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We explore the coherent thermal transport sustained by solitons through a long Josephson junction as a
thermal gradient across the system is established. We observe that a soliton causes the heat current through
the system to increase. Correspondingly, the junction warms up in conjunction with the soliton, with
temperature peaks up to, e.g., approximately 56 mK for a realistic Nb-based proposed setup at a bath
temperature Tbath ¼ 4.2 K. The thermal effects on the dynamics of the soliton are also discussed. Markedly,
this system inherits the topological robustness of the solitons. In view of these results, the proposed device
can effectively find an application as a superconducting thermal router in which the thermal transport can
be locally mastered through solitonic excitations, whose positions can be externally controlled through a
magnetic field and a bias current.
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I. INTRODUCTION

The physics of coherent excitations has relevant impli-
cations in the field of condensed matter. Such coherent
objects emerge in several extended systems and are usually
characterized by remarkable particlelike features. In recent
decades, these notions have played a crucial role for
understanding various issues in different areas of the
physics of continuous and discrete systems [1,2]. A
Josephson junction (JJ) is a model system to appreciate
coherent excitations, and, specifically, a superconductor-
insulator-superconductor (S-I-S) long JJ (LJJ) is the proto-
typal solid-state environment to explore the dynamics of
a peculiar kind of solitary wave called a soliton [3,4].
These excitations give rise to readily measurable physical
phenomena, such as step structures in the I-V characteristic
of LJJs and microwave radiation emission. Moreover, a
soliton has a clear physical meaning in the LJJ framework
since it carries a quantum of magnetic flux, induced by a
supercurrent loop surrounding it, with the local magnetic
field perpendicularly oriented with respect to the junction
length [5]. Thus, solitons in the context of LJJs are usually
referred to as fluxons or Josephson vortices. Measured for
the first time more than 40 years ago [6,7], LJJs remain an
active research field [8–26]. Indeed, the fact that a single
topologically protected excitation, i.e., a flux quantum, can
be moved and controlled by bias currents, created by the
magnetic field, manipulated through shape engineering

[9,27–30], or pinned by inhomogeneities [31,32] naturally
has stimulated a profusion of ideas and applications.
Practically, several electric and magnetic features con-

cerning solitons in LJJs have hitherto been comprehensively
explored, but little is known about the soliton-sustained
coherent thermal transport through a temperature-biased
junction. This issue falls into the emerging field of coherent
caloritronics [33–35], which deals with the manipulation of
heat currents in mesoscopic superconducting devices. Here,
the aim is to design and realize thermal components able to
master the energy transfer with a high degree of accuracy. In
this regard, we propose laying the foundation of an alter-
native branch of fast coherent caloritronics based on solitons,
with the end being to build up alternative devices exploiting
this highly controllable, phase-coherent thermal flux.
Specifically, the feasibility of using a LJJ as a thermal router
[36], in which thermal transport can be locally handled
through solitonic excitations, is very promising.
After Maki and Griffin’s prediction about it in 1965 [37],

only recently has phase-coherent thermal transport in
temperature-biased Josephson devices been confirmed
experimentally in several interferometerlike structures
[38–43]. The thermal modulation induced by the external
magnetic field was demonstrated in superconducting quan-
tum-interference devices (SQUIDs) [38,39] and short JJs
[40,41]. Furthermore, in LJJs, the heat-current diffraction
patterns in the presence of an in-plane external magnetic
field have been discussed theoretically [44]. However, until
now, no efforts have been made to explore how thermal
transport across a LJJ is influenced by solitons eventually*claudio.guarcello@nano.cnr.it
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set along it. Nonetheless, it has been demonstrated theo-
retically that the presence of a fluxon threading a temper-
ature-biased inductive SQUID modifies thermal transport
and affects the steady temperatures of a floating electrode
of the device [45,46]. Similarly, we demonstrate theoreti-
cally that a fluxon arranged within a LJJ locally affects, in a
fast time scale, the thermal evolution of the system, and, at
the same time, we discuss how the temperature gradient
affects the soliton dynamics. Finally, being solitons,
namely, remarkably stable and robust objects [47], at the
core of its operation, this system provides an intrinsic
topological protection on thermal transport.
The paper is organized as follows. In Sec. II, the

theoretical background used to describe the phase evolution
of a magnetically driven LJJ is discussed. In Sec. III, the
thermal balance equation and the heat currents are intro-
duced. In Sec. IV, the evolution of the temperature of the
floating electrode is studied as a thermal gradient across the
system is taken into account. In Sec. V, conclusions are
drawn.

II. PHASE DYNAMICS

In Fig. 1(a), a long and narrow S-I-S Josephson
junction, in the so-called overlap geometry formed by
two superconducting electrodes S1 and S2 separated by a
thin layer of insulating material with thickness d, is
represented. We consider an extended junction with both
the length and the width larger than d (namely,W, L ≫ d).
In the geometry depicted in Fig. 1, the junction area
A ¼ WL extends into the x-z plane, the electric bias
current is eventually flowing in the y direction, and the
external magnetic field is applied in the z direction. The
thickness of each superconducting electrode is assumed

to be larger than the London penetration depth λL;i of the
electrode material. Since the applied field penetrates
the superconducting electrodes up to a thickness given
by the London penetration depth, an effective magnetic
thickness of the junction td ¼ λL;1 þ λL;2 þ d can be
defined. If λL;i values are larger than the thickness
of the electrodes Di, the effective magnetic thickness
has to be replaced by t̃d ¼ λL;1 tanh ðD1=2λL;1Þ þ λL;2
tanh ðD2=2λL;2Þ þ d [40,41]. In the presence of an exter-
nal in-plane magnetic field Hðr; tÞ ¼ (0; 0;−HðtÞẑ), the
phase φ—namely, the phase difference between the wave
functions describing the carriers in the superconducting
electrodes—changes according to ∂φðx; tÞ=∂x ¼ ½ð2πÞ=
ðΦ0Þ�μ0tdHðtÞ [48], where Φ0 ¼ h=2e ≃ 2 × 10−15 Wb is
the magnetic flux quantum (with e and h being the
electron charge and the Planck constant, respectively),
and μ0 is the vacuum permeability. For a long and narrow
junction, we assume that W ≪ λJ and L ≫ λJ, where we
introduce the length scale λJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Φ0=ð2πμ0Þ�½1=ðtdJcÞ�
p

,
called the Josephson penetration depth, where Jc ¼ Ic=A
is the critical current area density. Then, in normalized
units, the linear dimensions of the junction read L ¼
L=λJ ≫ 1 and W ¼ W=λJ ≪ 1.
The electrodynamics of a LJJ is usually described by

a partial differential equation for the order-parameter
phase difference φ—namely, the perturbed sine-Gordon
(SG) equation—that, in the normalized units x̃ ¼ x=λJ
and t̃ ¼ ωpt, with ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð2πÞ=Φ0�ðIc=CÞ

p
being the

Josephson plasma frequency [48], reads [48,49]

∂2φðx̃; t̃Þ
∂x̃2 −

∂2φðx̃; t̃Þ
∂ t̃2 − sin½φðx̃; t̃Þ� ¼ α

∂φðx̃; t̃Þ
∂ t̃ : ð1Þ
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FIG. 1. (a) A S-I-S rectangular LJJ excited by an external in-plane magnetic field HzðtÞ. The length and the width of the junction are
L ≫ λJ andW ≪ λJ, respectively, where λJ is the Josephson penetration depth. Moreover, the thickness D2 ≪ λJ of the electrode S2 is
indicated. A soliton within the junction, corresponding to a 2π twist of the phase φ, is represented. Ti is the temperature of the
superconductor Si, and d is the insulating layer thickness. (b) Thermal model of the device as the thermal contact with a phonon bath is
taken into account. The heat current, Pin, flowing through the junctions depends on the temperatures and the solitons eventually set
along the system. Pe-ph represents the coupling between quasiparticles in S2 and the lattice phonons residing at Tbath, whereas Pheat

denotes the power injected into S1 through heating probes in order to impose a fixed quasiparticle temperature T1. The arrows indicate
the direction of the heat currents for T1 > T2 > Tbath.
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The boundary conditions of this equation take into account
the normalized external magnetic field HðtÞ ¼ ½ð2πÞ=
ðΦ0μ0Þ�tdλJHðtÞ:

dφð0; tÞ
dx̃

¼ dφðL; tÞ
dx̃

¼ HðtÞ: ð2Þ

In Eq. (1), α ¼ ðωpRCÞ−1 is the damping parameter (with
R and C being the total normal resistance and capacitance
of the JJ).
The SG equation admits topologically stable traveling-

wave solutions, called solitons [3,4], corresponding to 2π
twists of the phase (see Fig. 2). For the unperturbed SG
equation, i.e., α ¼ 0 in Eq. (1), solitons have the simple
analytical expression [48]

φðx̃ − ut̃Þ ¼ 4 arctan

�
exp

�
�ðx̃ − x̃0 − ut̃Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p

��
; ð3Þ

where the sign � is the polarity of the soliton and u is the
soliton speed normalized to the Swihart velocity [48],
namely, the largest group propagation velocity of the linear
electromagneticwaves in long junctions. Themoving soliton
corresponds to a timevariationof the phasewhichgenerates a
local voltage drop according to Vðx; tÞ ¼ Φ0=ð2πÞφ̇ðx; tÞ.
For the numerical simulation of the soliton dynamics, we

modeled the normalized external magnetic field HðtÞ as a
Gaussian pulse exciting the junction end in x ¼ 0.
Accordingly, the boundary conditions become

dφð0; tÞ
dx̃

¼ HðtÞ and
dφðL; tÞ

dx̃
¼ 0: ð4Þ

For simplicity, in our model, i.e., Eq. (1), both of the
terms β½ð∂φÞ=ð∂x̃2∂ t̃Þ� [3,49] (with β ¼ ωpLP=RP, where
LP ¼ μ0td=W and RP represents the scattering of quasi-
particles in the superconducting surface layers) and
Δc½ð∂HÞ=ð∂x̃Þ� [3,50] (with Δc being a coupling constant)

are omitted. These terms account for the dissipation due to
the surface resistance of the superconducting electrodes and
for the spatial gradient of the magnetic field along the
junction, respectively. We neglect these contributions since
we are interested only in looking at the interplay between a
soliton and the thermal effects resulting from its presence
along the system as a temperature gradient across the
junction is imposed. In this regard, the specific mechanism
used to excite a soliton is also not very relevant. In fact, in
place of a moving soliton generated by a magnetic pulse,
we can alternatively design the local control of thermal flux
through configurations of steady solitons excited in specific
points of the junction via a slowly varying external
magnetic drive applied to both edges of the device [44].
In this manner, the positions of the solitons are directly
dependent on the boundary conditions. Anyway, we
observe that, still in this case, a dynamical treatment is
crucial for the realistic description of the manipulation of
the system, and it leads to peculiar results, such us the
hysteresis and the trapping of fluxons [44]. Alternatively, in
an annular geometry [51], i.e., a “closed” LJJ folded back
into itself in which solitons move undisturbed (i.e., without
any interaction with borders), fluxons can be excited at will
[52,53], allowing highly controlled soliton dynamics.
Below, we also briefly discuss the possibility of con-

trolling the soliton position with an applied bias current.
This feasibility adds an external control knob, making this
device more interesting for practical applications.

III. THERMAL EFFECTS

The aim of this section is to explore the thermal flux
through the junction, as a soliton is set and a temperature
gradient across the junction is imposed. Specifically, we
observe the evolution of the temperature T2ðx; tÞ, which
depends on all of the energy local relaxation mechanisms
occurring in the electrode S2 [see Fig. 1(b)]. For the sake of
simplicity, we assume that the electrode S1 resides at a fixed
temperature T1, which is maintained by the good thermal
contact with heating probes. The electrode S2 is also in
thermal contact with a phonon bath at the temperature
Tbath ≤ T2 < T1.
A characteristic length scale for the thermalization in the

diffusive regime can be estimated as the inelastic scattering
length lin ¼

ffiffiffiffiffiffiffiffi
Dτs

p
, whereD ¼ σN=ðe2NFÞ is the diffusion

constant (with σN and NF being the electrical conductivity
in the normal state and the density of states at the Fermi
energy, respectively) and τs is the recombination quasipar-
ticle lifetime [54]. For Nb at 4.2 K, one obtains
lin ∼ 0.3 μm—namely, a value well below the dimension
of a soliton, lin ≪ λJ—since λJ ≳ 6 μm for the device
considered below. When only the length of S2 is much
larger than lin, i.e., L ≫ lin (namely, the so-called qua-
siequilibrium limit [33]), the electrode S2 can be modeled
as a one-dimensional diffusive superconductor at a temper-
ature varying along L.

FIG. 2. The phase profile φ (left vertical scale, the black line)
and the heat power density PinðT1; T2;φÞ [in units of
Δ2

2ð0Þ=ðe2RaD2Þ] (right vertical scale, the orange line)—see
Eq. (7)—for T1 ¼ 7 K and T2 ¼ 4.2 K, as a function of the
normalized position x̃, when a steady unperturbed soliton [see
Eq. (3) for u ¼ 0] is located at the midpoint of a junction with
normalized length L ¼ 20.
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For the sake of readability, hereafter, we adopt in
equations the abbreviated notation in which the x and t
dependences are left implicit, namely, T2 ¼ T2ðx; tÞ,
φ ¼ φðx; tÞ, and V ¼ Vðx; tÞ. Then the evolution of the
temperature T2 is given by the time-dependent diffusion
equation

d
dx

�
κðT2Þ

dT2

dx

�
þ PtotðT1; T2;φÞ ¼ cvðT2Þ

dT2

dt
; ð5Þ

where the rhs represents the variations of the internal
energy density of the system and the lhs terms indicate
the spatial heat diffusion, taking into account the inhomo-
geneous electronic heat conductivity, κðT2Þ, and the total
heat flux density in the system, namely,

PtotðT1; T2;φÞ ¼ PinðT1; T2;φ; VÞ − Pe-ph;2ðT2; TbathÞ:
ð6Þ

This term consists of the incoming, i.e., PinðT1; T2;φ; VÞ,
and outgoing, i.e., Pe-ph;2ðT2; TbathÞ, thermal power den-
sities in S2. We stress that the phase dynamics is essential,
through Pin, to determining the heat flows and the temper-
ature evolution. Therefore, Eqs. (1) and (5) both have to be
solved numerically self-consistently to thoroughly explore
the thermal behavior of the system.
In Eq. (6), the heat current density PinðT1; T2;φ; VÞ

flowing from S1 to S2 is

PinðT1; T2;φ; VÞ ¼ PqpðT1; T2; VÞ − cosφPcosðT1; T2; VÞ
þ sinφPsinðT1; T2; VÞ; ð7Þ

and it contains the interplay between Cooper pairs and
quasiparticles in tunneling through a JJ predicted by Maki
and Griffin [37]. In fact, Pqp is the heat flux density carried
by quasiparticles and represents an incoherent flow of
energy through the junction from the hot to the cold
electrode [33,37,55]. Instead, the “anomalous” terms
Psin and Pcos determine the phase-dependent part of the
heat current originating from the energy-carrying tunneling
processes involving, respectively, Cooper pairs and the
recombination or destruction of Cooper pairs on both sides
of the junction. In the adiabatic regime [56], the quasipar-
ticle and the anomalous heat current densities, Pqp, Pcos,
and Psin read, respectively [37,56,57],

PqpðT1; T2; VÞ ¼
1

e2RaD2

Z
∞

−∞
dεN 1ðε − eV; T1Þ

×N 2ðε; T2Þðε − eVÞ
× ½fðε − eV; T1Þ − fðε; T2Þ�; ð8Þ

PcosðT1; T2; VÞ ¼
1

e2RaD2

Z
∞

−∞
dεN 1ðε − eV; T1Þ

×N 2ðε; T2Þ
Δ1ðT1ÞΔ2ðT2Þ

ε

× ½fðε − eV; T1Þ − fðε; T2Þ�; ð9Þ

PsinðT1; T2; VÞ ¼
eV

2πe2RaD2

ZZ
∞

−∞
dϵ1dϵ2

Δ1ðT1ÞΔ2ðT2Þ
E2

×

�
1 − fðE1; T1Þ − fðE2; T2Þ

ðE1 þ E2Þ2 − e2V2

þ fðE1; T1Þ − fðE2; T2Þ
ðE1 − E2Þ2 − e2V2

�
; ð10Þ

where Ra ¼ RA is the resistance per area of the junction,

Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2j þ ΔjðTjÞ2

q
, fðE; TÞ ¼ 1=ð1þ eE=kBTÞ is the

Fermi distribution function, and N jðε; TÞ ¼����Re
�
ðεþ iγjÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεþ iγjÞ2 − ΔjðTÞ2

q ����� is the reduced

superconducting density of state, with ΔjðTjÞ and γj being
the BCS energy gap and the Dynes broadening parameter
[58] of the jth electrode, respectively.
Interestingly, if we calculate the values of the heat

current density PinðT1; T2;φÞ in the presence of a steady
unperturbed soliton, described by Eq. (3) for u ¼ 0, an
enhancement of Pin centered on the soliton is observed (see
Fig. 2, assuming, for simplicity, a homogeneous temper-
ature profile with T1 ¼ 7 K and Tbath ¼ 4.2 K).
Correspondingly, in the presence of a thermal gradient,
we expect in the stationary regime a soliton to induce a
local warm-up in S2. The peaked shape of Pin shown in
Fig. 2 results from the φ dependence of the anomalous
contribution Pcos in Eq. (7) (notably, the anomalous term
Psin vanishes in the stationary case; i.e., φ̇ ¼ 0). In fact, the
coefficient − cosφ that is multiplied by the Pcos term tends
to −1 for φ → f0; 2πg, and it is þ1 for φ ¼ π, namely,
corresponding to the center of the soliton. Nevertheless, the
quasiparticle contribute Pqp represents a positive offset that
still makes Pin positive, so the total heat current flows from
the hot to the cold reservoir.
In Eq. (6), the energy exchange between electrons and

phonons in the superconductor is accounted for by Pe-ph;2,
which reads [59]

Pe-ph;2 ¼
−Σ

96ζð5Þk5B

Z
∞

−∞
dEE

Z
∞

−∞
dεε2signðεÞME;Eþε

×

�
coth

�
ε

2kBTbath

�
½F ðE; T2Þ − F ðEþ ε; T2Þ�

− F ðE; T2ÞF ðEþ ε; T2Þ þ 1

	
; ð11Þ

where F ðε; T2Þ ¼ tanh ðε=2kBT2Þ, ME;E0 ¼ N iðE; T2Þ
N iðE0; T2Þ½1 − Δ2ðT2Þ=ðEE0Þ�, Σ is the electron-phonon
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coupling constant, and ζ is the Riemann ζ function. We are
assuming that the lattice phonons are very well thermalized
with the substrate that resides at Tbath, thanks to the
vanishing Kapitza resistance between thin metallic films
and the substrate at low temperatures [33,60].
Going forward in the description of the terms in Eq. (5),

cvðTÞ ¼ Tf½dSðTÞ�=ðdTÞ�g is the volume-specific heat
capacity, with SðTÞ being the electronic entropy density
of the superconductor S2 [61,62],

SðTÞ ¼ −4kBNF

Z
∞

0

dεN 2ðε; TÞ

× f½1 − fðε; TÞ� log½1 − fðε; TÞ�
þ fðε; TÞ log fðε; TÞg: ð12Þ

In Eq. (5), κðT2Þ is the electronic heat conductivity given
by [43]

κðT2Þ ¼
σN

2e2kBT2
2

Z
∞

−∞
dεε2

cos2fIm½arctanhðΔðT2Þ
εþiγ2

Þ�g
cosh2ð ε

2kBT2
Þ :

ð13Þ
In order to comprehensively account for all of the

thermal effects, we observe also that the temperature affects
both the effective magnetic thickness tdðT1; T2Þ and the
Josephson critical current IcðT1; T2Þ, which varies with the
temperatures according to the generalized Ambegaokar and
Baratoff formula [63–65]

IcðT1; T2Þ ¼
1

2eR

����
Z

∞

−∞
ffðε; T1ÞRe½F1ðεÞ�Im½F2ðεÞ�

þ fðε; T2ÞRe½F2ðεÞ�Im½F1ðεÞ�gdε
����; ð14Þ

where FjðεÞ¼ΔjðTjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεþiγjÞ2−Δ2

jðTjÞ
q

. Accordingly,

both the Josephson penetration depth λJ and the damping
parameter α vary with the temperatures; see Fig. 3. Since

the soliton width depends on λJ, this thermal dependence
affects both the dynamics and the shape of the soliton and
also, then, the temperature profile along the junction.
The feasibility to affect the soliton dynamics by locally

heating the system is the cornerstone of the low-
temperature scanning electron microscopy [66–69]. This
techniques has proved to be a powerful experimental tool
for investigating fluxon dynamics in Josephson devices.
The main idea behind this technique is to locally heat a
small area (of about a micrometer) of the junction by
a narrow electron beam. The generated hot spot acts as a
small thermal perturbation with the aim of drastically
locally increasing the effective dissipation coefficient.
This process results in a change of the I-V characteristic
of the device. By gradually scanning the electron beam
along the junction surface and measuring the voltage, an
“image” of the dynamical state of the LJJ can be produced.
Alternatively, in our work, we discuss a sort of thermal
imaging of a magnetically excited soliton, through the
temperature profile of the floating electrode of the device.
In Fig. 3, we assume a fixed T2 value since, in the small

range of variation of T2 that we are discussing, the effect of
this temperature on λJ and α is vanishingly small and can
therefore be neglected.
Finally, we assume that the electrode S2 is initially at

T2ðx; 0Þ ¼ Tbath ∀ x ∈ ½0; L� and that its ends are thermally
isolated, so the boundary conditions of Eq. (5) read
½ð∂T2Þ=ð∂xÞ�jx¼0;L ¼ 0. The choice of the initial temper-
ature of the electrode S2 is not essential for our discussion
since we are assuming that a soliton is excited only when T2

reaches a steady value T2;s between Tbath and T1.

IV. RESULTS

We consider a Nb=AlOx=Nb S-I-S LJJ characterized by a
resistance per area Ra ¼ 50 Ω μm2 and a specific capaci-
tance Cs ¼ 50 fF=μm2. The linear dimensions of the device
are L ¼ 150 μm, W ¼ 0.5 μm, D2 ¼ 0.1 μm, and d ¼
1 nm. For the Nb electrode, we assume λ0L ¼ 80 nm,
σN ¼ 6.7 × 106 Ω−1 m−1, Σ ¼ 3 × 109 Wm−3K−5, NF ¼
1047 J−1 m−3, Δ1ð0Þ¼Δ2ð0Þ¼Δ¼1.764kBTc, with Tc ¼
9.2 K being the common critical temperature of the super-
conductors, and γ1 ¼ γ2 ¼ 10−4Δ.
Here, we focus on the simplest case in which we

magnetically excite a soliton, which then moves along
the junction as the friction affecting its dynamics stops it.
The resulting standing soliton is stable and, if it is far
enough to the junction edges and without further pertur-
bations, definitively remains in this position. Then, to
model this situation, the “left,” i.e., x ¼ 0, junction edge
is excited by a Gaussian magnetic pulse, with norma-
lized amplitude Hmax ¼ 8.5 and width σ ¼ 1 (in units of
½μ0=ð2πÞ�½Φ0=ðtdλJÞ� and ω−1

p , respectively), which induces
a soliton moving rightward along the junction. The width
and the velocity of the generated soliton directly depend on

5 6 7 8 9
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1 (K)
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FIG. 3. Josephson penetration length λJ (left vertical scale, the
blue line) and damping parameter α (right vertical scale, the red
line) as a function of the temperature of the hot electrode T1, for
T2 ¼ 4.2 K, for a Nb-based LJJ with values of the junction
parameters discussed in the text.
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the temperatures of the system through λJ andα, respectively.
In fact, the higher the temperature, the larger both λJ and α

since both are proportional to I−1=2c (see Fig. 3). Therefore, by
increasing the temperatures, the soliton enlarges and slows
down since both λJ and α increase. This phenomenon
shows that the manipulation of the thermal profile along
the junction can also be eventually used tomodify the soliton
dynamics [70].

We impose a thermal gradient across the system,
specifically, that the bath resides at Tbath ¼ 4.2 K and that
S1 is at a temperature T1 ¼ 7 K kept fixed throughout the
computation. The electronic temperature T2ðx; tÞ of the
electrode S2 is the key quantity for mastering the thermal
route across the junction since it floats and can be driven by
controlling the soliton along the system.
The evolution of the Josephson phase φðx; tÞ in the

presence of a magnetically excited soliton is shown in
Fig. 4. In the figure, a rightward-moving soliton (which
corresponds to a 2π step of the phase along the junction) is
outlined by red lines at different instants, whereas a dashed
line in the contour plot underneath the main graph marks
the soliton position. As expected, because of the friction
[which is accounted for by a value of the damping
parameter α ¼ ðωpRCÞ−1 ≃ 0.3], the soliton sets in at
xs ∼ 74.8 μm and definitively stays in that position.
We observe that, corresponding to the soliton, the heat

flux Pin is clearly enhanced [see Fig. 5(a)]. Specifically, the
steady value of the heat current corresponding to the soliton
is Pin ∼ 1.1 μW, whereas it is Pin ∼ 0.3 μW elsewhere.
Finally, the behavior of the temperature T2ðx; tÞ reflects

the behavior of the thermal flux Pin, as is shown in
Fig. 5(b). In this case, the soliton is excited after about
2 ns, namely, as the whole electrode S2 is thermalized at the
steady “unperturbed” (i.e., unaffected by excitations) tem-
perature T2;s ≃ 4.23 K. Interestingly, the soliton induces a
local intense warm-up in S2, with a steady maximum
temperature T2;max ≃ 4.29 K.
We observe that, as the soliton sets in at xs, the

temperature enhances exponentially, approaching its steady
value; see Fig. 5(b). The thermal response time can be
estimate as the characteristic time of the exponential

FIG. 4. Phase evolution as a function of the position x and the
time t for T1 ¼ 7 K and Tbath ¼ 4.2 K. A soliton magnetically
excited at x ¼ 0 shifts along the junction. Correspondingly, the
Josephson phase φ undergoes a 2π step (see the red lines). The
phase values and the position xs of the soliton, which is marked
by a black dashed line, are highlighted in the contour plot
underneath the main graph.

FIG. 5. (a) Heat current PinðT1; T2;φ; VÞ flowing from S1 to S2; see Eq. (7). (b) Evolution of the temperature T2ðx; tÞ of S2. In both
panels, the soliton is magnetically excited to the left end, i.e., x ¼ 0, after approximately 2 ns. At this time, the superconducting
electrode S2 is already fully thermalized at the steady temperature T2;s ∼ 4.23 K. Then, corresponding to the induced soliton, we observe
a clear enhancement of both Pin and T2. In (b), the phase values φðx; tÞ and the position of the soliton, which is marked by a black dashed
line, are highlighted in the contour plot underneath the main graph. For both panels, T1 ¼ 7 K, Tbath ¼ 4.2 K, and the junction is
initially at the temperature T2ðx; 0Þ ¼ Tbath ∀ x ∈ ½0 − L�.
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evolution by which the temperature approaches its sta-
tionary value. Then, from Fig. 5(b), we deduce the value
τth ∼ 0.25 ns. Markedly, a very good estimate of this
thermal response time results also in a linear response
regime, namely, by first order expanding the heat current
terms in Eq. (5). In fact, by following the same procedure
developed in Ref. [46], we obtain a thermal switching
time τsw ≃ 0.1 ns.
The role of the temperature T1 is illustrated in Fig. 6,

where T2ðx; τÞ is calculated at τ ¼ 10 ns at a few values of
T1 and Tbath ¼ 4.2 K. By increasing T1, the temperature
peak shifts leftward and becomes wider, simply because the
soliton slows down and enlarges, as a consequence of
the parameter variations discussed in Fig. 3. Interestingly,
the T2 modulation amplitude, δT2 ¼ T2;max − T2;s—
defined as the difference between the maximum and
minimum values of T2ðx; τÞ along the junction at a fixed
time τ—behaves nonmonotonically by varying T1 (see the
inset of Fig. 6). In fact, δT2 vanishes for low T1 values
(specifically, for T1 ¼ Tbath, there is no thermal gradient
across the system). It then increases up to δT2 ∼ 56 mK for
T1 ¼ 7 K, and it finally reduces again for T1 → Tc due to
the temperature-induced suppression of the energy gaps in
the superconductors.
The physical effect we describe here can promptly find

an application as a Josephson thermal router [36].
Specifically, we can design a setup in which we direct
the heat through a soliton to a superconducting finger
electrode, attached, for instance, to xs, in order to selec-
tively warm it up. Additionally, this idea can be improved
further by including an external electric bias current across
the junction. In fact, a bias current density, Jb, acts on the
soliton with a Lorentz force, FL ¼ Jb ×Φ0 (with the
direction of Φ0 depending on the polarity of the soliton).
So, in the presence of an external bias current, according to
the perturbational approach [5], a soliton drifts with a

velocity approximately given by ud ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½4α=ðπγÞ�2

p
[4], with γ ¼ Jb=Jc—specifically, for a low bias current
ud ≃ ½ðπγÞ=ð4αÞ�. This behavior allows us to actively
control the dynamics and the final position of the soliton,
and thus the local temperature of the electrode. Therefore, a
multiterminal device allowing us to distribute the heat
among several reservoirs can be conceived of, in which we
can select which terminal to heat by shifting the soliton
along the junction through the bias current. Clearly, the
time-dependent approach we illustrate in this paper is
indispensable for accurately describing the dynamical
temperature response when the soliton moves from one
finger to the next one, and then for properly mastering the
operating principles of a multiterminal device.

V. CONCLUSIONS

In conclusion, we discuss in this paper the phase-
coherent thermal transport in a temperature-biased LJJ,
where the thermal conduction across the system can be
controlled through solitonic excitations. Specifically, we
analyze the evolution of the temperature T2 of the floating
“cold” electrode of the junction, as the temperature T1 of
the “hot” electrode is kept fixed and the thermal contact
with a phonon bath is taken into account. Specifically,
corresponding to a magnetically excited soliton, we
observe a clear enhancement of the heat current Pin flowing
through the junction. Correspondingly, a soliton-induced
temperature peak occurs, with a height of up to δT2 ∼
56 mK in the realistic Nb-based proposed setup.
Finally, the physical properties of the device depend on

the evolution of the superconducting order parameter
along the junction and, hence, on the dynamics of solitons
which can be accurately controlled by the external
magnetic field, bias current, and shape engineering.
This flexibility will make it possible to suggest alternative
caloritronics applications enabling, for instance, the han-
dling of the local thermal transport at specific points of the
junction, i.e., a solitonic thermal router. The analysis also
shows the possibility of affecting the solitonic properties
by manipulating the thermal profile, increasing the pos-
sible interplay between thermal and solitonic dynamics.
Additionally, the solitonic nature of the system ensures
protection against environmental disturbances and a
highly controllable, unaffected by noise, heat flow. The
results obtained will clarify the interplay between solitons
and caloritronics at nanoscale, paving the way for the
realization of alternative coherent devices based on
soliton-sustained thermal transport.
Moreover, this device could represent the link between

two recent proposals concerning a Josephson-based, phase-
tunable thermal logic [71] and a logic using fluxons in
LJJs [72].
The suggested systems could be implemented by stan-

dard nanofabrication techniques through the setup used, for
instance, for the short JJ-based thermal diffractor [41]. The

FIG. 6. Temperature T2ðx; τÞ at τ ¼ 10 ns for a few values of
T1. (Inset) The T2 modulation amplitude, δT2, as a function of
T1. The bath temperature is Tbath ¼ 4.2 K and the junction is
initially at the temperature T2ðx; 0Þ ¼ Tbath ∀ x ∈ ½0 − L�.
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modulations of the temperature of the drain cold electrode
is usually obtained by realizing a Josephson junction with a
large superconducting electrode, whose temperature is
blocked at a fixed value, and a small electrode with a
small thermal capacity. In this way, the heat transferred
significantly affects the temperature of the latter electrode,
which is then measured.
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