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Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device
geometry and the details of magnetization structure, so the design and the scalability of the device or
circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are
used as information carriers, that do not suffer from conventional problems of magnonic devices with
additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly
magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense
that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced
nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya inter-
action) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls
regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam
splitters, and spin-wave interferometers are designed by using sample edges and domain walls to
manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can
be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw
different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are
reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust,
reconfigurable and scalable spin-wave circuitry.
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I. INTRODUCTION

Spintronics concerns the generation, detection, and
manipulation of spins for information storage and process-
ing. Similar to electron spintronics,which dealswith electron
spin, magnon spintronics—also known as magnonics [1–3]
—utilizes magnon spin, which has the advantages of low
energy consumption and long coherence length [3–5].
Magnons, the quanta of spin waves, are promising informa-
tion carriers, as well as a control knob of spin textures [6–8],
which is the subject of intensive research in recent years.
Various spin-wave devices and circuits, such as logic gates
[9,10], filters [11], waveguides [12,13], diodes [14], and
multiplexors [15], have been proposed and designed. The
important functionality of these devices is tomanipulate spin
waves and to control spin-wave propagation in a designed
way. In most applications, the magnetostatic surface spin
waves are used as information carriers because they propa-
gate unidirectionally so that they can transmit information in
specific directions. However, although many efforts have

been made [13,16], it is still difficult to effectively conduct
the unidirectional magnetostatic surface spin waves in
complex geometries because such spin waves require in-
plane magnetization perpendicular to the spin-wave propa-
gation direction [17]. It is desirable to have robust spinwaves
that are unidirectional and insensitive to device geometry and
magnetization structure.
Interestingly, recently discovered magnonic topological

matters [18–24] have topologically protected unidirectional
spin waves that are well confined on the sample surfaces
and edges, and whose propagation is very robust against
internal and external perturbations, in contrast to the fragile
nature of conventional spin waves. Thus, devices based on
topological spin waves should not suffer from the usual
problems of conventional spin-wave devices.
In this paper, we propose topologicalmagnonics, inwhich

we use topological exchange spin waves as information
carriers. We first show that a perpendicularly magnetized
ferromagnet on a honeycomb lattice is generically a
topological magnetic material in the presence of a nearest-
neighbor pseudodipolar interaction and/or a next-nearest-
neighbor Dzyaloshinskii-Moriya interaction, both of which
are induced by spin-orbit coupling. The topologically
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protected chiral edge spin waves (TESWs) exist in the band
gap and propagate in a certain direction with respect to the
bulk magnetization direction, as is schematically illustrated
in the left panel of Fig. 1(a). We further show that inside a
domain wall that separates two domains, there are two
unidirectional spin-wave modes for a given frequency in
the bulk band gap due to the coupling of two TESWs, one
from each domain. Both sample edges and domain walls are
robust channels for conducting the TESWs, regardless of
their geometries.
To explicitly demonstrate the topological magnonics

concept, we design a spin-wave diode, a spin-wave beam
splitter (SWBS), and a spin-wave interferometer, which are
basic elements in magnonics, by using sample edges and
domain walls in a topological magnetic film to manipulate
the TESWs. Owing to the unidirectional property of
TESWs, a segment of a sample edge can be used as a
spin-wave diode. Since the TESWs propagate in opposite
directions in the two domains, a TESW beam propagating
towards the domain wall can neither penetrate it nor be
reflected by it. It must move along the domain wall. When

the spin-wave beam reaches the other edge, it will split into
two beams propagating in opposite directions, as shown in
the right panel of Fig. 1(a). Thus, a domain wall is essentially
a 1∶2 SWBS for the TESWs in the bulk band gap.
For an incoming TESW beam of a given frequency, the

power division ratio of the SWBS depends on the wave
numbers, the group velocities of the two modes, and the
domain-wall length, but not on the position of the domain
wall or the wave source because of the interference of the
two spin-wave modes of the same frequency inside the
domain wall. The idea can be generalized to 1-to-n spin-
wave splitting. A Mach-Zehnder–type spin-wave interfer-
ometer is also designed. A spin-wave beam is first split into
two, then recombined later to form an interference pattern
that varies periodically with the relative phase change of the
two beams.

II. MODEL AND ITS PHASE DIAGRAM

We consider classical spins on a honeycomb lattice of
lattice constant a in the x-y plane. The Hamiltonian is

H ¼ −
J
2

X
hi;ji

mi ·mj −
F
2

X
hi;ji

ðmi · eijÞðmj · eijÞ

−D
X
⟪i;j⟫

νijẑ · ðmi ×mjÞ −
X
i

Ki

2
m2

iz; ð1Þ

where the first term is the nearest-neighbor ferromagnetic
Heisenberg exchange interactionwithJ > 0. The second and
third terms arise from the spin-orbit coupling (SOC) [25,26].
eij is the unit vector pointing from sites i to j. The second
term is the nearest-neighbor pseudodipolar interaction
of strength F, which is the second-order effect of the SOC
[the first-order effect, the nearest-neighbor Dzyaloshinskii-
Moriya interaction (DMI), vanishes because the center of the
A─B bond is an inversion center of the honeycomb lattice].
The third term is the next-nearest-neighbor DMI of strength
D with νij ¼ 2ffiffi

3
p ẑ · ðeli × eljÞ ¼ �1, where l is the nearest-

neighbor site of i and j. The last term is the sublattice-
dependent anisotropy whose easy axis is along the z
direction, with anisotropy coefficients of Ki ¼ K þ Δ for
i ∈ A and K − Δ for i ∈ B. mi is the unit vector of the
magnetic moment of magnitude μ at site i.
The dynamics of the spins is governed by the Landau-

Lifshitz-Gilbert (LLG) equation [24,27],

dmi

dt
¼ −γmi ×Heff

i þ αmi ×
dmi

dt
; ð2Þ

where γ is the gyromagnetic ratio and α is the Gilbert
damping constant. Heff

i ¼ −ð∂HÞ/ðμ0μ∂miÞ is the effec-
tive field at site i. Out of five model parameters in
Hamiltonian (1), J can be the natural energy unit. The
natural units of the time, the length, and the magnetic field
are ðμ0μÞ/ðγJÞ, a, and J/ðμ0μÞ.
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FIG. 1. (a) Schematic illustration for the TESW states (left
panels) and the domain-wall SWBS (right panels). The red and
cyan regions denote domains in which spins point to the þz and
−z directions, respectively. The yellow arrows denote the spin-
wave propagation direction. (b) Various phases in the K/J-F/J
plane when D ¼ Δ ¼ 0. The spin arrangements in these phases
are shown in the insets. (c) Topological phase diagram in the
D/J-Δ/J plane (for K ¼ J and F ¼ 0.01J). The cyan (pink)
region is a topologically nontrivial phase with the Chern number
Cc ¼ −1 (Cc ¼ þ1) for the conduction band, and the TESWs
propagate counterclockwise (clockwise) with respect to the
magnetization direction, as illustrated in the insets. The white
regions represent a topologically trivial phase with Cc ¼ 0.
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The LLG equation is numerically solved by using a
homemade C++ code with the fourth-order Runge-Kutta
method. We first determine the ground state of the system
by numerically relaxing the spins to their stable state,
starting from an initial configuration in which the spins are
randomly and uniformly distributed in a cone with a polar
angle θ < 15°. ForD ¼ 0 and Δ ¼ 0, the phase diagram of
the model in the K/J-F/J plane is shown in Fig. 1(b). The
system is in a ferromagnetic topological phase [24] with
spins aligning along the z direction (the pink region) when
3J þ K > − 3

2
F and K > 3

2
F. The system has a bulk band

gap of ð3J þ KÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3J þ KÞ2 − 9F2/4

p
in the case where

F ≠ 0 in this phase, with Chern number Cc ¼ −1 for the
conduction band and Cv ¼ þ1 for the valence band, and
TESWs in the gap for a finite system. When 3J þ K <
− 3

2
F and F < −J [the green region in Fig. 1(b)], the

ground state has a chiral spin structure in which spins lie in
the x-y plane with a zero net magnetic moment on each
hexagon. As shown in the lower-left inset of Fig. 1(b), six
spins on each hexagon form three ferromagnetic pairs. The
spins of each pair are perpendicular to the bond of the pair,
and the three pairs are in an all-in or all-out spin structure
(120° from each other). For K < 3

2
F and F > −J (the cyan

region), the system prefers an in-plane ferromagnetic state
(the lower-right inset).
We focus now on the perpendicular ferromagnetic

phase. To obtain the spin-wave spectrum, we assumemi ¼
ðδmix; δmiy; 1Þ to be a small deviation from the stable
ground state of m0 ¼ ð0; 0; 1Þ and substitute it into the
LLG equation [27]. The linearized LLG equation is
obtained by keeping only the linear terms in δmix or
δmiy. The Bloch theorem guarantees spin-wave eigenso-
lutions of δmix ¼ Xβeiðk·ri−ωtÞ and δmiy ¼ Yβeiðk·ri−ωtÞ,
where βð¼ A orBÞ denotes the sublattice which site i
belongs to. Then the spin wave can be obtained by solving
the corresponding linearized LLG equation [28].
At the K and K0 points, the gaps are Δg − 2Δ and

Δg þ 2Δ, respectively, where Δg ¼ ð3J þ K − 3
ffiffiffi
3

p
DÞ −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3J þ K þ 3
ffiffiffi
3

p
DÞ2 − 9F2/4

q
is the gap for Δ ¼ 0 in the

presence of D. The system undergoes topological phase
transitions by closing and reopening the gap at one or both
valleys, as the DMI D and the staggered anisotropy Δ vary.
Figure 1(c) shows the topological phase diagram in the

D/J − Δ/J plane for K ¼ J and F ¼ 0.01J, which guar-
antees a perpendicular ferromagnetic ground state for not
too large of aΔ andD (jΔj < K, so that bothKA andKB are
positive, and j3 ffiffiffi

3
p

Dj < 3J þ K). The Chern number of the
conduction band Cc is labeled in the figure, and the Chern
number of the valence band Cv ¼ −Cc because the sum of
the Chern numbers of all bands must be zero [29]. At the
phase boundaries, one of the gaps closes, so we obtain two
phase boundaries Δ ¼ �Δg/2. In the cyan region, the

conduction band has the Chern number −1, and each
valley contributes −1/2. The edge states propagate counter-
clockwise with respect tom. The gap at the K valley closes
and reopens as one crosses the phase boundary along D ¼
0 (OO1), and the band Chern number changes from −1 to
0, a transition from topologically nontrivial phase to trivial
phase. The gaps at K and K0 close and reopen at the same
time when one passes D ¼ Dc ≡ fð ffiffiffi

3
p

F2Þ/½16ð3J þ KÞ�g
along Δ ¼ 0 (OO2), and the band Chern number changes
from −1 toþ1. The system changes from one topologically
nontrivial phase [the cyan region in Fig. 1(c) where the
edge states propagate counterclockwise with respect to m]
to another topologically nontrivial phase [the pink region in
Fig. 1(c) where the edge states propagate clockwise with
respect to m] [30]. The features of the phase diagram
discussed above do not depend on specific values of F
and K, as long as the ground state of the system is the
perpendicular ferromagnetic state.

III. TESW AND SPIN-WAVE DIODE

To reveal the properties of TESWs at sample edges and
inside a domain wall, we consider a long strip of zigzag or
armchair edges with a domain wall in the middle, as
illustrated in the middle panels of Fig. 2. To be specific, we
consider model parameters of D ¼ Δ ¼ 0, K ¼ 10J, and
F ¼ 5J so that the propagation direction of TESWs follows
the right-hand rule and the domain-wall width

ffiffiffiffiffiffiffiffi
J/K

p
< 1 is

narrow.
The spin waves are obtained by solving the eigenvalue

problem HðkÞΨ ¼ ωðkÞΨ, where HðkÞ is a 4N × 4N
matrix, with N ¼ 100 being the number of rows. The
spectral function at the nth row of the strip is

Anðω; kÞ ¼ −
1

π
Im

� X
i¼0;1;2;3

Gð4n−iÞð4n−iÞ

�
; ð3Þ

where Gmn is the matrix element of the Green’s function
Gðω; kÞ ¼ 1/½ω −HðkÞ − iε�, with ε being a small positive
number.
The TESW modes in the bulk band gap can be clearly

seen in the density plot of spectral functions shown in
Fig. 2(a). The left panels are density plots of the spectral
functions on the top and the bottom edges (n ¼ 1 and
n ¼ 100). They perfectly overlap with each other, showing
identical dispersion relations of TESWs in two domains.
The negative slope of the ωðkÞ curve says that the TESWs
propagate from the right to the left on both edges at the same
speed. The right panels are the density plots of spectral
functions inside the domain wall (n ¼ 50 and n ¼ 51).
Two TESW modes from the two domains denoted as j1i

and j2i couple with each other inside the domain wall
where they spatially overlap. The coupling results in two
eigenmodes of ðj1i � j2iÞ/ ffiffiffi

2
p

with different frequencies,
one symmetric and the other antisymmetric with respect to
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the domain-wall central line. The ωðkÞ curves of both
modes have positive slopes, but with different values,
showing the left-to-right propagation with different veloc-
ities. Importantly, these general features do not depend on
the sample geometry, such as the edge types shown in

Fig. 2(a): similar spin wave spectra for both a zigzag strip
(the upper panel) and an armchair strip (the lower panel).
For the same frequency, the wave vectors and dispersion

relations of the TESWs along different types of edges are
different. Thewidth of an edge state also depends on the type
of edges. The middle panel of Fig. 2(b) shows the amplitude
of the normalized TESW eigenstates for ω ¼ 12 versus the
distance to the edge. The symbols represent a numerical
solution of a linearized LLG equation for a 100-wide strip.
The solid lines are analytical solutions of spin-wave edge-
state wave function that is obtained from a spin-wave
eigenequation by expanding the bulk Hamiltonian near
the K point and replacing ky by −i∂/∂y [31].
The left and right panels of Fig. 2(b) show the spatial

distributions of the TESW eigenstates for the armchair and
zigzag edges, respectively. For the armchair edge, the gap
locates at k ¼ 0 and the edge states are more extended. For
the zigzag edge, the gap locates at k ¼ π/

ffiffiffi
3

p
a, and the edge

states are more localized compared to those of the armchair
edge. This phenomenon is similar to the electron edge
states in quantum Hall systems [32,33].
With the unidirectional property of the TESWs at the

edges or inside the domain walls, we can design a spin-wave
diode, which is a basic element in magnonics analogous to
the p-n junction diode in electronics. Because of the
intrinsic requirement of nonreciprocity for the function of
a diode, magnetostatic surface waves or spin waves in the
presence of DMI are used in existing designs [14]. The spin-
wave diode in topological magnonics has the advantages of
smaller wavelengths and better scalability.
To demonstrate the idea, we numerically solve the LLG

equation with the same parameters as those specified above,
and the damping is set to α ¼ 10−4. Figure 3(a) shows a
segment of an edge of a 10

ffiffiffi
3

p
-long, 15-wide sample with

magnetization along theþz direction. A point-source micro-
wave field ofh ¼ 0.01½ðcosωtÞex þ ðsinωtÞey� is applied at
one of the two sites, ① or ②. We use the same model
parameters as those in Fig. 2 andω ¼ 12, which is inside the
bulk band gap. Owing to the properties of TESWs, only left-
going spin waves are allowed for this edge.
The upper left panel of Fig. 3(a) shows a snapshot of spin

waves at t ¼ 5 when the microwave field is applied at ②
(the tenth site at the top edge). A spin-wave beam is excited
and propagates to ① (the fifth site at the top edge), an on
state. By contrast, when the microwave field is applied at ①,
no spin wave can be detected at②, which means an off state,
as shown in the upper-right panel of Fig. 3(a). By tuning the
DMI, the system can change from one topologically
nontrivial phase to another one in which the propagation
direction of the TESW is reversed, so the on and off states
can also be swapped. The lower panel shows the reversal of
on and off states for D ¼ 0.4, with all of the other
parameters unchanged. The TESW can propagate only
rightward along the edge.
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FIG. 2. (a) The density plots of the spectral function at the strip
edge or domain wall (indicated by the dashed boxes) for (upper
panel) a zigzag strip and (lower panel) an armchair strip. An
abrupt domain wall, which separates an upper domain of mz ¼ 1
from a lower domain of mz ¼ −1, sits in the middle of each strip.
(b) (Middle panel) The distribution of wave-function amplitude
on sublattice A for the edge states of ω ¼ 12 along the strip-width
direction (the y direction). The symbols are numerical results for
a 100-wide strip, and the solid lines are the analytical results. The
left (right) panel is the corresponding spatial distribution of the
TESWeigenstate along the armchair (zigzag) edge. In the left and
right panels, the symbol shape traces the spin-precession trajec-
tories, and the size of the symbols denotes the amplitude of the
TESWat each site. The azimuthal angles of spins on the lattice at
t ¼ 0 are encoded by the symbol colors with the color ring shown
in the inset.
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IV. SPIN-WAVE BEAM SPLITTER

A fundamental building block in spin-wave circuitry is a
SWBS that can split one spin-wave beam into n > 1 beams.
One existing SWBS is based on the interconversion
between magnetostatic surface spin waves and backward
volume magnetostatic spin waves in a T junction [16]. This
design requires a careful control of magnetization structure
near corners and edges that is not easy to achieve.
Alternatively, we have suggested, without going into detail,
that a domain wall in a topological magnetic material can
be used as a SWBS [24].
To reveal the properties of our topological SWBS, we

first calculate the power division ratio numerically. We use
the same model parameters as in Fig. 2 and consider a strip
that is Lx ¼ 40

ffiffiffi
3

p
long and Ly ¼ 10.5–180 wide. The

edges along the x and y directions are zigzag and armchair
types, respectively. An abrupt domain wall is placed at

x ¼ Lx/2. A spin-wave beam can be either injected into
one sample edge from an outside source or locally
generated. Here, a spin-wave pulse is locally generated
by a microwave field pulse h ¼ 0.01½ðcosωtÞex þ
ðsinωtÞey� switched on at t ¼ 0 for a duration of
Δt ¼ 5. The microwave of ω ¼ 12 in the band gap is
applied only at the site marked by the black arrow on the
bottom edge shown in Fig. 3(b). Figure 3(b) displays
snapshots of a spin-wave beam for Ly ¼ 12 (t ¼ 15, upper
panel) and Ly ¼ 15 (t ¼ 15.5, lower panel). Clearly, the
intensities of the two outgoing beams are not the same and
depend on the strip width Ly (which is also the domain-
wall length). Let us define the logarithm of the power
division ratio as η ¼ log10ðPright/PleftÞ, where Pright and
Pleft are, respectively, the right and left outgoing beam
powers. Then η depends on the domain-wall length, η < 0

for Ly ¼ 12.
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FIG. 3. (a) Snapshots of the spin waves injected at the site marked by the black arrows at t ¼ 5. The upper (lower) panel is for D ¼ 0
(D ¼ 0.4). Only the parts between the fifth site (①) and the tenth site (②) at the top edge are shown. (b) Snapshots of a spin wave at
t ¼ 15 (t ¼ 15.5) after leaving a 12-long (upper panel) [15-long (lower panel)] domain wall. The spin wave is injected at the site marked
by the black arrow in each sample. Only the portions near the domain wall are shown. In (a) [(b)], the pink (cyan) regions represent the

mz ¼ þ1 (mz ¼ −1) domains. The radius of each circle is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þm2
y

q
, and the color encodes the azimuthal angles of the

spins. (c) The domain-wall length dependence of spin-wave power division ratio. The symbols are simulation results, and the red dashed
line is η ¼ 0 (for a 1∶1 splitting). (Inset) η approaches 0 for a large Ly value. (d) Spatial distribution of two topologically protected edge
spin waves of ω ¼ 12 inside a domain wall parallel to the armchair edges with wave number k1 ¼ −0.0209 (left panel) and k2 ¼ 0.821
(right panel). (Insets) Spin precession is mirror symmetric (antisymmetric) as mk → mk and m⊥ → −m⊥ (mk → −mk and m⊥ → m⊥)
with respect to the domain wall central line for a k1 ¼ 0.0209 (k2 ¼ 0.821) state. Here, mk and m⊥ are the magnetization components
parallel and perpendicular to the domain wall. The meaning of the circle symbols is the same as that in Fig. 2(b). (e) The spatial period
(the vertical axis) of the power division ratio from the LLG simulations verses the period of beat (the horizontal axis). The green line is
y ¼ x. The model parameters for squares, circles, and triangles are, respectively, F ¼ 5J and K ¼ 10J, F ¼ 6J and K ¼ 10J, and
F ¼ 5J and K ¼ 9J. α is set to 10−4, and several different frequencies inside the gap are calculated for each set of parameters.
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As shown in Fig. 3(c), η changes sign after the same
incoming beam passing through a 15-long domain wall.
Figure 3(c) shows that η oscillates periodically with Ly for a
not-too-long Ly value, and it approaches 0 (1∶1 splitting)
for a large Ly value, as shown in the inset. Interestingly, the
power division ratio does not depend on how far the wave
source is from the domain wall.
To understand this oscillatory behavior, we notice that

there are two TESWs for each ω in the band gap, ðj1i −
j2iÞ/ ffiffiffi

2
p

and ðj10i þ j20iÞ/ ffiffiffi
2

p
, with different wave numbers

(as discussed earlier). For ω ¼ 12, the wave numbers of the
two modes are k1 ¼ −0.0209 for the antisymmetric state
(and for j1i and j2i) and k2 ¼ 0.821 for the symmetric one
(and for j10i and j20i), as indicated by the motion of the in-
plane components of the spins on the two sides of the
domain wall in the insets of Fig. 3(c).
The spatial distributions of the two chiral eigenmodes

inside a domain wall parallel to the armchair edges are
presented in Fig. 3(d). The mode with k2 ¼ 0.821 is highly
confined around the domain wall, while the mode of
k1 ¼ −0.0209 is less confined. The generated spin-wave
pulse cannot be an eigenmode (an eigenmode must
simultaneously exist in both domains), the spin-wave pulse
must be mainly from the two eigenmodes of the same ω
value and a different k value.
Since the two modes travel along the same direction

at different speeds inside the domain wall, as shown
earlier, their superposition generates a beat pattern with
a beat wave number kb ¼ ðk1 − k2Þ/2 when they overlap
with each other. Thus, the power division ratio should
oscillate with Ly with the period of λ ¼ j½ð2πÞ/ð2kbÞ�j ¼
j½ð2πÞ/ðk1 − k2Þ�j. Figure 3(e) shows the period obtained
from a LLG simulation (the vertical axis) against λ from the
spin-wave spectrum (the horizontal axis) for different
frequencies and material parameters. The simulation results
coincide with the line y ¼ x quite well. For a given spin-
wave pulse of time duration Δt, two eigenmodes, whose
speeds inside the domain wall are v1 and v2, spatially
separate from each other when Ly is longer than
W ¼ j½ðv1v2ΔtÞ/ðv1 − v2Þ�j. Then spin waves of both
eigenmodes leave the domain wall independently, and their
beam power division ratios should be 1∶1 since they are
just single eigenmodes that are symmetric or antisymmetric
under the permutation of the two edge modes of the two
domains. This picture perfectly explains why η approaches
0 for a large Ly value.
The idea of the above 1∶2 SWBS that uses one domain

wall to control the TESWs can easily be generalized to 1-
to-n SWBSs and spin-wave devices by using more domain
walls (see Video 1). Figure 4 illustrates an example of a 1∶4
SWBS with three domain walls that separate the mz ¼ þ1
domains (the pink areas) from the mz ¼ −1 domains (the
cyan areas). The gray regions are absorbing areas with a
large damping constant of α ¼ 1. The figure shows a

snapshot of the spin-wave pattern at t ¼ 65 when a
microwave field of frequency ω ¼ 12 is continuously
applied at the site marked by the inward arrow in the
bottom edge. It is clearly shown that a spin-wave beam
splits into two beams by the vertically aligned domain wall,
and then each of the beam is further split into two beams
by the two horizontally aligned domain walls in the two
arms. The domain-wall lengths are designed in such a way
that the spin-wave beams are evenly split. The SWBS can
also be used in series to build a complicated circuitry.

V. SPIN-WAVE INTERFEROMETER

In magnonics, it is important to manipulate the spin-wave
phase because of its usefulness in information processing and
logic operations [2,3,9,10]. Therefore, a spin-wave interfer-
ometer is an important element in magnonics. In topological
magnonics, we can design a robust, reconfigurable spin-wave
interferometer utilizing the SWBS designed above.
Figure 5(a) is a proposal of a Mach-Zehnder–type spin-

wave interferometer with two domain walls separating a
left mz ¼ þ1 domain (the pink area) from a mz ¼ −1
domain (the cyan area). A TESW beam of ω ¼ 12
generated at the site marked by the inward arrow enters
the first domain wall of length AB. The beam splits evenly
to beams⃝I and⃝II by the SWBS, as explained earlier. After
traveling a certain distance, the two beams recombine in the
second SWBS (the domain wall of length CD). Spin waves
can go to either ③ or ④ (see Videos 2 and 3). Their
intensities should depend on the interference of the two
beams inside the second domain wall.
Figure 5(a) shows the snapshot of the spin-wave pattern at

t ¼ 70 when a spin-wave beam is emitted into the device at

L
x

x x

y

L
y

FIG. 4. A snapshot of a spin wave at t ¼ 65 under a continuous
microwave excitation of ω ¼ 12 at the site marked by the in-
ward arrow on the lower edge. The outward arrows denote the
output signals. The device geometry, with a zigzag edge along the
x direction and armchair edges along the y direction, is
Lx ¼ 40

ffiffiffi
3

p
, Ly ¼ 63, ly ¼ 25.5, and lx ¼ 12

ffiffiffi
3

p
. α ¼ 1 in

the gray areas.
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t ¼ 0. The above process can be schematically represented
by the diagram in Fig. 5(b), which is exactly the same as the
diagram for the opticalMach-Zehnder interferometer shown
in the inset of Fig. 5(b). Of course, instead of light and two
optical beam splitters in an optical Mach-Zehnder interfer-
ometer, we have a spin wave and two SWBSs here.
In our interferometer, the relative phase of the two

interfered spin waves can be tuned, for example, by placing
the second domain wall at different positions or by
changing the length of the second domain wall. The
interference pattern is reflected by the power division ratio
after the spin-wave beam comes out of the second domain
wall (beam splitter ②).
The inset of Fig. 5(a) is the position (X ¼ 0 when two

domain walls align along the same vertical line) dependence
of the power division ratio η of the second domain wall,
which is 12

ffiffiffi
3

p
long. This phenomenon is in contrast to the

simple SWBS discussed earlier, whose power division ratio
does not dependon the location of the domainwall. Since the
position of the second domain wall can be controlled by
magnetic fields or electric current or fields, this device can
also be used as a tunable SWBS or a spin-wave demulti-
plexer. The interferometer can also be used as a sensor to
measure the physical quantities that affect the spin-wave
phase, such as a magnetic field.

VI. DISCUSSION, PERSPECTIVES,
AND CONCLUSION

The results reported here do not depend on the details of
the model as long as the system supports TESWs [18,19,21].

In practical applications, one would like to use magnetic
materials with low damping such as yttrium iron garnet,
whose damping can be as low as α < 10−5, so that spin-
wave decay length is about 105 wavelengths [3,4]. We
consider abrupt domain walls with strong anisotropy here,
and it would be interesting to also consider a case with wide
domain walls. The spin-wave interferometer shows a lot of
similarities to the optical Mach-Zehnder interferometer.
Although we study spin waves at a classical level in our
model, it is also possible to repeat the work at quantum level
so that one can investigate interesting quantum phenomena
such as the magnonic Hong-Ou-Mandel effect [34].
Because of the unidirectional property of theTESWs, other

basicmagnoniccomponentssuchasspin-wavecirculatorsand
gyrators can also bedesigned that utilize topologicalmagnetic
materials. Thus, our proposal may make it possible to realize
fully programmable on-chip integrated circuits, a magnonic
analogy of silicon-based electric integrated circuits with the
advantageof reconfigurablity. It allowsone todraw, erase, and
redraw a complicated spin-wave circuit on amagnetic plate as
onewishessince thedomainconfigurationcanbemanipulated
by a magnetic field and/or electric current or field. A domain
configuration can be fixed with an antiferromagnetic layer
through the exchange bias effect [35] if it is needed.
Furthermore, the performance of the devices and circuitry
can be effectively controlled and tuned bymagnetic fields and
electric fields through the control of material properties and
domain-wall properties.Also, since theDMIcanbecontrolled
by surface engineering or an electric field [36,37], there are
versatile possibilities for the design of devices.
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FIG. 5. (a) The spin-wave beam of ω ¼ 12, generated at the site marked by the inward arrow by a microwave field, is split into beams
⃝I and ⃝II by the domain wall AB (the first SWBS). The two beams recombine in the domain wall CD (the second SWBS). The spin-
wave pattern at t ¼ 70 is represented by the size and color of the symbols, which have the same meaning as in Fig. 3. The device
geometry, with armchair edges along the x direction and zigzag edges along the y direction, is Lx ¼ 90 and Ly ¼ 40
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p
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domain wall, which is 12
ffiffiffi
3

p
long, is placed at x ¼ Lx/2 and splits the incoming spin wave evenly. An area of 30 × 6

ffiffiffi
3

p
is removed from

the center of the device so that the two split spin-wave beams can propagate along the internal boundary. The two beams recombine at
the second domain wall, which is 12

ffiffiffi
3

p
long, at X. The gray parts are absorbing areas with a large damping constant of α ¼ 1. (Inset) X

dependence of the power division ratio η. (b) Schematic diagram of the interferometer in (a). (Inset) In the optical Mach-Zehnder
interferometer, a light beam enters optical beam splitter ① and splits into two beams, ⃝I and ⃝II . The two beams recombine at the second
optical beam splitter ②. The outputs ③ and ④ depend on the interference of two beams at beam splitter ②.
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The concepts and ideas proposed in this paper are
applicable to any system that supports TESWs. Such
systems are known to exist. For example, in Lu2V2O7

with a pyrochlore structure [38] or Cu[1,3-bdc] with a
kagome structure [39], there is already experimental
evidence of TESWs.
To specifically realize the model studied in this paper, the

lattice structure need not have a perfectly honeycomb
structure. Any twisted honeycomb lattices that have two
spins in one unit cell can be used, which is quite common.
The pseudodipolar interaction and the Dzyaloshinskii-
Moriya interaction arise from the spin-orbit interaction
that exists in most magnetic materials. So heavy-metal
magnetic materials are candidates for realizing our model.
For example, in A2BO3 materials (where A is an alkali

metal and B is a transition metal), the B atoms form a
honeycomb structure, and there are usually strong spin-
orbit coupling effects. Ferromagnetic order is also possible
for some special elements combinations or some special
lattice directions [40]. β-Li2IrO3 is shown to possibly have
a ferromagnetism and hyperhoneycomb lattice structure
[41], which may be a candidate for realizing our model.
AB3 (where A is a transition metal and B is a halogen) is
another family of candidate materials. A atoms form a
honeycomb lattice in these materials.
There are already first-principle predictions of ferromag-

netism in NiCl3 and OsCl3 monolayers [33,42], and the
A─B─A bond is very promising for inducing a strong
pseudodipolar exchange interaction. Our model may also
be realized in magnonic crystals that nanomagnets are
artificially arranged into a honeycomb lattice [43]. Besides
the material requirements, the generation and detection of
TESWs can be achieved with the same techniques used in
conventional magnonic devices. For example, TESWs can
be excited by an antenna that carries a microwave magnetic
field and can be detected by Brillouin light-scattering
spectroscopy; both are mature techniques [2,3].
In this paper, we consider small-amplitude spin waves

and linear effects only. The above numerical simulations
justify that the in-plane components of m are smaller than
0.005. There is also experimental evidence that the spin-
wave amplitude is usually very small (the precession angle
is less than 10 μrad at a driving field of 2000 Oe in
Ref. [44]). Of course, because of the nonlinearity of the
LLG equation, there are inevitably nonlinear effects, or a
magnon-magnon interaction from a quasiparticle point of
view, which may induce magnon band broadening and
extra decay [22].
However, as long as the driving field is not too large, the

nonlinear effects do not affect the applicability of our
designs. When the nonlinearity starts to dominate, other
interesting physics may appear, such as soliton waves
analogous to those in optical fibers, which are issues for
future study and not the concern of this paper.

In conclusion, we show in this paper that a perpendicu-
larly magnetized ferromagnetic film with a pseudodipolar
interaction and a Dzyaloshinskii-Moriya interaction is a
generic topological magnetic material that supports
TESWs. The TESWs are very useful in magnonics. An
alternative paradigm of spin-wave manipulation and device
design, termed topological magnonics, is proposed.
Reconfigurable topological spin-wave diodes, beam split-
ters, and interferometers are designed and studied. The
power division ratio of the spin-wave beam splitter oscil-
lates with the domain-wall length due to the interference of
two spin waves of the same frequency and different wave
numbers.
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APPENDIX: EVOLUTION OF SPIN WAVES IN
1∶4 SPIN-WAVE BEAM SPLITTER AND SPIN-

WAVE INTERFEROMETER

In this appendix, we present movies for spin waves in a
1∶4 spin-wave beam splitter and a spin-wave interferom-
eter. The material parameters are the same as those in
Figs. 2–5. The radius of each circle is proportional to the
spin-wave amplitude and the color encodes the azimuthal
angles of the spins, just as in Figs. 3–5.

VIDEO 1. 1:4 beam splitter. The geometry is the same as in
Fig. 4.
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