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A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically
examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an
antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical
results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk
at frequencies approaching 1 THz but that the switching speed heavily depends on the system’s mechanical
design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that
magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.
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I. INTRODUCTION

There is a need for energy-efficient control of magnetism
at terahertz frequencies. Consequently, significant effort
has been directed at controlling nanoscale magnetism by
strain coupling the magnetic and electric order parameters
of composites containing piezoelectric and magnetoelastic
materials. Such systems are highly energy efficient, with a
predicted energy cost per state switch of approximately
10 aJ [1,2], but their frequency response is limited by the
magnetoelastic film’s ferromagnetic resonance (usually in
the range of 1–10 GHz). Antiferromagnetic materials are
attractive alternatives because they exhibit resonances 2 to
3 orders of magnitude higher (approximately 1 THz) [3,4];
however, they are difficult to manipulate with external
fields because the applied field needs to overcome the
exchange anisotropy and induce a spin-flop transition
(which usually occurs for >1 T). This paper proposes
solving the 1-T control problem by leveraging magnetoe-
lastic coupling found in antiferromagnets like NiO [5–10]
or FeMn [11]. In particular, the uniaxial nature of the strain
anisotropy enables rotation of the antiferromagnet phase
without overcoming the antiferromagnetic exchange, and
this lowers the required switching anisotropy by a factor of
10–100 times. To further analyze the dynamics in such
systems, we present a numerical framework which
solves the ten coupled partial differential equations that
govern spatiotemporal magnetoelastic response in antifer-
romagnetic-piezoelectric composites and demonstrate

energy-efficient ultrafast switching. This strain-mediated
voltage control of magnetism offers a pathway to drive
dynamic processes on chip within the terahertz band gap
between radio and optical frequencies. This advancement
may enable a generation of strain-coupled antiferromag-
netic sensors, spin-wave devices, and systems with tunable
exchange biasing. Our findings also provide a clear
direction for future research efforts to find magnetoelastic
antiferromagnets with low intrinsic anisotropy.
Previous modeling efforts focused on predicting magne-

toelastic dynamics in ferromagnets [12–14]. These models
accounted for spatial nonuniformities in both strain and
magnetization, thereby providing predictions that agreed
with experimental data more closely than single-spin Stoner-
Wohlfarth models or micromagnetic Landau-Lifshitz-Gilbert
(LLG) models that assume uniform strain (i.e., mechanically
decoupled models). Magnetoelastic models have been used
to analyze voltage-controlled 180° switching in magnetic
nanoelements with perpendicular magnetic anisotropy [15],
in-plane magnetic switching driven by selective piezostrain-
ing using patterned electrodes [16,17], and 360° control
of domain-wall rotation in nickel ring structures [18] to name
a few [19]. However, dynamic magnetoelastic models of
antiferromagnets have received little attention, and most
antiferromagnetic models focus only on the micromagnetic
behavior rather than mechanical coupling effects [20,21]. In
particular, micromagnetic modeling has been used to predict
the behavior of exchange-biased multilayers, specifically
using finite-element calculations [22] and the Monte Carlo
method [23,24]. In experimental work, only magnetoelec-
tricity in single-phase materials [25–27] and carrier-induced
spin reorientation [28,29] have previously been used for
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antiferromagnetic domain control. In this paper, continuum-
level numerical modeling illustrates that magnetoelasticity
can provide a high-speed low-power alternative control
method for microscale antiferromagnets.

II. MODEL DEVELOPMENT

In this section, we provide the equations governing the
spatiotemporal evolution of an antiferromagnetic material in
response to voltage-induced strain. This formalism assumes
that any antiferromagnetic phase can be deconstructed into
two constituent ferromagnetic sublattices which are anti-
ferromagnetically exchange coupled and oppositely oriented
in the absence of external stimuli. Each of these sublattices is
further assumed to be locallymagnetically saturated through-
out the entire volume. The sublattice magnetic moments

are described by the vector field components mðsÞ
i ðtÞ, where

i ¼ f1; 2; 3g indicates the direction in a Cartesian coordinate
system, and s ¼ f1; 2g indicates the sublattice. The model
also assumes magneto- and electrostatics, infinitesimal
strains, and neglects thermal influences.
Under these conditions, the dynamics of each magnetic

sublattice follow the LLG equation [30],

∂mðsÞ

∂t ¼ −γmðsÞ ×Heff − αmðsÞ ×
∂mðsÞ

dt
; ð1Þ

where γ is the gyromagnetic ratio, Heff is the effective
magnetic field, mðsÞ is the sublattice magnetization direc-
tion, and α is the Gilbert damping parameter. Heff is the
driving term of the magnetic dynamics in Eq. (1). It can
vary in space and time, and it is determined by taking the
functional derivative of the total free-energy density Etotal,

HðsÞ
eff ¼

−1
μ0Ms

∂Etotal

∂mðsÞ ; ð2Þ

where μ0 is the vacuum permeability, and Ms is the
saturation magnetization. Equation 2 indicates that Heff
will contain a term for each magnetic anisotropy energy
that contributes to Etotal. In antiferromagnets with negli-
gible magnetocrystalline anisotropy, the relevant energy
densities are

Etotal ¼ Eð1Þ
ex þ Eð2Þ

ex þ Eð1–2Þ
AFM þ Eð1Þ

ME þ Eð2Þ
ME; ð3Þ

where Eex, EAFM, and EME denote the intralattice ferromag-
netic exchange, the interlattice antiferromagnetic exchange,
and magnetoelastic energy densities, respectively. This
formulation of the energy densities assumes that all anisot-
ropies not specifically listed in Eq. (3) are low relative to the
strain-induced anisotropy. This assumption is reasonable,
as many magnetoelastic ferromagnets (Ni or FeGa), ferri-
magnets ½ðTbx;Dy1−xFe2Þ�, and antiferromagnets (FeMn,
MnNi, IrMn) [31–33] have low magnetocrystalline (MCA)
or shape anisotropies relative to the strength of strain

coupling. Including any of these smaller additional anisot-
ropies, like MCA or shape anisotropy, would result in the
formation of preferred axes of magnetic alignment (i.e.,
stable states) and modify the switching dynamics by adding
energy wells which the strain excitation must overcome.
Since these changes may be complex, the model presented
here addresses only amorphous antiferromagnets that are
isotropic in planewith stable states dictated by the exchange
andmagnetoelastic energies in Eq. (3). The form ofEex used

here is common in the literature EðsÞ
ex ¼A∇2mðsÞ [12,32],

where A is the exchange stiffness. The interlattice anti-
ferromagnetic exchange is defined by an Ising-like term

Eð1Þ−ð2Þ
AFM ¼ −Jmð1Þmð2Þ, where J is the antiferromagnetic

exchange coupling coefficient. In most antiferromagnets, J
is sufficiently large that −mð1Þ ≈mð2Þ [34], which cancels
the dipolar fields and leads to zero demagnetization energy.

The two remaining termsEð1Þ
ME andE

ð2Þ
ME are functions of both

strain and mðsÞ,

EðsÞ
ME ¼ 1

2

�X
i

B1ε
total
ii

�
mðsÞ

i mðsÞ
i − 1

3

�

þ
X
i≠j

B2ε
total
ij mðsÞ

i mðsÞ
j

�
; ð4Þ

where B1 and B2 are the first- and second-order magne-
toelastic coefficients.
Next, we present the effective fields used in the model,

discuss the magnetomechanical coupling terms, and exam-
ine their connection to elastodynamic behavior. The two
intralattice exchange fields are represented using the

conventional ferromagnetic exchange term HðsÞ
ex ¼

2Aðμ0MsÞ−1∇2mðsÞ [35]. In contrast, the antiferromagnetic

exchange field HðsÞ
AFM contains terms which allow

the magnetization of one sublattice to influence the other.
The ith component of these fields in each sublattice,
respectively, are

½Hð1Þ
AFM�i ¼ − Jmð2Þ

i

μ0M
ð1Þ
s

and ½Hð2Þ
AFM�i ¼ − Jmð1Þ

i

μ0M
ð2Þ
s

: ð5Þ

To simultaneously solve the coupled magnetoelastic
dynamics, two additional coupling terms are needed.

One of these terms, HðsÞ
ME, is an effective field that changes

the sublattice magnetic state based on the total strain εtotal.

The ith component of HðsÞ
ME is

½HðsÞ
ME�i ¼ − 1

μ0M
ðsÞ
s

�
B1ε

total
ii mðsÞ

i þ
X
j≠i

B2ε
total
ij mðsÞ

j

�
; ð6Þ

where summation occurs only in the second term. This
paper focuses on systems with isotropic magnetostriction, a
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condition which requires λ100 ¼ λ111 ¼ λ110 and B1 ¼ B2.
Furthermore, the magnetostrictive coupling is assumed to
affect each sublattice equally. This requires (1) halving the

magnitude of ½HðsÞ
ME�i in Eq. (6) in comparison to the

form for ferromagnets and (2) defining Bð1Þ
1 ¼ Bð2Þ

1 and

Bð1Þ
2 ¼ Bð2Þ

2 . To maintain the self-consistency of the model,
this reduction by half is also included in the magnetoelastic
strain coupling term εME, which defines the strain caused
by magnetic reorientation

εME
ij ¼ 1

2
λs

�
3

2

�
mð1Þ

i mð1Þ
j − 1

3

�
þ 3

2

�
mð2Þ

i mð2Þ
j − 1

3

��
; ð7Þ

where λs is the saturation magnetostriction. In the limiting
case of Eq. (7), when an antiferromagnet is uniformly

magnetized, jmðsÞ
i mðsÞ

j j → 1 and εME → λs along the axis of
magnetization. This implies that saturation magnetostric-
tion occurs when the two sublattices are coaxially aligned.
Analogous behavior is observed in ferromagnets in the
limit of magnetic saturation [30].
Equations (6) and (7) ensure that the mechanical and

magnetic dynamics are coupled and can be solved simul-
taneously. However, the calculation of εtotal in Eq. (6)
requires that the system’s elastodynamics be considered.
The governing equation of linear elastodynamics is

ρ
∂2u
∂t2 − ∇σ ¼ 0; ð8Þ
σ ¼ C∶εmech; ð9Þ

where ρ is the material density, u is the displacement, σ is
the elastic stress, C is the stiffness, and εmech is the elastic

strain. The driving term in Eq. (9) is the mechanical strain
εmech, which is the difference between the total strain εtotal

and the magnetic strain εME. In this paper, we also consider
cases where the antiferromagnet is externally strained by a
piezoelectric material, in which case, εmech becomes

εmech ¼ εtotal − εpiezo − εME; ð10Þ
where εpiezo is the piezostrain. The strains in Eq. (10) are
directly related to the physical displacements through
εtotal ¼ ½½∇uþ ð∇uÞT �.
Equations (2)–(7), (9), and (10) are inserted into Eqs. (1)

and (8), resulting in nine coupled partial differential
equations that govern antiferromagnetic magnetoelastic
dynamics. In the case where piezoelectricity is included,
one more differential equation is added to calculate the
electric field distribution inside the piezoelectric layer.
The coupled partial differential equations are solved simul-
taneously using a weighted residuals method within a
finite-element framework. The finite-element solver uses

implicit time stepping (tðmaxÞ
step ¼ 0.5 ps) and a backward

differentiation formula. In the antiferromagnetic volume, a
cuboidal finite-element mesh is used, with a maximum
element size of 2.5 × 2.5 × 0.57 nm3. This element size
is chosen to capture any magnetic nonuniformities within
the antiferromagnet’s constituent ferromagnetic sublattices
on the order of the exchange length Lex ¼ ð2AexÞ/
ðμ0M2

sÞ1/2 ≈ 3.51 nm, while simultaneously capturing
any strain variations due to effects like shear lag.
The model that we develop above is used to study the

two cases shown in Figs. 1(a) and 1(b). In the first case
[Fig. 1(a)], an antiferromagnetic disk with an 80 nm
radius and 4 nm thickness is modeled with traction-free
boundary conditions (t ¼ σ · n ¼ 0) imposed at every sur-
face. First, the disk’s antiferromagnetic state is initialized
out of plane (along e3) and relaxed for 50 ps. Then, at t ¼ 0,

FIG. 1. The geometries used in the finite-element calculation
are shown. (a) The geometry for the first model is a disk of
diameter 80 nm and thickness 4 nm. The antiferromagnetic state
is initially aligned out of plane, and after magnetically relaxing
for 50 ps, it remains unmoved. Then, at t ¼ 0, the displacement
field inside the disk is precisely controlled to yield a uniform
biaxial strain of 1400 με, with tension along e2 and compression
along e1. (b) The geometry for the magnetomechanical model of
the antiferromagnetic-piezoelectric composite is shown. In this
structure, voltages can be applied at either of the two yellow
electrodes (with electrical ground on the bottom planar electrode)
to generate in-plane strains that can switch the antiferromagnetic
state 90°. The choice of electrode dictates the eventual in-plane
direction of the switched antiferromagnet.
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a uniform strain field is applied everywhere in the volume,
with 1000 με of tension along e2 and 400 με of compression
along e1. The average sublattice magnetic response is then
recorded every 0.5 ps. A Fourier analysis of the sublattice
response to the broadband excitation allows for identifica-
tion of the antiferromagnetic resonance frequency.
In the secondmodel [Fig. 1(b)], an antiferromagnetic disk is

attached to a thin piezoelectric film which, in turn, is attached
to a thick substrate. The 400 × 400 × 100 nm3 piezoelectric
film is modeled with a mechanically clamped bottom surface
(u ¼ 0) and fixed in-plane boundaries (u · n ¼ 0) to replicate
the presence of the thick substrate and infinite extension of the
film in the e1-e2 plane. The top surface of the composite is
maintained traction-free. As in the previous model, the disk’s
antiferromagnetic state is first initialized out of plane and
relaxed for 50 ps. After relaxation, electrical ground (V ¼ 0)
is applied to the piezoelectric layer’s bottom surface, while a
voltage excitation applied at either of the two ð40 × 40Þ-nm2

surface electrodes is ramped from0 to−0.5 Vover 1.5 ps [see
Fig. 2(b) inset]. The resulting piezostrain drives magnetic
precession in the disk, which is recorded every 0.5 ps. Aswith
the previous model, these boundary conditions are chosen
because they lead to high but realistic strains, like those
required for switching in other magnetoelastic materials.
The material properties used for both studies are as

follows (bulk values are used where the values for microscale
geometries are not available, as they are known to be similar
[7,36,37]). Since the material properties of magnetostrictive
antiferromagnets are not well studied, the following con-
stants are obtained from the available literature, using known
constants for the ferromagnetic sublattices where relevant:
AexðFeÞ≈AexðMnÞ ¼2.48×10−12 J/m [38], MsðFeÞ≈MsðMnÞ ¼
5.66×105A/m, λs ≈ 750 με [11,39], Young’s modulus

E ¼ 77 GPa [40], ρ ¼ 7700 kg/m3, and Poisson’s ratio
υ ¼ 0.3. A Gilbert damping parameter of α ¼ 0.02 is
assigned to each ferromagnetic sublattice since this value
is in the typical range for magnetoelastic ferromagnets
[1,33,41]. With these constants, the material modeled has
a likeness to Fe50Mn50, whose antiferromagnetic exchange
coupling coefficient JAFM is currently unmeasured.
Consequently, the value of the ferromagnetic exchange
coefficient of bulk single-crystal Fe J ¼ 3.97 × 106 J/m3

is used. In addition, a parametric sweep of α between 0.8 and
0.02 is used to confirm that value used for the Gilbert
damping parameter does not significantly influence the
threshold strain required for switching for realistic values
of α (<0.1). However, nonphysical high α values (>0.7)
produce a strongly overdamped response that changes the
antiferromagnet’s mechanical impedance and reduces strain
transfer across the composite interface. For this reason, low α
is used. With the material parameters above, the magnetic
and magnetostrictive predictions of the model cannot be
quantitatively accurate for a particular material, but they
are intended to represent correct trends in the material
behavior and exemplify proper modeling methods. The
piezoelectric layer’s properties are those of transversely
isotropic PbðZrxTi1−xÞO3. These are d13 ¼ −6.62 C/m2,
d33 ¼ 23.24 C/m2, ρ ¼ 7500 kg/m3, E1 ¼ 127 GPa,
E2 ¼ 82 GPa, G13 ¼ 22.9 GPa, ε11 ¼ ε22 ¼ 3130, and
ε33 ¼ 3400.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the results for the model geometry
illustrated in Fig. 1(a) after uniform strain is applied at
t ¼ 0 ps. The components of the Fe sublattice magnetization

mðFeÞ
1 (dashed line), mðFeÞ

2 (solid line), mðFeÞ
3 (dot-dashed

FIG. 2. The volume-averaged magnetization of the Fe sublattice is plotted in the time domain for both models. (a) When uniform
biaxial strain is instantaneously applied at t ¼ 0, the axis of antiferromagnetic alignment resonantly switches within 3.25 ps and settles
about 12 ps later. The peak in the FFT of jLj at 708 GHz corresponds with an antiferromagnetic resonance at half that value, i.e., at
354 GHz. (b) When voltage is applied at t ¼ 0, antiferromagnetic switching occurs after about 100 ps. The switching process proceeds
so far below resonance as to be quasistatic. The observed continuation of motion in m2 is owed to the continuing oscillation in biaxial
strain (green line), which occurs because the exciting acoustic wave internally reflects within the antiferromagnetic disk.
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line), and the magnitude of the net moment jLj ¼ jmðFeÞ þ
mðMnÞj (dotted line) are plotted as a function of time. The

mðFeÞ
2 trace indicates that the sublattice realigns to the e2 axis

within 3.25 ps and then oscillates about this new orientation
for approximately 10 ps before stabilizing. During the same

time, mðFeÞ
1 and mðFeÞ

3 exhibit precessional decay at a lower
frequency, proportional to the applied switching anisotropy.
The degree of magnetic sublattice misalignment jLj grows
initially during the switching event in a manner proportional
to ½ðdmÞ/ðdtÞ�. This sublattice misalignment is caused by the
uniaxial nature of the switching anisotropy, which applies
oppositely pointing torques to the two sublattices. In turn,
this drives the sublattices to precess to the new easy axis with
opposite chirality, thereby generating a net moment that

reaches a maximum of 7.3% of Ms at t ¼ 3.25 ps (as mðFeÞ
2

saturates). In the subsequent 10 ps, L oscillates with a

periodicity that matches the ringing period observed inmðFeÞ
2 .

The similarity between these periods suggests that the
system relaxes through the pendulumlike motion of the
two sublattices about one another at antiferromagnetic
resonance. The fast Fourier transform (FFT) of jLj is known
to exhibit a peak at twice the antiferromagnetic resonance
(AFMR). For the modeled system, this peak occurs at
0.708 THz [shown in the inset of Fig. 2(a)], which
corresponds with a model-predicted AFMR of 0.354 THz.
This simulated resonance is within about 28% of that
predicted by theory [32]. The FFT also exhibits some
high-amplitude low-frequency content, which is attributed
to the amplitude decay envelope of jLj.
Figure 2(b) shows the results for the voltage-actuated

piezoelectric and antiferromagnetic composite model [from
Fig. 1(b)]. In this model, voltage is applied at t ¼ 0 ps at
the leftmost electrode in Fig. 1. The values ofmðFeÞ and jLj
are plotted together with the volume-averaged biaxial strain
state (ε22 − ε11) in the antiferromagnetic disk (on the right
ordinate axis). Prior to the application of voltage (i.e.,
during the magnetic relaxation period t < 0), magnetoe-
lastic torqueing occurs due to mechanical shear lag effects
at the disk edges [12], producing a nonuniform initial
sublattice magnetization state with the volume-averaged
components mðFeÞ ¼ ð0; 0; 0.78Þ. Then, voltage is applied
at t ¼ 0, and it takes 18.5 ps for the voltage-induced strain
wave to propagate from the electrode to the edge of the
antiferromagnetic disk, as indicated by the first peak in the
ε22 − ε11 plot. It takes an additional 84 ps [labeled magnetic
switching time, or MST, in Fig. 2(b)] for the strain to
propagate across the disk and cause 90° rotation of mðFeÞ.
This is seen by the peak ofmðFeÞ

2 concurring with the second

peak in ε22 − ε11. Throughout the MST, mðFeÞ
3 decays

towards zero, as expected, but does not settle completely
due to the system’s continued strain oscillations. In con-

trast, mðFeÞ
1 remains relatively constant near zero during

switching, since the switching occurs primarily in the e2-e3

plane. jLj remains stable around<2%, and, in contrast with
the uniform strain model, it does not vary with ½ðdmÞ/ðdtÞ�
in the early part of the MST. These small values of jLj
indicate that the voltage-induced switching proceeds below
the antiferromagnetic resonance (i.e., near adiabatically
[42]), a phenomena also not observed in the uniformly
strained model [Fig. 2(a)]. Subsequent Fourier analysis of
jLj indicates a broadband low-frequency response, which
confirms the quasistatic nature of the switching. Further
simulations show that subsequent voltage application to the
other top surface electrode in Fig. 1(b) results in 90° in-plane
switching from e2 to e1 with the same frequency response
observed during out-of-plane to in-plane switching.
The comparatively slow switching speed of the anti-

ferromagnetic-piezoelectric composite is explained by
observing the spin and strain states at two different times,
as shown in Fig. 3. In Figs. 3(a) and 3(b), for t ¼ 71.5 ps
and t ¼ 102.5 ps, respectively, three-dimensional plots of
strain and magnetization are provided from a perspective
view (top) and a cross-sectional view (bottom). In Fig. 3(a),
the strain wave during the MST, as indicated by the color
gradient from red to blue (high strain is red, low strain is
blue), reaches the middle of the disk. At the same time, the
magnetic moments in the strained portion of the disk rotate
in plane, as shown by red (mðFeÞ) and black (mðMnÞ) arrows,
whereas the moments in the unstrained portion of the disk
do not move. By the end of the MST, Fig. 3(b) shows that
the strain propagates through the entire disk, and, corre-
spondingly, the magnetization rotates uniformly in plane.
Therefore, it is evident that the speed of antiferromagnetic
reorientation is dictated by the speed at which strain can
propagate through the disk.
While the uniform strain model suggests that near-

terahertz switching in an antiferromagnet is possible, the
results from the composite model indicate that for realistic
strain-actuated structures, consideration must be given to the

FIG. 3. The strain (3D color plot) and spin states (black and red
arrows) of the antiferromagnetic disk in the composite are plotted
two different times in the MST. (a) At t ¼ 71.5 ps, the wave front
of the acoustic excitation reaches about halfway across the disk,
and the sublattice moments behind the wave front switch in plane,
whereas the moments ahead of the wave front do not. (b) At
t ¼ 102.5 ps, the strain propagates across the disk and switches it
completely.
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method of mechanical actuation. In particular, the two
models presented here illustrate that (1) terahertz switching
is possible, (2) device design choices like the location of the
actuating electrode can influence switching speed, and
(3) fully coupled magnetomechanical models are necessary
to predict the frequency response of strain-controlled anti-
ferromagnets. The results presented here do not mandate that
realistic devices be limited to frequencies far below anti-
ferromagnetic resonance. For example, reducing an anti-
ferromagnet’s dimension in the direction of mechanical
wave propagation should increase operational frequency.
Since an antiferromagnet’s thickness is commonly its short-
est dimension, colocating the actuating electrode underneath
it may increase switching speed up to 20 times.
Furthermore, the energy required to operate at these

frequencies can be low. The energy cost per state switch is
calculated from the model by numerically integrating the
applied charge density over the electrode surface and then
using Eswitch ¼ QV/2 to find the energy stored capacitively
in the piezoelectric layer. We find that 450 aJ is sufficient
to switch the axis of antiferromagnetic alignment 90°.
This is 3 orders of magnitude less energy costly than
alternative magnetic control methods, like spin-transfer
torque, which requires 100 fJ/state switch [43].

IV. CONCLUSION

In conclusion, a fully coupled finite-element model
incorporating micromagnetics, elastodynamics, and piezo-
electricity is developed to predict voltage-induced magne-
toelastic switching behavior in antiferromagnets. The
results demonstrate that the frequency of antiferromagnetic
switching can approach terahertz, but the speed is influ-
enced by the transient of the mechanical excitation.
Furthermore, the energy cost associated with controlling
antiferromagnetism using strain is extremely low (100’s
of attojoules). This combination of high speed and low-
power control may offer a development avenue for next-
generation devices.
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Reichlová, K. Uhlířová, P. Beran, P. Wadley, V. Novák,
and T. Jungwirth, Room-temperature antiferromagnetism in
CuMnAs, J. Magn. Magn. Mater. 324, 1606 (2012).

[29] M. J. Grzybowski, P. Wadley, K.W. Edmonds, R. Beardsley,
V. Hills, R. P. Campion, B. L. Gallagher, J. S. Chauhan, V.
Novak, T. Jungwirth, and F. Maccherozzi, Imaging Current-
Induced Switching of Antiferromagnetic Domains in
CuMnAs, Phys. Rev. Lett. 118, 057701 (2017).

[30] R. C. O’Handley, Modern Magnetic Materials: Principles
and Applications (Wiley Interscience, New York, NY, USA,
2000).

[31] T. L. Gilbert, A phenomenological theory of damping in
ferromagnetic materials, IEEE Trans. Magn. 40, 3443
(2004).

[32] J. M. D. Coey, Magnetism and Magnetic Materials
(Cambridge University Press, Cambridge, UK, 2010).

[33] D. B. Gopman, J. W. Lau, K. P. Mohanchandra, K. Wetzlar,
and G. P. Carman, Determination of the exchange constant
of Tb0.3Dy0.7Fe2 by broadband ferromagnetic resonance
spectroscopy, Phys. Rev. B 93, 064425 (2016).

[34] C. Kittel, Theory of antiferromagnetic resonance, Phys. Rev.
82, 565 (1951).

[35] A. Vansteenkiste and B. Van De Wiele, MuMax: A new
high-performance micromagnetic simulation tool, J. Magn.
Magn. Mater. 323, 2585 (2011).

[36] A. Navabi, C. Chen, A. Barra, M. Yazdani, G. Yu,
M. Montazeri, M. Aldosary, J. Li, K. Wong, Q. Hu,
and J. Shi, Efficient Excitation of High-Frequency
Exchange-Dominated Spin Waves in Periodic Ferromag-
netic Structures, Phys. Rev. Applied 7, 034027 (2017).

[37] I. Gilbert, A. C. Chavez, D. T. Pierce, J. Unguris, W. Y. Sun,
C. Y. Liang, and G. P. Carman, Magnetic microscopy and
simulation of strain-mediated control of magnetization in
PMN-PT/Ni nanostructures, Appl. Phys. Lett. 109, 162404
(2016).

[38] J. Du Shiming Zhou and L. Sun, Handbook of Spintronics
(Springer Science, Dordrecht, Netherlands, 2016), p. 253.

[39] T. Ma, J. Zhang, A. He, and M. Yan, Improved magneto-
striction in cold-rolled and annealed Mn50Fe50 alloy, Scr.
Metall. Mater. 61, 427 (2009).

[40] J. T. Lenkkeri, Measurements of elastic moduli of face-
centred cubic alloys of transition metals, J. Phys. F 11,
1991 (1981).

[41] M. Barangi and P. Mazumder, Straintronics-based magnetic
tunneling junction: Dynamic and static behavior analysis
and material investigation, Appl. Phys. Lett. 104, 162403
(2014).

[42] J. Hong, B. Lambson, S. Dhuey, and J. Bokor, Experimental
test of Landauers principle in single-bit operations on
nanomagnetic memory bits, Sci. Adv. 2, e1501492 (2016).

[43] K. L. Wang, J. G. Alzate, and P. Khalili Amiri, Low-power
non-volatile spintronic memory: STT-RAM and beyond,
J. Phys. D 46, 074003 (2013).

VOLTAGE CONTROL OF ANTIFERROMAGNETIC PHASES … PHYS. REV. APPLIED 9, 034017 (2018)

034017-7

https://doi.org/10.1021/nn5056332
https://doi.org/10.1063/1.4975828
https://doi.org/10.1103/PhysRevB.95.014434
https://doi.org/10.1103/PhysRevB.95.014434
https://doi.org/10.1109/TMAG.2002.803594
https://doi.org/10.1109/TMAG.2002.803594
https://doi.org/10.1103/PhysRevB.67.054419
https://doi.org/10.1103/PhysRevB.67.054419
https://doi.org/10.1103/PhysRevLett.84.4224
https://doi.org/10.1063/1.1358829
https://doi.org/10.1103/PhysRevLett.6.609
https://doi.org/10.1103/PhysRevLett.7.310
https://doi.org/10.1103/PhysRevLett.106.087202
https://doi.org/10.1016/j.jmmm.2011.12.017
https://doi.org/10.1103/PhysRevLett.118.057701
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRevB.93.064425
https://doi.org/10.1103/PhysRev.82.565
https://doi.org/10.1103/PhysRev.82.565
https://doi.org/10.1016/j.jmmm.2011.05.037
https://doi.org/10.1016/j.jmmm.2011.05.037
https://doi.org/10.1103/PhysRevApplied.7.034027
https://doi.org/10.1063/1.4965028
https://doi.org/10.1063/1.4965028
https://doi.org/10.1016/j.scriptamat.2009.04.036
https://doi.org/10.1016/j.scriptamat.2009.04.036
https://doi.org/10.1088/0305-4608/11/10/008
https://doi.org/10.1088/0305-4608/11/10/008
https://doi.org/10.1063/1.4873128
https://doi.org/10.1063/1.4873128
https://doi.org/10.1126/sciadv.1501492
https://doi.org/10.1088/0022-3727/46/7/074003

