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Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and
sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at
around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean
free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C
isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by
the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we
can design the optimum sample size, which gives the largest thermal conductivity at a given temperature
for applying thermal conducting devices.
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I. INTRODUCTION

Thermal conductivity of suspended monolayer graphene
has been reported to bevery large up to5300 W=mKat room
temperature (T ¼ 300 K) compared with copper
(400 W=mK) or diamond (2000 W=mK) [1], which is
important for possible application of heat-transfer materials
or low-dimensional thermoelectric materials [2,3]. Thermal
conductivity of graphene occurs mainly by phonons, while
thermal conductivity of the conventional metal is mainly
given by free electrons; this principle is known as the
Wiedemann-Franz law [4]. The thermal conductivity of a
phonon mode in the two-dimensional material is given by
Cvl=2, where C, v, and l denote, respectively, the heat
capacity, the group velocity, and the mean free path of
the phonon (MFP) [4]. TheMFPl is given byl ¼ vτ, where
τ is the relaxation time of phonons that is determined by
phonon-phonon scattering andphonon scatteringby isotope.
Balandin and his co-workers have written comprehen-

sive review articles on the thermal conductivity of 2D
graphene, few-layer graphene, and one-dimensional (1D)
graphene nanoribbon combined with their measurements,
which contains comparison of theoretical methods and the
difference of thermal conductivity between 2D or 1D
graphene and 3D graphite [5–9]. Phonon thermal conduc-
tivity is large in graphene for the following reasons:
(1) because of the high symmetry of graphene crystal,

many anharmonic terms are suppressed or give relatively
small values compared to low-symmetry materials; (2) the
mass of a carbon atom is small, while large force constants
of vibration exist due to the sp2 covalent bonding; and
(3) the in-plane acoustic phonon modes have large phonon
mean free paths due to the lack of interlayer coupling of the
phonons [5–9]. The small mass of a carbon atom with large
force constants provides large group velocity for acoustic
phonon modes with a large Debye temperature (2800 K)
[10] of carbon compared to copper (343 K) [4].
Within the harmonic term of the crystal potential, the

equation of motion for atoms can be diagonalized, from
which we obtain phonon energy dispersion as a function
of the phonon wave vector q. When the anharmonic term of
the crystal potential that is expressed by the cubic term of
the vibrational amplitude is introduced to Hamiltonian, the
phonon wave vectors are no longer good quantum numbers
and phonon-phonon scattering occurs. By considering the
anharmonic potential as a perturbation, the phonon relax-
ation time or MFP l can be calculated as a function of q
for each phonon mode, from which we can discuss the
diffusive thermal conductivity. The diffusive thermal con-
ductivity can be calculated by integrating the product
Cvl=2 over the Brillouin zone in which (1) the heat
capacity C of the material is calculated with the phonon
density of states, (2) the group velocity v of the phonons is
calculated with the phonon dispersion relation, and (3) the
MFP is calculated with anharmonic terms. The total
thermal conductivity is given as a function of T by
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integrating Cvl=2 for all phonon modes and q over the
Brillouin zone.
The MFP increases with decreasing T value, and

diffusive thermal conductivity thus increases. When the
MFP l of the sth phonon mode is larger than the sample
size L, ballistic thermal conductivity for the sth phonon
mode occurs in which the phonon-distribution difference
between the high-T side and the low-T side of the sample
generates the heat flux, which is proportional to the product
of the group velocity of the phonon and the heat capacity.
The ballistic thermal conductivity monotonically decreases
with decreasing T value since the heat capacity below the
Debye temperature monotonically decreases to zero with
decreasing T value to T ¼ 0 K. Thus, the maximum
thermal conductivity appears at a crossover temperature
from diffusive to ballistic thermal conductivity, which
should depend on the sample size L. In this paper, we
calculate thermal conductivity of graphene as a function of
T and L by the so-called force-constant model [11,12]
while considering anharmonic force constants.
Chen and co-workers reported [13,14] that the thermal

conductivity of a suspended single crystal of graphene
monotonically increases with decreasing T value or with
decreasing concentrations of an isotope of carbon, 13C, up
to 0%. The temperature dependence and the 13C concen-
tration dependence of the thermal conductivity above
300 K can be explained, respectively, by diffusive thermal
conductivity and phonon scattering by 13C because of the
different mass of 12C. If we estimate the MFP, we can
predict that the thermal conductivity has a maximum at the
lower temperature and then decreases with further decreas-
ing T values because the heat capacity becomes zero at
T ¼ 0 K. Paulatto et al. calculated anharmonic properties
of graphite and graphene by an ab initio calculation in
which the phonon lifetime is expressed by the spectral
width of phonon energy dispersions [15]. Anharmonic
terms are obtained by empirical potentials, too, by other
groups [16,17], though some empirical potentials do not
reproduce the phonon energy dispersion and the potentials
are not stable for a small displacement of atoms. Although
the first-principles calculation does not require any empiri-
cal parameters, it is not clear from the calculated results
which anharmonic terms are important for given T and L
values. In this paper, using the symmetry analysis, we
propose the dominant anharmonic terms of graphene whose
values are fitted to reproduce the results of the experiment
and the first-principles calculations. Our method can be
used for other unknown materials once we can obtain
anharmonic potential parameters by first-principles calcu-
lation [15,18].
Saito et al. calculated temperature dependence of

ballistic thermal transport of electrons and phonons [19]
in which they showed that some phonons contribute to the
thermal conductivity diffusely, while other phonons con-
tribute ballistically. Although we do not discuss how to

control anharmonic terms for improving thermal conduc-
tivity, it is important when considering possible applica-
tions to understand the microscopic picture of the
anharmonicity of graphene. In this paper, we focus only
on the contribution from each phonon mode for a wide
range of temperatures in which we predict a crossover from
diffusive to ballistic thermal transport with decreasing
temperature which depends on the sample size L.
The organization of this paper is as follows. In Sec. II,

we show how to construct anharmonic terms of graphene
with the tight-binding method. We will discuss the formu-
lation of thermal conductivity for diffusive and ballistic
thermal transport of phonons. In Sec. III, calculated results
of thermal conductivity as a function of T and L will be
shown for different concentrations of 13C isotopes. In
Sec. IV, a discussion and a summary are given.

II. METHOD

A. Anharmonic Hamiltonian

A Hamiltonian for the lattice vibration of graphene
which includes third-order anharmonic terms is expressed
by [20]

H ¼ Kþ V2 þ V3

¼
X
i

jpij2
2mi

þ 1

2

X
ij

X
αβ

ΦðijÞ
αβ uiαujβ

þ 1

3!

X
ijk

X
αβγ

ΨðijkÞ
αβγ uiαujβukγðα; β; γ ∈ fx; y; zgÞ; ð1Þ

whereK, V2, and V3 denote, respectively, the kinetic energy,
the harmonic potential, and the third-order anharmonic
potential, and mi, pi, and ui denote, respectively, the mass,
the momentum, and the displacement of the ith atom from its
equilibrium position (u ¼ 0). ΦðijÞ and ΨðijkÞ are, respec-
tively, the second- and third-rank tensors of forces that are
defined by the second and third derivatives of potential V at
the equilibrium position, which are given by [21]

ΦðijÞ
αβ ¼ ∂2V

∂uiα∂ujβ
����
0

; ð2Þ

ΨðijkÞ
αβγ ¼ ∂3V

∂uiα∂ujβ∂ukγ
����
0

: ð3Þ

In a previous calculation of the phonon dispersion of
graphene [11,12,22], we adopted the so-called force-
constant model, in which the harmonic potential between
the ith and jth atoms is given using a spring model such as

VðijÞ
2 ¼ −

X
αβ

1

2
ΦðijÞ

αβ ðuiα − ujβÞ2: ð4Þ
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When we consider the case of i ¼ j in the summation of i

and j in Eq. (1), a quadratic term such as ΦðijÞ
αβ u2iα in Eq. (4)

is included in V2 in Eq. (1). Thus, we can adopt the force
constant set in the previous calculation for obtaining the
phonon dispersion. For given nearest-neighbor A and B1

atoms that exist at Að0; 0; 0Þ and B1 (a=
ffiffiffi
3

p
; 0; 0) (where

a ¼ 2.46 Å is the lattice constant of graphene [22]),
respectively, we can select the following anharmonic terms,

VðAB1Þ
3 ¼ −ψ ð1Þ

r ðuB1x − uAxÞ3

þ ψ ð1Þ
ti ðuB1x − uAxÞðuB1y − uAyÞ2

þ ψ ð1Þ
to ðuB1x − uAxÞðuB1z − uAzÞ2; ð5Þ

where ψ ð1Þ
r , ψ ð1Þ

ti , and ψ ð1Þ
to denote, respectively, third order

force-constant parameters for nearest-neighbor carbon
atoms in radial (r), in-plane tangential (ti), and out-of-
plane tangential (to) vibrations. In Fig. 1, we show
corresponding third-order displacements for each term of
Eq. (5). The first term of Eq. (5) represents the anharmonic
term for the bond length. Since the increase of the potential
energy is smaller for a case of expanding bond length
(uB1x − uAx > 0) than for a case of shrinking bond length
(uB1x − uAx < 0) in the hexagonal lattice, we can put the

negative sign for ψ ð1Þ
r > 0 in Eq. (5). The second term of

Eq. (5) represents the anharmonic effect of increasing
energy with increasing interatomic distance by bending
the bond [ðuB1y − uAyÞ2 > 0] in the direction of y (in plane)
when the bond shrinks (uB1x − uAx < 0). The third term of
Eq. (5) represents the anharmonic effect of increasing
energy by bending the bond [ðuB1z − uAzÞ2 > 0] in the
direction of z (out of plane) when the bond shrinks
(uB1x − uAx < 0).
Other anharmonic terms between the two atoms can be

set to zero by considering the symmetry of the hexagonal

lattice of graphene. For example, a third-order anharmonic
term, ðuB1y − uAyÞ3, is an odd function of ðuB1y − uAyÞ.
However, since the potential V is invariant for the C2

(or 180°) rotation around the center of the bond, the
coefficient of the odd function should vanish. The same
discussion can be taken for any pair of nth nearest-neighbor
carbon atoms.
For a given potential V, the potential and a third-order

tensor such as ΨðAAB1Þ;ΨðAB1AÞ;ΨðAB1B1Þ;…;ΨðB1B1AÞ that
is defined by Eq. (3) are related to one another by
symmetry. For example, the nonzero terms of ΨðAAB1Þ
are given by

ΨðAAB1Þ
xxx ¼ −6ψ ð1Þ

r ;

ΨðAAB1Þ
xyy ¼ ΨðAAB1Þ

yxy ¼ ΨðAAB1Þ
yyx ¼ 2ψ ð1Þ

ti ;

ΨðAAB1Þ
xzz ¼ ΨðAAB1Þ

zxz ¼ ΨðAAB1Þ
zzx ¼ 2ψ ð1Þ

to .

ð6Þ

Since the potential V is an even function of z for monolayer
graphene, all nonzero anharmonic terms have a factor of
either u2z or 1 (not uz). Further, since the A and B1 atoms
exist along the x axis, a component such as xxy for the
(AAB1) pair should be zero. For a general pair of (ijk), we
get the following 14 nonzero components by symmetry of

ΨðijkÞ
αβγ : αβγ ¼ xxx, xxy, xyx, xyy, xzz, yxx, yxy, yyx, yyy,

yzz, zzx, zzy, zxz, and zyz.
Once we obtain ΨðAAB1Þ, the other term—ΨðAB1AÞ,

ΨðAB1B1Þ, etc.,—is given by the following relationship:

ΨðiijÞ ¼ΨðijiÞ ¼ΨðjiiÞ ¼−ΨðijjÞ ¼−ΨðjijÞ ¼−ΨðjjiÞ: ð7Þ

Furthermore, for obtaining the tensor for the other pair of i,
j, k atoms that does not exist along the x axis, we can use
the rotation matrix U which connects to the i0, j0, k0 atoms
along the x axis to the i, j, k atoms,

X
αβγ

ΨðijkÞ
αβγ uiαujβukγ

¼
X
αβγ

Ψði0j0k0Þ
αβγ ðUuiÞαðUujÞβðUukÞγ

¼
X
αβγ
lmn

Ψði0j0k0Þ
αβγ UαluilUβmujmUγnukn

¼
X
lmn

�X
αβγ

Ψði0j0k0Þ
αβγ UαlUβmUγn

�
uilujmukn: ð8Þ

The phonon dispersion relation ωsðkÞ, (s¼1;…;3Natom,
where Natom is the number of atoms in the unit cell) is
calculated by solving the dynamical matrix [22] by taking
the Fourier transform of uj and by considering only the
harmonic term V2. Then we can obtain the phonon
eigenvectors, eðκjqsÞ, (κ ¼ 1;…; Natom) for the wave
vector q.

FIG. 1. Anharmonic terms for the pair of carbon atoms A and
B1 shown in Eq. (5).
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When we label uj as uðlκÞ at the κth atom in the unit cell
with lattice vector l, the Fourier transform of uðlκÞ and its
momentum pðlκÞ are given by

XðqκÞ ¼ 1ffiffiffiffi
N

p
X
l

uðlκÞ expð−iq · lÞ; ð9Þ

PðqκÞ ¼ 1ffiffiffiffi
N

p
X
l

pðlκÞ expðiq · lÞ; ð10Þ

where N denotes the number of unit cells in the crystal.
Furthermore, XðqκÞ and PðqκÞ can be expressed by a linear
combination of the phonon eigenvectors eðκjqsÞ,

XðqκÞ ¼
X
s

XqseðκjqsÞ; ð11Þ

PðqκÞ ¼
X
s

Pqse�ðκjqsÞ; ð12Þ

where Xqs and Pqs are, respectively, operators of the
amplitude and the momentum for the sth phonon energy
band. Defining the annihilation and creation operators for
the sth phonon mode as

Xqs ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mκωqs

s
ða†qs − a−qsÞ; ð13Þ

Pqs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏmκωqs

2

r
ðaqs þ a†−qsÞ; ð14Þ

the Hamiltonian for the harmonic oscillation,H0¼KþV2,
and the anharmonic Hamiltonian V3 are, respectively,
written as

H0 ¼ Kþ V2 ¼
X
qs

ℏωqs

�
a†qsaqs þ

1

2

�
ð15Þ

and

V3 ¼
1

3!

X
qsq0s0q00s00

δqþq0þq00;GΨðqs; q0s0; q00s00Þ

× AqsAq0s0Aq00s00 ; ð16Þ

where Aqs is defined by

Aqs ≡ a†qs − a−qs: ð17Þ

Ψðqs0q0s0; q00s00Þ in Eq. (16) is the Fourier transform of
Ψð0κ; l0κ0; l00κ00Þ that is written as

Ψðqs; q0s0; q00s00Þ

¼ 1ffiffiffiffi
N

p
X
κ;κ0;κ00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ3

8mκmκ0mκ00ωqsωq0s0ωq00s00

s

×
X
l0;l00

exp½iðq0 · l0 þ q00 · l00Þ�
X
αβγ

Ψαβγð0κ; l0κ0; l00κ00Þ

× eαðκjqsÞeβðκ0jq0s0Þeγðκ00jq00s00Þ: ð18Þ

When we expand AqsAq0s0Aq00s00 in Eq. (16) by using
Eq. (17), we get the following processes: (1) three-phonon
creation (a†qsa

†
q0s0a

†
q00s00), (2) one-phonon splits into two

phonons (a†qsa
†
q0s0a−q00s00), (3) two phonons merging into

one phonon (a†qsa−q0s0a−q00s00 ), and (4) three-phonon annihi-
lation (a−qsa−q0s0a−q00s00). Since we discuss the phonon
scattering process in thermal conductivity, we consider only
processes (2) and (3), which satisfy energy conservation.
In Fig. 2, we show (a) the merging process and (b) the

splitting process, where each process consists of the normal
process (G ¼ 0) and the Umklapp process (G ≠ 0) in the
momentum conservation, δqþq0þq00;G, in Eq. (16).
In the case of the normal process, the total momentum of

phonons or the heat flux does not change and thus does not
contribute to the thermal resistivity, while, in the Umklapp
process, since the total momentum can be changed by
reciprocal lattice vectors, it can change the heat flux or
thermal resistivity [4]. The normal process contributes to
the relaxation of the distribution of phonons only at thermal
equilibrium states.

(a) Merging process (b) Splitting process

FIG. 2. (a) Merging process and (b) splitting process in the
anharmonic Hamiltonian of Eq. (16) that contributes to the
thermal conductivity. The momentum conservation, δqþq0þq00;G,
is shown for both the hexagonal Brillouin zone in which it is the
normal process (G ¼ 0, middle panels) and in which it is the
Umklapp process (G ≠ 0, bottom panels).
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B. Diffusive thermal conductivity

There are two kinds of thermal conduction by phonons.
One is diffusive conduction and the other is ballistic
conduction. In diffusive conduction, the heat is transported
by phonons that are scattered many times, while in the
ballistic conductance, the heat is transported by phonons
without scattering. If the sample size L is sufficiently larger
than the MFP for each phonon mode, diffusive conduction
occurs, while, when L is comparable to or smaller than the
MFP, ballistic conductance occurs.
The definition of thermal conductivity κ is given by

Fourier’s law,

Q ¼ −κ∇T; ð19Þ

in which Q and ∇T represent, respectively, the heat flux per
unit time and per unit cross section, and the temperature
gradient. Q is given by

Q ¼ 1

V

X
qs

ℏωqsðnqs − n̄qsÞvqs; ð20Þ

where nqs and n̄qs denote, respectively, the number of
phonons per unit volume for the wave vector q and for the
sth phonon mode, as well as that for thermal equilibrium
states. In Eq. (20), ℏωqs denotes the heat that the sth
phonon carries, nqs − n̄qs represents an effective number of
the phonons that contribute to the thermal conduction, vqs is
the group velocity of the phonon, and V is the volume of the
sample. As for the volume V, we adopt the conventional
definition of volume for this problem as V ¼ NΩdgraphite,
whereN,Ω, and dgraphite ¼ 3.35 Å denote, respectively, the
number of sampling points in the Brillouin zone, the area of
the unit cell of graphene, and the interlayer distance
between two graphene layers in graphite.
Here, we assume that the heat flux is parallel to the

temperature gradient (Q∥∇T) and that the thermal con-
duction is isotropic in the two-dimensional plane. Then the
diffusion thermal conductivity is given by

κdiff ¼ −
1

2

Q · ∇T
j∇Tj2

¼ −
1

2Vj∇Tj2
X
qs

ℏωqsðnqs − n̄qsÞvqs · ∇T

¼ ℏ2

2VkBT2

X
qs

ω2
qsτqsn̄qsðn̄qs þ 1Þjvqsj2: ð21Þ

In the last line of Eq. (21), we use the following relationship
from the Boltzmann equation:

nqs − n̄qs ¼ −
ℏωqs

kBT2
n̄qsðn̄qs þ 1Þτqsvqs · ∇T: ð22Þ

The derivation of Eq. (22) is given in Appendix A.
We can define the specific heat of lattice Cvqs, per unit

volume, for the sth phonon mode at q and the specific heat
of lattice Cv, per unit weight, as, respectively,

Cvqs ¼
ℏ2

VkBT2
ω2
qsn̄qsðn̄qs þ 1Þ;

Cv ¼
V

2NmC

X
qs

Cvqs: ð23Þ

Using Eq. (23), the diffusive thermal conductivity
[Eq. (21)] is conventionally expressed by the product of
Cvqs, the MFP Λqs ¼ τqsvqsð∥vqsÞ, and the group velocity
vqs as follows [2]:

κdiff ¼ 1

2

X
qs

CvqsΛqs · vqs: ð24Þ

C. Ballistic thermal conductivity

If L is smaller than the MFP, the phonon can propagate
from one end to the other without scattering. In this
case, we can assume that the phonon moves in one direction
from the high-temperature side to the low-temperature side
with the group velocity [19]. Making a comparison with
Eq. (24), the ballistic thermal conductivity is given by [18]

κball ¼ L
X
qs

CvqsvqsxΘðvqsxÞ; ð25Þ

where ΘðvqsxÞ is either 1 for vqsx > 0 (a right-going
phonon) or 0 for vqsx < 0 (a left-going phonon). If we
take the ratio κdiffqs =κballqs , we get

κdiffqs

κballqs
¼ πjΛqsj

2L
: ð26Þ

In order to discuss the crossover of the diffusive and
ballistic conduction, we define the MFP for the sth phonon
mode and for all phonons, respectively, given as a function
of T, as follows:

hΛsi ¼
P

qκ
diff
qsP

qκ
diff
qs =jΛqsj

¼
P

qCvqsΛqs · vqsP
qCvqsjvqsj

; ð27Þ

hΛAlli ¼
P

qsκ
diff
qsP

qsκ
diff
qs =jΛqsj

¼
P

qsCvqsΛqs · vqsP
qsCvqsjvqsj

: ð28Þ

Finally, using Eq. (26), we define the thermal conduc-
tivity κ that includes both κdiff and κball as follows:
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κ ¼
X
qs

min

�
πjΛqsj
2L

; 1

�
× κballqs

¼
X
qs

�
κballqs Λqs > 2L=π

κdiffqs Λqs < 2L=π
: ð29Þ

In this definition, for each q and sth phonon mode, if the
MFP Λqs is smaller than 2L=π, we adopt κball, while, if the
MFP is larger than 2L=π, we adopt κdiff .

D. Phonon scattering by isotope impurities

Finally, we briefly mention the phonon scattering by
isotope impurities, which was discussed by Klemens [23].
Since the mass of atommlκ depends on the position of atom
lκ, the momentum of the atom at lκ is written as

pðlκÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏmlκ

2N

r X
qs

ffiffiffiffiffiffiffi
ωqs

p
e0�ðκjqsÞ

× ðaqs þ a†−qsÞ expð−iq · xlκÞ; ð30Þ

where xlκ is an equilibrium position of an atom at lκ. When
we define the averaged mass by

m̄ ¼
X
i

fimi; ð31Þ

where fi and mi denote, respectively, the abundance
and the mass of i ¼ 12C or 13C. The perturbation
Hamiltonian for the mass difference between isotope atoms
is written as [23]

Hmd ¼
X
lκ

1

2
Δmlκ

1

m̄2
jpðlκÞj2 ðΔmlκ ¼ mlκ − m̄Þ: ð32Þ

Using the following equation for jpðlκÞj2,

jpðlκÞj2 ¼ pðlκÞ · p†ðlκÞ

¼ ℏm̄
2N

X
qs;q0s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωqsωq0s0

p
e0�ðκjqsÞ · e0ðκjq0s0Þ

× ðaqs þ a†−qsÞða†q0s0 þ a−q0s0 Þ exp½−iðq− q0Þ · xlκ�;
ð33Þ

Hmd of Eq. (32) is given as

Hmd ¼
X
qs;q0s0

ℏ
4Nm̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωqsωq0s0

p ðaqsa†q0s0 þ a†−qsa−q0s0 ÞMq0s0
qs ;

ð34Þ

where the matrix element Mq0s0
qs is expressed as

Mq0s0
qs ¼

X
lκ

Δmlκe0�ðκjqsÞ · e0ðκjq0s0Þ exp½−iðq − q0Þ · xlκ�:

ð35Þ

Using Fermi’s “golden rule,” the scattering probability
from the qs phonon to the q0s0 phonon is given by

Pq0s0
qs ¼ 2π

ℏ2
jhnqs − 1; nq0s0 þ 1jHmdjnqs; nq0s0 ij2δðωq0s0 −ωqsÞ

¼ π

2ðNm̄Þ2 nqsðnq0s0 þ 1Þωqsωq0s0 jMq0s0
qs j2δðωq0s0 −ωqsÞ:

ð36Þ

The decreasing rate of the number of qs phonon is given by

−
∂nqs
∂t

����
md

¼
X
q0s0

ðPq0s0
qs − Pqs

q0s0 Þ; ð37Þ

and the spectral width of phonon energy dispersion due to
the isotope impurity is expressed by

τ−1qsðmdÞ ¼
πg
2N

X
q0s0≠qs

n̄q0s0 þ 1

n̄qs þ 1
ωqsωq0s0E

q0s0
qs δðωq0s0 − ωqsÞ;

ð38Þ

where Eq0s0
qs represents the inner products of phonon

eigenfunctions defined by

Eq0s0
qs ¼

X
κ

je0�ðκjqsÞ · e0ðκjq0s0Þj2: ð39Þ

The derivation of Eq. (38) is shown in Appendix B. Since
the formula for the spectra width contains the inner product

of phonon eigenvectors Eq0s0
qs [Eq. (39)], the in-plane (or

out-of-plane) phonon mode is scattered only to the same
in-plane (or out-of-plane) phonon mode by the isotope
impurities.
It is useful to define the averaged phonon frequency for a

general isotope concentration. When we denote m̄nat and
ωnat as the mass and the frequency for natural abundance of
1.1% 13C, the average phonon frequency is given by

ω ¼
ffiffiffiffiffiffiffiffi
m̄nat

m̄

r
ωnat: ð40Þ

III. CALCULATED RESULTS

A. Phonon dispersion relations with spectral width

In order to calculate phonon dispersion relations, we adopt
the harmonic force-constant parameters that we obtained in
previous work [12] up to the 14th nearest neighbors by
fitting the experimental results. As for anharmonic force
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constants, we fit the force constants up to the fourth nearest
neighbor (4NN) so as to reproduce the temperature depend-
ence of experimental thermal conductivity for 1.1% natural
abundance of 13C [13,14]. We also try to fit the phonon
dispersion relation with its spectral width by the first-
principles calculation given by Paulatto et al. [15] for
justifying that our fitting procedure to the experiment is
reasonable.
In Table I, we show the anharmonic force constants up to

4NN in units of eV=Å3 fitted to the experimental results
(the top row) and the first-principles calculations (the
bottom row). When we compare two of the anharmonic
force-constant sets, we find that (1) the force constants
for 1NN and 2NN give similar values to one another, but
that (2) the force constants for 3NN and 4NN are rather
different from one another. For example, we cannot adopt

the 4NN value of ψ to, ψ
ð4Þ
to since the ψ ð4Þ

to > 0 gives the
opposite temperature dependence of thermal conductivity
as that of the experimentally observed temperature depend-
ence, and thus we cannot fit well to the experimental
results. The difference between the fitted values for the
3NN and 4NN force constants and those by first-principles
calculation is reasonable since we cut the range of anhar-
monic potential up to 4NN, while they consider a much
longer range of anharmonic potential in the first-principles
calculations. It is difficult for us to consider a long-distance
anharmonic potential since we do not have sufficient
information on experiments such as those involving a
spectral width of phonon dispersion as a function of q.
In Fig. 3, we plot phonon dispersion relations with their

spectral width, which is magnified by 100 times. A large
spectral width for a given s and q corresponds to large
thermal resistivity. Furthermore, the phonon modes with
lower energies contribute to thermal conductivity at lower
values of T. Thus, as long as we consider T < 700 K, the
spectral widths of the optical phonon modes such as
longitudinal optical (LO), tangential optical (TO) and Z-
axis optical (ZO, where Z indicates that the displacement
vector is along Z axis) do not contribute to thermal
resistivity since such phonons rarely exist. If we simply

adopt the anharmonic potentials, we can see some singu-
larly large spectra width at the Γ point or the crossing points
of two phonon dispersion relations (not shown in Fig. 3).
This singularity comes from the fact that the lowest-energy
phonon mode near the Γ point, Z-axis accoustic (ZA, where
Z indicates that the displacement vector is along the Z axis),
can be easily excited by phonon-phonon scattering. In order
to avoid such a singularity, we do not consider (for the sake
of simplicity) the scattering process with ZA phonons for
wave vectors smaller than 0.06jΓKj. In fact, an out-of-
plane phonon with such a long wavelength does not exist in
the samples, in which we expect defects of the lattice and
structural fluctuation, as the phonon is known to not be
completely flat of graphene.
The phonons that contribute to thermal conduction are

mainly ZA, transverse-acoustic (TA), and longitudinal-
acoustic (LA) phonons that have relatively small energies.
Even if we plot the spectral width of the phonon mode by
considering only ψ to, we can reproduce the spectral width
of phonon modes below 900 cm−1. Thus, we can say that
the anharmonic force constant ψ to is essential of total
thermal resistivity. Furthermore, when we adopt the anhar-
monic force constants fitted to first-principles calculations,
the calculated temperature dependence of thermal conduc-
tivity increases more slowly with decreasing values of T
compared to that in the experiment. This is the reason we
adopt to fit the anharmonic force constants to the exper-
imental results.
In the calculation of thermal conductivity, the scattering

of isotope impurity is also taken into account when we
make a comparison to the experimental results. In Fig. 4,
we plot the spectral width of the phonon dispersion relation
for the case with 1.1% 13C concentration, in which we
consider not anharmonic terms but rather isotope effects for
the spectral width, which is magnified by 1000 times. As is
seen in Fig. 4, the spectral width is large for optical phonon
modes. However, when we compare the spectral width in
Fig. 4 to that in Fig. 3, the former is relatively small. Since
the spectra width for isotope scattering is proportional to
the phonon frequencies at initial and final phonon states

TABLE I. Anharmonic force constant in units of eV=Å3 by
fitting to the experimental data (the top row) and by fitting to the
first-principles calculation (the bottom row).

ψr ψ ti ψ to

1NN 37.016 4.230 1.852
37.275 5.270 4.379

2NN −2.071 8.174 0.519
−1.995 8.197 0.518

3NN 0.533 −0.433 −0.041
0.331 −0.248 0.000

4NN 0.142 −1.262 � � �
−0.244 −1.197 0.484

FIG. 3. Phonon dispersion with its spectral width by using
anharmonic parameters fitted to the experimental results. The
spectral width is magnified by 100 times.
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[see Eq. (38)], the spectral width of ZA phonon is relatively
small. It is noted that the spectral width of ZO phonon
mode becomes small around the Γ point due to the fact that
there are not many scattered phonon modes as the final state
near the Γ point.

B. Thermal conductivity

In Fig. 5, we plot the calculated thermal conductivity
as a function of temperature for 13C concentrations of 0.0%,
1.1%, 50%, and 92.2%, using the fitting parameters that are
fitted to the experimental results of 1.1% 13C for the
temperature region 300–750 K. Open and solid symbols
denote, respectively, the calculated results and the exper-
imental results of Chen et al. [13] for comparison. As seen
in Fig. 5, the calculated thermal conductivity reproduces

the experimental values for 300–750 K well—especially
the fitted values for 1.1% and 99.2% 13C, where the values
are related to each other in a manner similar to isotope
impurity, which is consistent with the experimental results.
However, we can see a non-negligible deviation of the
calculated results from the experiments for 50% and 0.0%
13C for 300–500 K. In the case of 50% (or 0%) concen-
tration, the scattering of phonons by a 13C isotope cannot
be expressed by perturbation [or by an approximation of
relaxation time represented by a single phonon mode; see
Eq. (B6)]. Thus, the quantitative analysis for a general
concentration of 13C has some limitations for temperatures
lower than 500 K.
Although the experimental results are given only when

T > 300 K, we extend the calculated results to the lower
temperature region while using the same parameters. The
calculated thermal conductivity shows a maximum at
around 100 K for all cases of concentration of 13C whose
peak position appears at a lower temperature for a
smaller concentration of 13C. Increasing the thermal
conductivity with decreasing values of T is explained
by decreasing the phonon scattering events. If we further
decrease T, thermal conductivity monotonically
decreases to zero, which is explained by a decreasing
number of phonons (or by a vanishing heat capacity),
which is known to be a general behavior of thermal
conductivity of a solid [24].
In Fig. 6, we show calculated thermal conductivity for

1.1% 13C for different sample sizes L. The value of L can be
considered the size of a single crystal of graphene in the
polycrystalline sample. As shown in Fig. 6, the maxima of
the thermal conductivity increases with increasing values of
L at the lower temperature. It is for this reason that the
criterion for selecting either ballistic or diffusive [Eq. (29)]
depends on L. Once theMFP for any phonon mode is larger
than L, the thermal conductivity becomes the ballistic
thermal conductivity, κball, which is proportional to L

FIG. 4. The spectral width of phonon dispersion by scattering
of a 1.1% 13C isotope. The spectral width is magnified by 1000
times. In this plot, the spectra width of the phonon taken by
anharmonicity is not taken into account.

FIG. 5. Thermal conductivity as a function of temperature for
several concentrations of 13C using anharmonic force constants
that are fitted to the experimental data for a natural abundance of
1.1% 13C. For temperatures above 300 K, solid symbols denote
the experimental data by Chen et al. [13], while, below 300 K,
only theoretical calculated results are shown. Below 100 K,
thermal conductivity decreases since the number of phonon
decreases with decreasing temperature.

FIG. 6. Thermal conductivity for sample sizes L ¼ 1, 2, 5, 10,
and 20 μm. Here, we consider the isotope scattering by 1.1% 13C.
The dashed line for each L corresponds to the ballistic thermal
conductivity, κball, while the dotted lines represent diffusive
thermal conductivity, κdiff .
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[see Eq. (25)] or the square of the number of phonons. In
Fig. 6, we show the κball by dashed line for each L as the
ballistic limit. Furthermore, we also show κdiff without
considering the crossover to κball shown by a dotted line as
the diffusive limit. It is interesting to see that the thermal
conductivity gives a different temperature dependence
simply by changing L for the same sample quality of a
crystal. The L-dependent thermal conductivity at low
temperature is evidence of the crossover of thermal
conductivity from diffusive to ballistic thermal conductivity
which should be observed in the experiment. For a temper-
ature larger than 300 K, on the other hand, since the MFP
for each phonon mode is smaller than L, the L-dependent
thermal conductivity does not appear anymore and the
thermal conductivity is expressed only by diffusive thermal
conductivity, in which phonon-phonon scattering is a
dominant contribution to thermal resistivity.

IV. DISCUSSION AND SUMMARY

Finally, let us briefly comment on the application of
graphene to thermal conductive devices. It is important to
use the maximum thermal conductivity of graphene at
relatively low temperature. However, as we can see in
Fig. 6, if we use graphene at 300 K, the sample size
L ¼ 2 μm is already sufficient since thermal resistivity by
phonon-phonon scattering is dominant. Even if we pre-
pare a better quality of sample whose L value is larger
than 2 μm, the value of thermal conductivity does not
change at 300 K, which we can see in Fig. 6. On the other
hand, when we increase L, we expect that the maximum
value of thermal conductivity increases at lower temper-
atures. Nevertheless, L ¼ 10 μm is already sufficiently
large for the use of thermal conducting devices since the
maximum of the diffusive limit has a maximum at around
100 K, as shown in Fig. 6. Such L-dependent thermal
conductivity should be observed in the experiment even
though there is some quantitative limitation of calculation.
If we adopt a single crystal without any 13C isotope, the
maximum thermal conductivity becomes much larger
(6500 W=mK in our calculation; not shown in this paper)
than in the case of 1.1% 13C, as shown Fig. 6 [18], and the
maximum temperature for 0% 13C decreases to 80 K. In
this case, L ¼ 20 μm is needed to obtain the maximum
ballistic thermal conductivity at 80 K. Such behaviors
should be checked experimentally in the future, too. It is
important to note that the data in Fig. 6 do not mean that
polycrystalline graphene is sufficient for temperatures
higher than 400 K. It is for this reason that we do not
consider the phonon scattering at the domain boundary of
the polycrystalline sample, which might affect the thermal
conductivity if the MFP is larger than L. When we
consider the effect of phonon scattering at the boundary,
we need to discuss the interference effect of multiple
reflected phonons. It is important to note, in addition, that

the ZA phonon modes that have the lowest phonon energy
among the phonon modes are important for determining
the average MFP or phonon occupation numbers. Thus,
when we consider the ballistic and diffusive thermal conduc-
tivity, the ZA mode gives a dominant contribution to both
effects of thermal conductivity. However, the ZA mode is
sensitive to the substrate or stacking order of multilayer
graphene, especially for the case of long wavelength. If we
consider the ZA phonons near the Γ point, a large phonon
scattering occurs for the crossing point of phonon dispersion,
which would result in too much thermal resistivity to explain
the experimental results. Thus, it is not clear from the present
calculation what kind of substrate is the best for graphene
thermal conducting devices. If we can control the ZA phonon
modes and their anharmonicity, the thermal properties would
be significantly improved, which is a problem to address in
the future.
In conclusion, using a tight-binding description of

harmonic and anharmonic vibration, we calculate the
thermal conductivity in which not only phonon-phonon
scattering, but also isotope scattering of phonons, is taken
into account in the calculation. Fitting the harmonic and
anharmonic force-constant sets to the experiment and the
first-principles calculations, we calculate thermal conduc-
tivity as a function of temperature and the sample size L.
In the low-temperature region, we see the maximum of
thermal conductivity, and the thermal conductivity goes to
zero with a further decreasing temperature. The maximum
value of the thermal conductivity and the corresponding
temperature depends on the sample size L for the same
sample. It is for this reason that the crossover of diffusive
thermal transport to ballistic thermal transport occurs with
decreasing temperature.
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APPENDIX A: NUMBER OF PHONONS THAT
CONTRIBUTE TO κdiff

Here, we derive Eq. (22). Occupation numbers of
phonons, nqs, as a function of time, are calculated using
the Boltzmann equation,

∂nqs
∂t ¼ ∂nqs

∂t
����
diff

þ ∂nqs
∂t

����
scatt

¼ 0; ðA1Þ

where the subscripts diff and scatt denote, respectively,
diffusive and scattering terms. The diffusive terms can be
given by
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∂nqs
∂t

����
diff

¼ −vqs · ∇T
∂nqs
∂T ; ðA2Þ

where vqs ¼ ∇qωqs is the group velocity of the phonons
at qs and ∇T indicates the temperature gradient.
ð∂nqs=∂TÞ∇T represents the spacial change of the phonon
occupation number caused by the temperature gradient.
When we assume nqs ≃ n̄qs and thus ∂nqs=∂T ≃ ∂n̄qs=∂T,
Eq. (A2) can be written by defining Xqs,

∂nqs
∂t

����
diff

¼ −vqs · ∇T
∂n̄qs
∂T ≡ Xqs: ðA3Þ

Here, we adopt the relaxation-time approximation (RTA) as
follows:

−
∂nqs
∂t ¼ −

∂ðnqs − n̄qsÞ
∂t ¼ nqs − n̄qs

τqs
; ðA4Þ

where τqs is the relaxation time that determines how fast the
nqs decays. We define a dimensionless parameter ψqs in the
Boltzmann distribution function for expanding nqs [20],

nqs ¼
�
exp

�
ℏωqs

kBT
− ψqs

�
− 1

	
−1

≃ nqsjψqs¼0 þ
∂nqs
∂ψqs

����
ψqs¼0

ψqs

¼ n̄qs þ n̄qsðn̄qs þ 1Þψqs: ðA5Þ

Using Eq. (A5), Eq. (A4) can be written as [20]

−
∂nqs
∂t ¼ n̄qsðn̄qs þ 1Þ

τqs
ψqs: ðA6Þ

Furthermore, using the RTA in Eq. (A6) and defining Γqs,
the scattering term is given as follows:

∂nqs
∂t

����
scatt

¼ −
n̄qsðn̄qs þ 1Þ

τqs
ψqs ≡ −Γqsψqs: ðA7Þ

Adding Eqs. (A3) and (A7) to the Boltzmann
equation (A1), we get

Xqs ¼ Γqsψqs: ðA8Þ

By solving the Boltzmann equation, we get ψqs as follows:

ψqs ¼ Γ−1
qs Xqs

¼ τqs
n̄qsðn̄qs þ 1ÞXqs

¼ −
ℏωqs

kBT2
τqsvqs · ∇T: ðA9Þ

Finally, using the definition of ψqs [Eq. (A5)], we get

ψqs ¼
nqs − n̄qs

n̄qsðn̄qs þ 1Þ ; ðA10Þ

and thus we get Eq. (22):

nqs − n̄qs ¼ −
ℏωqs

kBT2
n̄qsðn̄qs þ 1Þτqsvqs · ∇T: ðA11Þ

APPENDIX B: SPECTRAL WIDTH OF PHONON
BY ISOTOPE SCATTERING

Here, we show that the spectral width by scattering of the
phonons by isotope impurity is given by Eq. (38). Let us
start the discussion by rewriting Eq. (36):

Pq0s0
qs ¼ 2π

ℏ2
jhnqs − 1; nq0s0 þ 1jHmdjnqs; nq0s0 ij2δðωq0s0 −ωqsÞ

¼ π

2ðNm̄Þ2 nqsðnq0s0 þ 1Þωqsωq0s0 jMq0s0
qs j2δðωq0s0 −ωqsÞ:

ðB1Þ

If we assume that the isotope impurities distribute uni-

formly and randomly, we approximate jMq0s0
qs j2 as follows,

jMq0s0
qs j2 ¼ Mq0s0

qs ðMq0s0
qs Þ�

¼
X
lκ;l0κ0

ΔmlκΔml0κ0 × ½e0�ðκjqsÞ · e0ðκjq0s0Þ�½e0�ðκ0jqsÞ · e0ðκ0jq0s0Þ�� × exp½−iðq − q0Þ · ðxlκ − xl0κ0 Þ�

¼
X
lκ

ðΔmlκÞ2je0�ðκjqsÞ · e0ðκjq0s0Þj2 þ
X
l0κ0≠lκ

ðsame as aboveÞ

≃ N
X
i

fiðΔmiÞ2
X
κ

je0�ðκjqsÞ · e0ðκjq0s0Þj2

¼ Ngm̄2Eq0s0
qs ; ðB2Þ
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where fi and Δmi denote, respectively, the concentration
and the differing masses of isotopes i ¼ f12C; 13Cg. Here,
we define g and Eq0s0

qs as follows:

g≡X
i

fið1 −mi=m̄Þ2; ðB3Þ

and

Eq0s0
qs ≡X

κ

je0�ðκjqsÞ · e0ðκjq0s0Þj2: ðB4Þ

Then Eq. (B1) is given by

Pq0s0
qs ¼ πg

2N
nqsðnq0s0 þ 1Þωqsωq0s0E

q0s0
qs δðωq0s0 − ωqsÞ: ðB5Þ

The decreasing rate of phonons by isotope scattering per
unit time is expressed by

−
∂nqs
∂t

����
md

¼
X
q0s0

ðPq0s0
qs − Pqs

q0s0 Þ

¼
X
q0s0

P̄q0s0
qs ðψqs − ψq0s0 Þ

¼
X
q0s0

πg
2N

n̄qsðn̄q0s0 þ 1Þðψqs − ψq0s0 Þωqsωq0s0

× Eq0s0
qs δðωq0s0 − ωqsÞ

¼
X

q0s0≠qs

πg
2N

n̄qsðn̄q0s0 þ 1Þψqsωqsωq0s0

× Eq0s0
qs δðωq0s0 − ωqsÞ: ðB6Þ

In the last line, we use the so-called single-mode relaxation-
time approximation. In this approximation, when we
consider relaxation of a phonon mode, we postulate that
the other phonon modes are in the thermal equilibrium
states. This approximation makes the calculation simple
since the relaxation of each phonon occurs independently.
We believe that this approximation is justified as long as
nqs does not deviate much from n̄qs. Finally, using the RTA
[Eq. (A6)] for Eq. (B6), we get Eq. (38):

τ−1qsðmdÞ ¼
πg
2N

X
q0s0≠qs

n̄q0s0 þ 1

n̄qs þ 1
ωqsωq0s0E

q0s0
qs δðωq0s0 − ωqsÞ:

ðB7Þ
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