs [13]. As a function of wave vector
k ¼ ðkx; kyÞ, the model Hamiltonian is written in the form
of a 2 × 2 matrix:

HðkÞ ¼ −γ
�

0 fðkÞ
fðkÞ� 0

�
: ðA1Þ

The off-diagonal element fðkÞ is a complex number
given by

fðkÞ ¼ eikyaCC þ 2e−i½ðkyaCCÞ=2� cos
� ffiffiffi

3
p

kxaCC
2

�
; ðA2Þ

and fðkÞ� denotes the complex conjugate of fðkÞ. By
expressing the energy eigenvalue equation HðkÞjϕs

ki ¼
εskjϕs

ki in terms of the magnitude and phase of fðkÞ as
fðkÞ ¼ jfðkÞje−iΘðkÞ, we obtain the energy eigenvalue and
Bloch wave function as εsk ¼ −sγjfðkÞj and

jϕs
ki ¼

1ffiffiffi
2

p
�
e−iΘðkÞ

s

�
; ðA3Þ

respectively. The band index s ¼ þ1 (s ¼ −1) corresponds
to the valence (conduction) band. The low-energy band
diagram near the charge neutrality point εsk ∼ 0 is given by
a pair of double cones (known as the Dirac cones).
Because the interaction between the electron and light

δH is given by the minimal substitution ki → ki − ðe=ℏÞAi,
the electric currents defined from δH ¼ JiAi are

Ji ¼ −
e
ℏ
∂HðkÞ
∂ki ði ¼ x; yÞ: ðA4Þ

Putting Eqs. (A1) and (A2) into Eq. (A4), we have the
following expressions of the current operators,

Jx ¼ −ev
2ffiffiffi
3

p sin

� ffiffiffi
3

p
kxaCC
2

��
0 e−i½ðkyaCCÞ=2�

eþi½ðkyaCCÞ=2� 0

�
; ðA5Þ

Jy ¼ −ev
2

3

0
B@ 0 −i

h
eikyaCC − e−i½ðkyaCCÞ=2� cos

� ffiffi
3

p
kxaCC
2

�i

i
h
e−ikyaCC − ei½ðkyaCCÞ=2� cos

� ffiffi
3

p
kxaCC
2

�i
0

1
CA; ðA6Þ
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where v≡ 3γaCC=2ℏ is the Fermi velocity of graphene.
The wave vectors are quantized by the periodic boundary

condition around and along the tube’s axis [16]. For the
case of armchair ðn; nÞ CNTs, the quantized wave vectors
are specified by two integers m and j as

ky
3aCC
2

n ¼ mπ; ðm ¼ −nþ 1;…; nÞ; ðA7Þ

kx

ffiffiffi
3

p
aCC
2

2L ¼ jπ; ðj ¼ −L;…; LÞ: ðA8Þ

Note that 2
ffiffiffi
3

p
aCCL is the CNT length, 3aCCn=π is the

diameter, and the surface area of a CNT (S) is
3aCCn × 2

ffiffiffi
3

p
aCCL. As a result of the axial length being

longer than the diameter (L ≫ n), the band diagram of a
CNT is well described by the cross sections of the Dirac

cone [see Fig. 3(b)]. We also note that the effect of orbital
hybridization between π and σ due to the curvature of the
azimuthal direction is negligible in this study. For the case
of zigzag ðn; 0Þ CNTs, the quantized wave vectors are
specified by two integers m and j as

ky
3aCC
2

2L ¼ jπ; ðj ¼ −L;…; LÞ; ðA9Þ

kx

ffiffiffi
3

p
aCC
2

n ¼ mπ; ðm ¼ −nþ 1;…; nÞ: ðA10Þ

Note that 6aCCL is the CNT length,
ffiffiffi
3

p
aCCn=π is the

diameter, and the surface area of a CNT is the same as
ðn; nÞ CNTs.
We calculate the dynamical conductivity in the frame-

work of the linear response theory,

σΔmðω; EFÞ≡ gspin
ℏ
iS

X
s0;s

X
m;j

½fs0mþΔm;jðEFÞ − fsm;jðEFÞ�jhϕs0
mþΔm;jjJijϕs

m;jij2
ðεs0mþΔm;j − εsm;jÞðεs0mþΔm;j − εsm;j þ ℏωþ iδÞ ; ðA11Þ

where gspin ¼ 2 is the spin degeneracy, fskðEFÞ ¼
1=ðeðεsk−EFÞ=kT þ 1Þ is the Fermi distribution function at
room temperature (kT ¼ 1=38.6 eV), and δ (¼ ℏ=τ) is
inversely proportional to the relaxation time of an excited
electron. We fix δ ¼ 50 meV (τ ≈ 13 fs) in all calculations.
For an armchair CNT, the current operator Jx (Jy) couples
toEk (E⊥). Because of the momentum selection ruleΔm ¼
0 for Ek, the absorption JxEx is the product of

σ0 ðA12Þ
and E2

x, while for E⊥, the absorption JyEy is the product of

1

2

�
σþ1

1 − σþ1

iωϵdt

þ σ−1
1 − σ−1

iωϵdt

�
ðA13Þ

and E2
y. The factor 1=2 in Eq. (A13) originates from the

field decomposition of Ey into the pair Δm ¼ �1.
Equations (A12) and (A13) are the exact definition of
the absorption plotted in the main text as σk and σ̃⊥,
respectively. Note also that σþ1 ¼ σ−1ð≡σ⊥Þ holds in the
absence of the Aharonov-Bohm flux along the tubule axis.
It is instructive to evaluate the matrix element to show

that only the forward scattering is allowed by the selection
rule of the pseudospin. We take zigzag CNTs and focus on
the transitions between band edges (ky ¼ 0). The matrix
element of Jx is known from Eqs. (A3) and (A5) as

hϕs0
m0 jJxjϕs

mi ∝ 1þ ss0eiðΘ0þΘÞ: ðA14Þ
Thus, for the interband transitions (ss0 ¼ −1), the transi-
tions satisfying Θ0 þ Θ ¼ π, which are the forward

scattering, have the largest matrix element squared. For
the intraband transitions (ss0 ¼ 1), the transitions satisfying
Θ0 þ Θ ¼ 0, which are the forward scattering too, are
allowed. The intraband backward scattering satisfies
Θ0 þ Θ ¼ π and has a vanishing matrix element [22].
The polarization characteristics of the absorption spec-

trum have been investigated for incident light energies up to
6 eV [27]. The absorption peaks observed at 4.5 and
5.25 eV are found to exhibit different polarization depend-
ences. The behavior is also reproduced by our calculation
shown in Fig. 10, that is, peaks caused byEk andE⊥ appear
approximately at 5 and 6 eV, respectively. The discrepancy

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9

FIG. 10. Absorption spectra of ð10; 10Þ armchair CNTs. The
depolarization effect of E⊥ suppresses a peak to develop in
Reðσ̃⊥Þ at low energy (ℏω ≈ 1 eV). However, Reðσ̃⊥Þ has the
peaks at high energy around 6 eV.
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between the experiment and calculation may be attributed to
the fact that we ignore the overlap between the wave
functions at nearest-neighbor π electrons giving asymmetry
in the conduction and valence bands [13]. The qualitative
agreement suggests the correctness of the optical matrix
elements used to evaluate the dynamical conductivity. Note
that the peak structure of Reðσ̃⊥Þ at about 6 eV may be
regarded as a plasmon resonance because Imðσ⊥Þ has a peak
structure at the energy and Reðε⊥Þ approaches zero. Note
also that a realistic doping level does not change these high-
energy peaks and that the problem can be discussed simply
in terms of the photoelectron interaction and the density of
the electronic state [33].
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