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Analytical formulas for thermoelectric figures of merit and power factors are derived based on the
one-band model. We find that there is a direct relationship between the optimum figures of merit and the
optimum power factors of semiconductors despite of the fact that the two quantities are generally given by
different values of chemical potentials. By introducing a dimensionless parameter consisting of the
optimum power factor and lattice thermal conductivity (without electronic thermal conductivity), it is
possible to unify optimum figures of merit of both bulk and low-dimensional semiconductors into a single
universal curve that covers many materials with different dimensionalities.
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I. INTRODUCTION

Most of the electrical energy that we consume in daily
life comes from thermal processes, such as heat engines in
cars and power plants, in which more than half of the
energy is wasted in the form of heat [1]. Research on
thermoelectricity for recovering this waste heat—i.e.,
converting the waste heat directly into electric energy—
is thus of great interest [1,2]. A good thermoelectric (TE)
material is characterized by how efficiently the electricity
can be obtained for a given heat source, in which the
thermoelectric figure of merit ZT ¼ S2σκ−1T is usually
evaluated, where S, σ, κ, and T are the Seebeck coefficient,
the electrical conductivity, the thermal conductivity, and the
average absolute temperature, respectively. It is well known
that obtaining the optimum ZT (ZTopt for short) for a
certain TE material—where ZTopt is defined as the maxi-
mum value of ZT as a function of the chemical potential—
is often complicated by the interdependence of S, σ, and κ
[3]. Therefore, finding the best material to obtain as large a
ZTopt as possible has been a great challenge for many years.
As one strategy, using low-dimensional semiconductors
with a large density of states at the top of the valence band
(or at the bottom of the conduction band) was suggested by
Hicks and Dresselhaus to improve ZTopt [4–6]. However,
we recently pointed out that, in terms of their power factor
PF ¼ S2σ, only low-dimensional semiconductors with
confinement lengths smaller than their thermal de
Broglie wavelengths prove to be more useful TE materials
than the bulk ones [7].

Another strategy to find the best thermoelectric materials
is to define a material parameter that can be the most
essential one to determine ZTopt. We can mention several
efforts by researchers who proposed some parameters for
evaluating ZTopt. For example, in 1996, Mahan and Sofo
introduced a dimensionless material parameter kBT/Eb [8],
where kB and Eb are the Boltzmann constant and the energy
bandwidth, respectively. When Eb is infinitesimal, the
transport distribution function T ¼ v2τD forms a δ function
that leads to the largest possiblevalue ofZTopt, wherev is the
carrier velocity, τ is the carrier relaxation time, and D is the
density of states of the carrier at the Fermi energy. This work
was revisited from a Landauer perspective by Jeong et al.
[9], who found that a finite Eb dispersion produces a higher
ZT when the lattice thermal conductivity is finite. Much
earlier, in 1959, Chasmar and Stratton suggested that a
parameter B ¼ 5.745 × 10−6ðμ/κlÞðm/m0Þ3/2T5/2, where μ,
κl, m, and m0 are the carrier mobility, the lattice thermal
conductivity, the carrier effectivemass, and the free-electron
mass, respectively, determines the optimum ZT [10]. Note
that the product of μ and ðm/m0Þ3/2 has commonly been
called the weighted mobility. A large B value usually
corresponds to a high ZT value at a certain chemical
potential. The advantage of the parameter B is that, to
obtain a good TE material, instead of checking all of the
interdependent transport properties, one should look for a
semiconductor with a high weighted mobility and a low
lattice thermal conductivity κl, which are less dependent on
each other. Although Eb and B have been used to guide
researches in thermoelectricity for many years, it is not
possible to directly identify ZTopt by using only these
parameters. On the other hand, there has been a lot of effort
dedicated to optimizing the PF, giving the optimum power*nguyen@flex.phys.tohoku.ac.jp
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factor PFopt that can be obtained by changing the chemical
potential [11]. Since ZTopt generally occurs at a different
chemical potential than the PFopt, i.e., ZTopt ≠ PFoptκ−1T,
one always needs to measure or estimate ZTopt independ-
ently from the PFopt by rechecking the chemical potential
dependence ofZT. Therefore, it should prove to be useful for
thermoelectric applications if we can calculate ZTopt from
the information of the PFopt or other simple parameters.
In this paper, we propose that an alternative material

parameter α ¼ ðPFopt/κlÞT can be defined to directly
determineZTopt. AlthoughZTopt and the PFopt are generally
optimized at different chemical potentials, the value of
ZTopt can be calculated using an analytical formula that
involves the so-called LambertW function, where α can be
used as an input parameter. Without loss of generality, the
analytical formula for ZTopt is derived within the one-band
model and the nondegenerate semiconductor approxima-
tion.We show in this paper thatZTopt for both bulk and low-
dimensional semiconductors can be unified into a single
universal curve, which allows us to predict and understand
the materials of different dimensions that can have a better
ZTopt value by simply calculating the α parameter.
The rest of this paper is organized as follows. In Sec. II,

we start the derivation of some formulas of thermoelectric
properties from the conventional Boltzmann transport
theory. This initial derivation will give us PF and ZT
formulas involving integrals that must be calculated
numerically. In Sec. III, we apply a nondegenerate semi-
conductor approximation so that the PFopt and ZTopt can be
obtained analytically, which results in the universal curve
of ZTopt. Finally, in Sec. IV, we conclude the paper and give
a few perspectives on future work in the field of thermo-
electricity. We also provide some appendixes for additional
information about the derivation of the formulas and the
Lambert W function.

II. THEORETICAL METHODS

By solving the linearized Boltzmann equations within
the one-band model and the relaxation-time approximation,
three TE transport properties are related to the transport
distribution function T ðEÞ as follows:

σ ¼ q2L0; S ¼ 1

qT
L1

L0

; κe ¼
1

T

�
L2 −

L2
1

L0

�
; ð1Þ

where σ, S, and κe, are the electrical conductivity, the
Seebeck coefficient, and the electronic thermal conduc-
tivity, respectively. Li is the transport integral that is
defined by [8]

Li¼
Z

T ðEÞðE−EFÞi
�
−
∂f0
∂E

�
dE; with i¼0;1;2; ð2Þ

where E is the energy of carrier and f0¼1/½eðE−EFÞ/kBTþ1�
is the Fermi-Dirac distribution function, where the Fermi
energy EF is defined as the chemical potential measured
from the bottom (top) of the conduction (valence) energy
band in an n-type (p-type) semiconductor, and T ðEÞ is
defined

T ðEÞ ¼ v2xðEÞτðEÞDðEÞ; ð3Þ

where vxðEÞ, τðEÞ, andDðEÞ are the group velocity in the x
direction, the relaxation time, and the density of states
(DOS) of the carrier, respectively.
From Eqs. (1) and (2), the thermoelectric power factor

PF and the figure of merit ZT can be written as

PF ¼ S2σ ¼ 1

T2

L2
1

L0

; ð4Þ

ZT ¼ S2σ
κe þ κl

T ¼ β
L2
1

L0L2 − L2
1

; ð5Þ

where κl is the lattice thermal conductivity and
β ¼ 1/ðκl/κe þ 1Þ ≤ 1. It is clear from Eqs. (4) and (5)
that the PF and ZT have a different dependence on EF.
For the sake of simplicity, we consider a single parabolic

band, in which the energy band structure and the group
velocity can be given as EðkÞ ¼ ℏ2k2/2m and vðkÞ ¼
ð1/ℏÞ½∂EðkÞ/∂k� ¼ ℏk/m, respectively, where k is the
wave vector of the carrier, m is the carrier effective mass,
and ℏ is the Planck constant. We assume that the material is
isotropic with a certain dimension d ¼ 1, 2, 3, the group
velocity v2xðEÞ ¼ v2ðkÞ/d ¼ ℏ2k2/m2d ¼ 2E/md, and
the carrier relaxation time is inversely proportional to the
carrier DOS [12], τðEÞ ¼ CD−1ðEÞ, where C is the
scattering coefficient in units of W−1m−3. The DOS is
defined as DðEÞ ¼ ð2/ΩÞPk δ½E − EðkÞ� in units of
J−1m−3, where the factor 2 accounts for the spin degen-
eracy and Ω is the volume of the system. Detailed
derivations of how we can calculate C for a typical material
are given in Appendix A. After substituting v2xðEÞ and τðEÞ
into T ðEÞ in Eq. (3), the integrals Li in Eq. (2) can be
written as

L0 ¼
2C
md

ðkBTÞF0; ð6Þ

L1 ¼
2C
md

ðkBTÞ2ð2F1 − ηF0Þ; ð7Þ

L2 ¼
2C
md

ðkBTÞ3ð3F2 − 4ηF1 þ η2F0Þ; ð8Þ

where η ¼ EF/kBT is the reduced (or dimensionless)
chemical potential and FjðηÞ ¼

R
ηjf0dη is the Fermi-

Dirac integral. By substituting Li from Eqs. (6), (7), and (8)
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into Eqs. (4) and (5), we obtain the formulas of the PF and
ZT as follows:

PF ¼ 2Ck3BT
md

ð2F1 − ηF0Þ2
F0

; ð9Þ

ZT ¼ β
ð2F1 − ηF0Þ2

F0ð3F2 − 4ηF1 þ η2F0Þ − ð2F1 − ηF0Þ2
; ð10Þ

where the integrals F0, F1, and F2 are calculated
numerically.

III. RESULTS AND DISCUSSION

In this section, we first discuss an example of calculating
the PF and ZT as a function of η for one semiconducting
material by using Eqs. (9) and (10) numerically. After that,
we simplify the PF and ZT formulas by considering
nondegenerate semiconductor approximation, which gives
us analytical formulas of the PFopt and ZTopt. The ZTopt

formula can then be plotted and compared with various
experimental data, leading to a universal curve of ZTopt.

A. Example of a typical material

Figures 1(a)–1(d) show, respectively, the dependence of
S and σ, the PF [Eq. (9)], β and κl/κe, and ZT [Eq. (10)] on
the reduced chemical potential η for different dimensions.
When plotting Figs. 1(a)–1(d), we consider a typical
semiconductor, n-type Bi2Te2.7Se0.3, at T ¼ 298 K and a

doping concentration of about 0.92 × 1019 cm−3. The
carrier effective mass, the carrier mobility, and the lattice
thermal conductivity are taken to be m ¼ 1.12m0,
μ ¼ 173 cm2/V s, and κl ¼ 0.728 W/mK, respectively,
for the 3D (d ¼ 3) bulk n-type Bi2Te2.7Se0.3 [13]. The
scattering coefficient C¼1.18×1033W−1m−3 is obtained
from m and μ by using Eq. (A13) from Appendix A, which
leads to an average relaxation time of about 0.1 ps. We
temporarily use the same parameter values of m, κl, and C
for the 1D (d ¼ 1) and 2D (d ¼ 2) systems as for the 3D
ones. However, these parameters generally vary by dimen-
sion for different materials, which we adopt in Sec. III C.
Figure 1(a) shows that S is independent of d and

increases with a decreasing η value, while σ depends on
d and decreases with a decreasing η value. This behavior
can be understood in terms of their units since the units
(V/K) of S show no dependence of length scale, while the
units (1/Ωm) of σ show a dependence of length scale.
Figure 1(b) shows a strong enhancement of the maximum
PF around η ≈ 0 in the low-dimensional systems (1D and
2D). For the bulk (3D) system, the theoretical maximum PF
value is about 0.0025 W/mK2, which is in a good agree-
ment with the experimental data of about 0.0021 W/mK2

[13]. In the case of η ≫ 0, we can see that S approaches
zero because the system becomes metallic at high doping
concentrations, while σ is close to zero when η ≪ 0
[Fig. 1(a)]. Therefore, the PFopt occurs at η ≈ 0, in which
EF lies at the bottom (top) of the conduction (valence)
energy band in a p-type (n-type) semiconductor for all
of the 1D, 2D, and 3D systems, as shown in Fig. 1(b).
Figure 1(d) shows a strong enhancement of the maximum
ZT values in the 1D and 2D systems, which is known as the
Hicks-Dresselhaus theory [4,5]. For the 3D system, the
theoretical maximum ZT value is about 0.72, which is in a
good agreement with the experimental data of about
0.73 [13]. In the case of η ≫ 0, the coefficient β ¼
1/ðκl/κe þ 1Þ ≈ 1 since ke is much larger than kl when
the system is metallic, as shown in Fig. 1(c). By contrast,
β ≈ 0 when η ≪ 0 because ke is near zero (few free-
electron carriers in the insulators) [see Fig. 1(c)]. Therefore,
ZTopt is found at η < 0, in which EF lies in the energy gap,
as shown in Fig. 1(d). Important information for Figs. 1(b)
and 1(d) is that the PF and ZT are optimized at η ≈ 0 and
η < 0, respectively, for all 1D, 2D, and 3D systems,
although the two quantities are located at different η values
for each d value.

B. Nondegenerate semiconductor approximation

Next, we would like to obtain the analytical formulas for
both the PFopt and ZTopt. In Eqs. (9) and (10), which are
used to plot Figs. 1(b) and 1(d), we consider the full
solutions of Fermi-Dirac integrals F0, F1, and F2 numeri-
cally. The problem is, how can we get analytical formulas
for the PFopt and ZTopt to approach these two quantities?

(b)(a)

(d)(c)

κ
κ

FIG. 1. (a) S and σ, (b) the PF, (c) β and κl/κe, and (d) ZT as a
function of the reduced chemical potential η for the 1D, 2D,
and 3D systems, respectively. The carrier effective mass,
the carrier mobility, and the lattice thermal conductivity are
set at m ¼ 1.12m0, μ ¼ 173 cm2/V s, and κl ¼ 0.728 W/mK,
respectively, for n-type Bi2Te2.7Se0.3 at room temperature
(T ¼ 298 K) [13].
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Since the PFopt (ZTopt) is optimized at η ≈ 0 (η < 0), we
may use the nondegenerate semiconductor approximation
that is especially valid for η ≤ 0 [14]. In this case, the
Fermi-Dirac integral is approximated as FjðηÞ≈eηΓðjþ1Þ
[14], where ΓðjÞ is the Γ function. By substituting F0 ¼ eη,
F1 ¼ eη, and F2 ¼ 2eη into Eq. (9), we get the PF formula

PF ¼ 2Ck3BT
md

ð2 − ηÞ2eη: ð11Þ

Since κe ¼ ð1/TÞðL2 − L2
1/L0Þ ¼ 4Ck3BT

2eη/ðmdÞ [see
Eq. (1)], β can be written as

β ¼ 1

½2/ðαeηÞ� þ 1
; ð12Þ

where

α ¼ 8Ck3BT
2

mdκl
ð13Þ

is a dimensionless parameter. Substituting β into Eq. (10)
and applying the approximation of Fj, we obtain

ZT ¼ ð2 − ηÞ2
½4/ðαeηÞ� þ 2

: ð14Þ

In Figs. 2(a) and 2(b), respectively, we show the PFopt
and ZTopt that are calculated based on the full solutions of
Fermi-Dirac integrals [Eqs. (9) and (10)] and the non-
degenerate semiconductor approximation [Eqs. (11) and
(14)]. If we focus solely on the values of the PFopt and
ZTopt (local maxima of the PF and ZT) at η ≤ 0, we can see
that the analytical formulas based on the nondegenerate
semiconductor approximation can nicely reproduce the
PFopt and ZTopt of the full solutions. Therefore, we can

determine the PFopt and ZTopt from Eqs. (11) and (14) by
solving dðPFÞ/dη ¼ 0 and dðZTÞ/dη ¼ 0, respectively. The
formulas obtained for the PFopt and ZTopt are

PFopt ¼
8Ck3BT
md

; ZTopt ¼
W2

0ðαÞ
2

þW0ðαÞ; ð15Þ

where W0ðαÞ is the principal branch of the Lambert W
function (see Appendix B). By substituting the PFopt from
Eq. (15) into Eq. (13), the α parameter is now expressed in
terms of the PFopt and κl,

α ¼ PFopt
κl

T: ð16Þ

The corresponding reduced chemical potentials for the
PFopt and ZTopt are ηPFopt ¼ 0 and ηZTopt ¼ −W0ðαÞ, respec-
tively (see Fig. 2). Based on the simple analytical formulas
in Eq. (15), the values of the PFopt and ZTopt can be
calculated directly from C, d, m, κl, and T, which could be
measured in experiments. For example, in the case of 3D
n-type Bi2Te2.7Se0.3 at room temperature, taken from
Ref. [13], we have C ¼ 1.18 × 1033 W−1m−3 (see also
Appendix A), d ¼ 3, m ¼ 1.12m0, and κl ¼ 0.728 W/mK,
and hence PFopt ¼ 0.0024 W/mK2 and ZTopt ¼ 0.72.
This analytical result agrees well with both the fully
numerical calculation (PFopt¼0.0025W/mK2 and ZTopt ¼
0.72) (see Fig. 2) and the experimental data (PFopt ¼
0.0021 W/mK2 and ZTopt ¼ 0.73) [13].
To gain insight into the PFopt, we can substitute the

coefficient C from Eq. (A13) in Appendix A into the PFopt
formula in Eq. (15), so that the PFopt is given by

PFopt ¼
16μk2B
qL3

�
L
Λ

�
d Γð5

2
Þ

Γð7−d
2
ÞΓðd

2
Þ ; ð17Þ

where L is the confinement length for a particular material
dimension, and Λ ¼ ½2πℏ2/ðmkBTÞ�1/2 is the thermal de
Broglie wavelength (a measure of the thermodynamic
uncertainty for the localization of an electron or hole of
mass m) [15]. Equation (17) shows the dependence of
the PFopt on μ, d, L, and Λ. By scaling the PFopt with the
optimum PF of a 3D system, i.e., PF3Dopt, we find that the
ratio PFopt/PF3Dopt merely depends on the factor ðL/ΛÞd−3,
which is consistent with our previous work [7]. It is clear
that the PFopt is enhanced for 1D and 2D semiconductors
only when L is smaller than Λ. Interestingly, in this work,
we find that by defining α ¼ ðPFopt/κlÞT, we can have a
direct relation of ZTopt with the PFopt through Eq. (15).
Note that W0ðαÞ monotonically increases with α, as shown
in Fig. 4. It is important to point out that the factor ðL/ΛÞd−3
is the enhancement factor not only of the PFopt but also of
ZTopt for the low-dimensional semiconductors.

(a) (b)

FIG. 2. (a) The PF and (b) ZT as functions of the reduced
chemical potential η. Results from the formulas involving
numerical integrations and those from an analytical calculation
(a nondegenerate semiconductor approximation) are represented
by solid and dashed lines, respectively. The carrier effective mass,
the carrier mobility, and the lattice thermal conductivity are set at
m ¼ 1.12m0, μ ¼ 173 cm2/V s, and κl ¼ 0.728 W/mK, respec-
tively, for 3D n-type Bi2Te2.7Se0.3 at room temperature [13].
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C. The universal curve

Let us now compare the ZTopt formula with various
experimental data. In Fig. 3, we plot theoretical ZTopt (the
solid curve) as a function of α [Eq. (15)]. Here,ZTopt merely
depends on the PFopt, κl, and T, despite the fact that the PF
and ZT are optimized at different chemical potentials, i.e.,
ηPFopt ¼ 0 and ηZTopt ¼ −W0ðαÞ, respectively. Hence, ZTopt

from various materials with different dimensions can be
compared directly with the theoretical curve. The exper-
imental data (the symbols) in Fig. 3 are extracted from plots
ofZTopt, the PFopt, and κl in Refs. [16–20] by using digitizer
software. These data include 1D Bi nanowires of different
diameters (approximately 38–290 nm) along with bulk 3D
Bi at room temperature [16], 2D PbTe quantum wells of
different thicknesses (roughly 1.9–4.0 nm) along with 3D
PbTe at room temperature [17], and also 3D Pb0.98Na0.02Te
[18], 3D FeNb0.8Ti0.2Sb [19], and 3DMg2Sn0.78Ge0.2Sb0.02
[20] at different temperatures (about 300–1100 K).
As can be seen inFig. 3, all experimental data tend to fit the

theoretical curve from Eq. (15). The values of ZTopt

monotonically increase as a function of α, and thus we
can say that any semiconductor should have the material
parameter α > 4.5 to obtain ZTopt > 2. At smaller α values
(a higher T value or a higher PFopt), we have ηZTopt ∼ ηPFopt,
especially at aroundα < 0.3. In this case,ZTopt∼ðPFopt/κlÞT
(see the dotted line in Fig. 3). On the other hand, at larger α
values, we have ηZTopt < ηPFopt, which eventually results in a
nonlinear function of ZTopt versus ðPFopt/κlÞT. The main
benefit of using the universal curve in Fig. 3 is that it provides
an alternative way to directly calculate ZTopt from the PFopt
and κl without needing to check the electron thermal
conductivity κe or the optimum chemical potential ηZTopt.

IV. CONCLUSION

We show in this paper that the simple analytical formulas
[Eq. (15)] based on the one-band model can directly relate
the optimum figures of merit ZTopt with the optimum
power factors PFopt of semiconductors. By introducing the
material parameter α ¼ ðPFopt/κlÞT, we can obtain the
universal curve of ZTopt combining both bulk and low-
dimensional semiconductors, in which ZTopt monotoni-
cally increases as a function of α. Since this approach
reduces parameters such as κe and ηZTopt in the calculation of
ZTopt, we believe that it will help researchers to better
identify alternative thermoelectric materials in the future.
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APPENDIX A: THE SCATTERING
COEFFICIENT C

1. Defining C from Fermi’s “golden rule”

Fermi’s golden rule gives the scattering rate of transitions
between discrete states jki and jk0i as follows [21]:

1

τðk → k0Þ ≈
2π

ℏ
jhk0jVjkij2δ½EðkÞ − Eðk0Þ�; ðA1Þ

where ℏ is the Planck constant, V is the perturbation
potential, δ is the Dirac-δ function, and E is the energy
dispersion. The general scattering rate is given by the
product 2π/ℏ times the square of the transition matrix
element times a Dirac-δ function. For the one-band model,
the scattering rate is between states within the parabolic
energy band, where a continuum of states exist. In this case,
the final scattering rate is obtained by a summation over all
relevant states,

1

τðkÞ ¼
X
k0

1

τðk → k0Þ

¼ 2π

ℏ

X
k0

jhk0jVjkij2δ½EðkÞ − Eðk0Þ�: ðA2Þ

As an example, consider the scattering rate between
electron states in the conduction band due to a point
scatterer in a 3D semiconductor. Let us consider a per-
turbing potential VðrÞ ¼ V0δðrÞ for short-range inter-
actions, where V0 is constant in units of Jm3. The

0.5 0.5 1.0 1.5 2.0 2.0

0.0

0.5

1.0

1.5

3D FeNb0.8Ti0.2Sb

3D Pb0.98Na0.02Te

3D Mg2Sn0.78Ge0.2Sb0.02

3D Bi

2D PbTe

3D PbTe

1D BiNW

Z
T

op
t

opt/ l)T
0.5 0.5 1.0 1.5 2.0 2.0

0.0

0.5

1.0

1.5

3D FeNb0.8Ti0.2Sb

3D Pb0.98Na0.02Te

3D Mg2Sn0.78Ge0.2Sb0.02

3D Bi

2D PbTe

3D PbTe

1D BiNW

(PF / l

FIG. 3. ZTopt as a function of α ¼ ðPFopt/κlÞT. The solid line
denotes the theoretical curve from Eq. (15), while the dashed line
is the plot of ZTopt ¼ α and serves as a guide for the eye. The
symbols represent experimental results of 1D Bi nanowires
(right-pointing open triangle) and 3D Bi (right-pointing filled
triangle) [16], 2D PbTe quantum wells (open square) and 3D
PbTe (filled square) [17], 3D Pb0.98Na0.02Te (up-pointing tri-
angle) [18], 3D FeNb0.8Ti0.2Sb (open circle) [19], and 3D
Mg2Sn0.78Ge0.2Sb0.02 (diamond) [20].
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matrix element between electronic states jki and jk0i can
be obtained as [22]

jhk0jV0δðrÞjkij ¼
Z

d3r
�
e−ik

0·rffiffiffiffi
Ω

p
�
V0δðrÞ

�
eþik0·rffiffiffiffi

Ω
p

�
¼ V0

Ω
;

ðA3Þ

where Ω is the volume of the system. After substituting the
matrix element from Eq. (A3) into Eq. (A2), the scattering
rate can be written as

1

τðkÞ ¼
2π

ℏ

�
V0

Ω

�
2X

k0
δ½EðkÞ − Eðk0Þ�: ðA4Þ

By using the carrier DOS, defined as DðEÞ ¼
ð2/ΩÞPk δ½E − EðkÞ� in units of J−1 m−3, where the
factor 2 accounts for the spin degeneracy, Eq. (A4) is
now expressed as

1

τðEÞ ¼
πV2

0

ℏΩ
DðEÞ: ðA5Þ

This example shows an important result indicating that
the scattering rate for the continuum of states is, in general,
proportional to the DOS, while the strength of scattering
increases with the square of the scattering potential. The
carrier relaxation time τðEÞ is thus inversely proportional to
the carrier DOS:

τðEÞ ¼ CD−1ðEÞ; ðA6Þ

where C ¼ ℏΩ/ðπV2
0Þ is the scattering coefficient in units

of W−1m−3. Note that, according to Fermi’s golden rule,
the coefficient C can be a constant value when the matrix
element is approximately constant.

2. Calculating C from experimental data

Here, we derive a formula of the coefficient C consid-
ering a parabolic band for any semiconductor so that C can
be calculated from the experimental data. The carrier
relaxation time τðEÞ and the density of states DðEÞ per
unit volume are, respectively, defined by [14,22]

τðEÞ ¼ τ0

�
E
kBT

�
r
; ðA7Þ

DðEÞ ¼ ð2m/ℏ2Þd/2Ed/2−1

L3−d2d−1πd/2Γðd
2
Þ ; ðA8Þ

where kB is the Boltzmann constant, T is the average
absolute temperature, τ0 is the carrier relaxation-time
coefficient, r is a characteristic exponent, d ¼ 1, 2, 3
denotes the dimension of the system, m is the carrier
effective mass, and L is the confinement length for a

particular material dimension. For a given τðEÞ value, the
carrier mobility is defined by

μ ¼ q⟪τðEÞ⟫
m

: ðA9Þ

The average relaxation time is defined by [22]

⟪τðEÞ⟫≡ hEτðEÞi
hEi ¼ τ0

Γð5
2
þ rÞ

Γð5
2
Þ ; ðA10Þ

where Γ is the Γ function. From Eqs. (A7), (A9), and (A10),
the carrier relaxation time τðEÞ can be rewritten as

τðEÞ ¼ μmΓð5
2
Þ

qΓð5
2
þ rÞ

�
E
kBT

�
r
: ðA11Þ

We assume that the acoustic phonon scattering is the
main carrier scattering mechanism at room temperature,
i.e., τðEÞ ∝ DðEÞ−1 [12,22]. From Eqs. (A8) and (A11) and
τðEÞ ∝ DðEÞ−1, we obtain r ¼ 1 − d/2 for the system with
dimension d. By using r ¼ 1 − d/2 from Eqs. (A6), (A8),
and (A11), the coefficient C can be written as

C ¼ τðEÞDðEÞ

¼ 2μmΓð5
2
Þ

qkBTL3−dΓð7−d
2
ÞΓðd

2
Þ
�
mkBT
2πℏ2

�
d/2
: ðA12Þ

After substituting the thermal de Broglie wavelength
Λ ¼ ð2πℏ2/mkBTÞ1/2 into Eq. (A12), the coefficient C is
given by

C ¼ 2μm
qkBTL3

�
L
Λ

�
d Γð5

2
Þ

Γð7−d
2
ÞΓðd

2
Þ : ðA13Þ

Equation (A13) is useful for calculating the coefficient C
from μ andm, which can be obtained from the experimental
data. For example, in the 3D (d ¼ 3) n-type Bi2Te2.7Se0.3
[13], at room temperature (T ¼ 298 K) and a doping
concentration on the order of 1019 cm3, the carrier mobility
and the carrier effective mass are μ ¼ 173 cm2/V s and
m ¼ 1.12m0, respectively, where m0 is the free-electron
mass. From Eq. (A13), we obtain a C value of about
1.18 × 1033 W−1 m−3 and, correspondingly, the average
relaxation time is about 0.1 ps.

APPENDIX B: THE LAMBERT W FUNCTION

The Lambert W function is defined as a multivalued
complex function that satisfies the following equation:

WðαÞ ¼ αe−WðαÞ; where α ∈ C: ðB1Þ

Equation (B1) always has an infinite number of solutions in
the complex plane—hence the multivaluedness of the W
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function. These solutions are indexed by the integer
variable j and are called the branches of the W function,
Wj, for j ∈ Z. Specifically, the solutions of Eq. (B1) in the
calculation of ZTopt correspond to α ∈ ½0;∞Þ. In this case,
there can be a real solution corresponding to the principal
branch of the W function, i.e., W0ðαÞ ∈ ½0;∞Þ.
The W0 function can be written in terms of the series

expansion as follows [23]:

W0ðαÞ ¼
X∞
n¼1

ð−nÞn−1
n!

αn

¼ α − α2 þ 3

2
α3 −

8

3
α4 þ 125

24
α5 −

54

5
α6

þ 16 807

720
α7 þ � � � : ðB2Þ

Figure 4 shows W0ðαÞ as a function of α when α ∈ ½0;∞Þ.
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