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In a specially designed semiconductor device consisting of three capacitively coupled double quantum
dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We
demonstrate how to completely switch on and off the target qubit’s coherent rotations by presetting two
control qubits’ states. A Toffoli gate is, therefore, possible based on these control effects. This research
paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
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I. INTRODUCTION

Qubits based on semiconductor quantum dots have made
considerable progress in recent years. Single-electron spin
qubits [1–6], single-charge qubits [7–10], or single-spin-
charge hybrid qubits [11,12] have been demonstrated in
both GaAs and silicon devices. Strongly coupled two
qubits have also been realized in either spin [13–16] or
charge [17,18] qubit systems.
The potential of scaling-up these electrically defined and

manipulated devices is believed to be a major advantage of
semiconductor qubits. A linear array of semiconductor
quantum dots, for instance, has been utilized to study a
series of interacting quantum systems [19,20]. However, it
is still extremely challenging to achieve gate operations
beyond the two-qubit limit, which will be of great technical
and scientific value. Quantum gates for more than two
qubits, such as a three-qubit Toffoli gate [21], will make
quantum computation more effective and, hence, relieve
the requirement of quantum error correction when perform-
ing multistep quantum-logic operations. It has also been
predicted that three or more coupled qubits will be
important to study quantum correlations among electrons,
such as Greenberger-Horne-Zeilinger (GHZ) states [22,23].
Here we demonstrate a three-qubit system in a semi-

conductor quantum-dot device, combining the architectures
of a linear array and a T-shaped triple-dot array (referred

to as a T gate) to achieve effective control of coupling
between a target qubit and two control qubits. The strong
coupling allows us to control the energy spectroscopy of
the target qubit by the states of two control qubits. Because
of the coupling-induced detuning away from the energy
resonance condition, we show experimentally that the
target qubit’s quantum rotations, including both amplitude
and phase rotations, can be switched on and off nearly
completely by setting the two control qubits to certain
eigenstates. The functionalities of a Toffoli gate are,
therefore, demonstrated. At the end of the paper, we also
analyze the technical challenges needed to overcome in
order to implement full quantum three-qubit gates.

II. SYSTEM AND THEORY

A. Strong and tunable interqubit couplings

Our devices are defined via electron-beam lithography on
a GaAs/ðAl30%;Ga70%ÞAs heterostructure. Figure 1(a) is
a scanning electron microscopy (SEM) image of a typical
device. On the top, the first (second) double quantum
dot (DQD) is defined by gates HL, HR, and U1 −U5

ðU5 −U9Þ. On the bottom, the third DQD is defined by
gates HL, HR, and L1 − L5. Three quantum-point contacts
(QPCs) defined by gatesQ1,Q2, andQ3 detect the location
of a valance electron on each DQD. Standard lock-in
modulation and detection techniques are used for charge
sensing [24]. The experiments are performed in an Oxford
Triton dilution refrigerator with a base temperature of
10 mK. Each DQD behaves as a charge qubit. The
Hamiltonian of this three-qubit system is

*Corresponding author.
maaxiao@ustc.edu.cn

†Corresponding author.
gpguo@ustc.edu.cn

PHYSICAL REVIEW APPLIED 9, 024015 (2018)

2331-7019=18=9(2)=024015(13) 024015-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.9.024015&domain=pdf&date_stamp=2018-02-15
https://doi.org/10.1103/PhysRevApplied.9.024015
https://doi.org/10.1103/PhysRevApplied.9.024015
https://doi.org/10.1103/PhysRevApplied.9.024015
https://doi.org/10.1103/PhysRevApplied.9.024015


H3q ¼ H1 ⊗ I ⊗ I þ I ⊗ H2 ⊗ I þ I ⊗ I ⊗ H3

þ J12
I − σz
2

⊗
I − σz
2

⊗ I

þ J13
I − σz
2

⊗ I ⊗
I − σz
2

: ð1Þ

Here,Hi ¼ ðεiσz þ ΔiσxÞ/2 is the Hamiltonian of the ith
qubit, with εi and Δi/2 being its energy detuning and
interdot tunneling rate, respectively. σx and σz are the Pauli
matrixes, and I is the identity matrix. J12 (J13) is the
coupling energy between qubit 1 and qubit 2 (qubit 3).
We describe the qubit evolution in the framework of the
eigenstates of H3q: j000i, j100i, j010i, j110i, j001i, j101i,
j011i, and j111i. The definitions of j0i and j1i for each
qubit are indicated in Fig. 1(a), where j0 >1 j0 >2 j0 >3

corresponds to j000i and so on. For consistency, we define
j0i’s (j1i’s) as the states where the neighboring qubits are
far apart (closely located).
We set qubit 1 as the target qubit and the other two as the

control qubits. We demonstrate that it is feasible to control

quantum operations of the target qubit by the states of the
two control qubits due to their strong coupling. When the
electron in the target qubit is far from the two electrons in
both control qubits corresponding to state j000i, their
coupling energy is smallest and we denote it as zero.
When the target electron is close to the second (third)
electron and far from the third (second) electron corre-
sponding to state j110i (j101i), their coupling energy is J12
(J13). In state j111i, the largest coupling energy J12 þ J13
arises because the target electron is close to both control
electrons.
In Figs. 1(b)–1(e), we present the experimentallymeasured

coupling energies. In Figs. 1(b) and 1(c), we sweep ε1 against
ε2 while fixing qubit 3 at state j0i3 (ε3 ≪ 0) and measure the
differential current of QPC 1 and QPC 2. The detunings are
converted through the voltage on relative plunger gates. For
instance, to increase ε1, we decrease VU2 and simultaneously
increase VU4. The energy-conversion factor for this gate
compensation scanning can be obtained through photon-
assisted tunneling (PAT). In this experiment, the conversion

(a)

(b)

(c)

(d)

(e)

FIG. 1. (a) SEM image of
three coupled qubits. (b),(c)
Coupling energy J12 between
qubit 1 and qubit 2. Qubit 3 is
fixed at j0i3. Presented are dif-
ferential currents measured by
QPC 1 and QPC 2, respectively.
(d),(e) Coupling energy J13 be-
tween qubit 1 and qubit 3. Qubit
2 is fixed at j0i2. Presented are
differential currentsmeasured by
QPC 1 and QPC 3, respectively.
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factors for three qubits are from 32 to 38 μeV/mV [25,26].
We see an abrupt shift in each QPC signal around the
anticrossing points (ε1 ¼ ε2 ¼ 0). As both ε1 and ε2 go from
the negative side through the anticrossing point to the positive
side, the three-qubit state changes from j000i to j110i.
Coupling energy J12 shifts the anticrossing point toward
the positive side. The amount of this shift directly tells us
that the value of J12 is about 105 μeV [25,27]. In Figs. 1(d)
and 1(e), we fix qubit 2 at j0i2 and do the same measurement
for qubit 1 and qubit 3. In the same way, the abrupt energy
shift around the anticrossing points (ε1 ¼ ε3 ¼ 0) tells us that
J13 is approximately 135 μeV.
The measured values of J12 and J13 are large in the

following sense. J12 and J13 are much larger than Δ1 (Δ1

about 4.5 GHz or hΔ1 about 18 μeV in this experiment),
which is the scale of energy spacing at the target qubit’s
anticrossing point. When the target qubit is coupled to
either control qubit, an energy shift by J12 or J13 away from
the anticrossing point is, therefore, large with regard to Δ1.
We see in the later contexts from both experimental data
and theoretical simulations that these large energy shifts
enable us to effectively control the target qubit’s coherent
rotations. Finally, J12 and J13 are comparable with the
interqubit coupling energy in an earlier two-qubit system,
where the large coupling enables us to perform a con-
trolled-NOT logic gate [18].
To achieve strong multiple qubit coupling, we use both

linear-array and T-gate architectures, which give rise to J12
and J13, respectively. The linear-array architecture has the
flexibility to couple more numbers of qubits. However, it
seems that T-gate architecture is more effective in tuning
interqubit coupling. The gap distance between HL and HR
is very narrow (<80 nm), and this allows us to tune J13 into
a strong regime while forbidding direct tunneling [18,27].
J13 can be repeatedly tuned from 0 to above 100 μeV
without any detectable tunnel coupling. Qubit 1 and qubit 2
are closely neighbored. Their coupling strength could also
be very strong. However, if their commonly shared gate U5

is not sufficiently closed, tunneling usually happens, and
capacitive coupling quickly decreases if U5 is closed too
much. Therefore, the linear array device seems to have a
narrow window to achieve strong capacitive coupling
without tunneling. In the experiment, we have to deliber-
ately tune U5, HL, and HR for this purpose [28].
The coupling between qubit 2 and qubit 3 is screened by

gate HR and is normally measured to be less than one-fifth
of J13. Therefore, this coupling is neglected in our con-
sideration. Many interesting three-qubit operations can still
be realized using this geometry. For instance, principally,
the three qubits can be set into a GHZ state by coupling
qubit 1 and the other two qubits, without a coupling
between qubit 2 and qubit 3 [23].

B. Mechanism of controlled coherent rotations

These large coupling strengths enable us to implement
three-qubit operations [18,29]. The coherent rotations of

the target qubit, such as Larmor precession [8], Landau-
Zener-Stückelberg (LZS) interferences [9], and Rabi oscil-
lations [10], usually occur when the qubit is brought from
an initial state to its anticrossing point. Now we take the
example of Larmor precession to illustrate the mechanism
of controlled coherent rotations: we initialize the target
qubit at j0i1 and apply a nonadiabatic voltage pulse to drive
it to its anticrossing point, where coherent rotations
between j0i1 and j1i1 occur. In fact, the same mechanism
applies to LZS interferences if an adiabatic passage drives
the target qubit across its anticrossing point and to Rabi
oscillations if a microwave pulse is shined whose frequency
meets the resonance condition at the anticrossing point.
In Fig. 2(a), we calculate three-qubit energy spectroscopy

as a function of ε1 while fixing the control qubits at j0i2j0i3
(ε2 ¼ ε3 ¼ −200 μeV). The experimental values of J12 and
J13 are used. Particularly, we are interested in the ground
state and the first excited state of the target qubit. In the
working energy range, say, −200 μeV < ε1 < 200 μeV,
the two lowest energy states are j000i and j100i shown as
the blue solid and dashed lines. Their anticrossing point is
at ε1 ¼ 0. If we initialize ε1 ≪ 0 and pulse ε1 to 0, coherent
rotations between j000i and j100i will occur.
In Figs. 2(b)–2(d), we simulate the change of energy

spectroscopy for different states of control qubits. Only the
few relevant lowest energy levels are depicted. In Fig. 2(b),
ε2 and ε3 are set as 200 and−200 μeV, respectively. We see
that the anticrossing point between the two lowest target
qubit states j010i and j110i shifts to ε1 ¼ J12 ¼ 105 μeV.
Consequently, if we still initialize ε1 ≪ 0 and pulse ε1 to 0,
the target qubit falls below its anticrossing point by
105 μeV. It is such a huge amount that the coherent
rotations will be nearly completely suppressed. After the
pulse finishes, the qubits simply return to initial state j010i.
In Fig. 2(c), ε2 and ε3 are set as −200 and 200 μeV,
respectively. The anticrossing point between j001i and
j101i shifts to ε1 ¼ J13 ¼ 135 μeV. Finally, ε2 and ε3 are
both set as 200 μeV in Fig. 2(d). The anticrossing point
between j011i and j111i shifts to ε1 ¼ J12 þ J13 ¼
240 μeV. In all three cases, the pulse cannot drive the
target qubit to its anticrossing point, and the coherent
rotations will be greatly suppressed.
The suppression of coherent oscillations is because of

the fact that the rotation amplitude of Larmor precession,
LZS interferences, and Rabi oscillations reaches the maxi-
mum at the anticrossing point and deteriorates quickly
with respect to the detuning for this two-level quantum
system. In addition, the qubit coherence time also reaches
the maximum at the anticrossing point [8]. The enhanced
decoherence away from the anticrossing point will defi-
nitely help suppress the coherent oscillations. However, we
think it does not play a major role here.
The coherence effect happens symmetrically on both sides

around the anticrossing point. The experimentally observed
Larmor oscillations, on the contrary, are asymmetric due to
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the adiabaticity of the operation pulse. The Larmor oscil-
lations have a limited linewidth below the anticrossing point
and have a much broader decaying tail above this point [28].
If we intentionally increase the amplitude of the operation
pulse to drive thequbit above the anticrossingpoint by a same
amount as J, we see decayed Larmor oscillations with
residual amplitude, which is due to the decoherence effect.
The decoherence effect alone requires a much larger energy
shift than J to completely suppress the Larmor oscillations.
On the other hand, in our control experiment, when the target
qubit is coupled to the control qubits, its energy levels
elevate, and the operation pulse falls below its anticrossing
point. The Larmor oscillations are then completely sup-
pressed since the J-induced energy shift is already larger than
its line width. In conclusion, it is mainly the coupling-
induced detuning away from the resonance condition that
completely suppresses the coherent oscillations.

III. RESULTS AND DISCUSSION

A. Controlled amplitude rotations and Toffoli gate

Now we introduce our experimental results. We initialize
the qubits at state j000i and apply a nonadiabatic rectan-
gular voltage pulse to the target qubit to drive the qubits
exactly to the anticrossing point between j000i and j100i.
Larmor precession occurs. The target qubit rotates between
j0i1 and j1i1 by an angle 2πΔ1W1, where W1 is the pulse
width. This Larmor procession allows us to coherently
manipulate the amplitude of the target qubit’s wave
function. Then we vary the initial state to j010i, j001i,

or j011i to suppress the coherent rotations of the target
qubit, as we explain above.
In Fig. 3(a), we fix qubit 2 in j0i2 and control the

amplitude rotations of qubit 1 by qubit 3. Clearly, coherent
oscillations are observed when qubit 3 is in j0i3 (ε3 ≪ 0).
These oscillations are Larmor procession of qubit 1, with a
frequencyΔ1 ¼ 4.5 GHz consistent with the value obtained
fromPATmeasurements [30].On the other hand,when qubit
3 is in j1i3 (ε3 ≫ 0), the coherent rotations are gone.
Similarly, in Fig. 3(b), we fix qubit 3 in j0i3 and show the

control effect of qubit 2. Larmor oscillations are observed
when qubit 2 is in j0i2 and are suppressed when qubit 2
switches to j1i2. We see that both control qubits can
effectively turn on and turn off the target qubit’s coherent
rotations.
In Fig. 3(c), we give a simulation to this control effect

by numerically solving the Liouville–von Neumann equa-
tion regarding Hamiltonian H3q. We use experimental
parameters including decoherence time T�

2 ¼ 1.2 ns
[18,24]. Qubit 3’s control effect on qubit 1 is shown.
Qubit 2’s control effect is similar. The simulation agrees
with the experimental results.
Based on these control effects, we explore the basic

functionality of a Tofolli gate. In Fig. 3(d), we sweep W1

and vary the states of two control qubits covering all four
eigenstates: j0i2j0i3, j0i2j1i3, j1i2j0i3, and j1i2j1i3. The
black curve shows typical Larmor oscillations when the
control qubits are in j0i2j0i3, while the other three curves
show just background variations when the control qubits
are in states j0i2j1i3, j1i2j0i3, or j1i2j1i3. These results

(a)

(b) (c) (d)

FIG. 2. (a) Simulated
three-qubit energy spec-
troscopy. The detuning
of qubit 2 and qubit 3 is
fixed far below the anti-
crossing points so that
their ground state is
j0i2j0i3. (b)–(d) Qubit 2
and qubit 3 are configured
so that their ground states
are j1i2j0i3, j0i2j1i3,
and j1i2j1i3, respectively.
Only the few relevant
lowest levels are shown.
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indicate that a Toffoli gate is possible if we fix W1 at about
615 ps: qubit 1’s amplitude will reverse if both control
qubits are in state j0i and will remain unchanged if any
control qubit is in state j1i.

B. Controlled phase rotations

Apart from controlling the target qubit’s amplitude rota-
tions, we can also control its phase rotations. As we noticed
earlier [9], whenwe apply an ultrashort voltage pulse (100 to
350 ps inwidth), the transmission line acts as a low-pass filter
and effectively modifies the pulse into Gaussian-like shape.
Consequently, we observe LZS interferences as the pulse
drives the qubit to its anticrossing pointwhere a nonadiabatic
transition occurs. This nonadiabatic transition corresponds to
a rotation of the wave function’s amplitude. Meanwhile,
following theGaussian pulse, adiabatic evolutions along two
energy levels give rise to phase rotations. The frequency of
the amplitude rotations isΔ1 ¼ 4.5 GHz. The phase-rotation
frequency is determined by both the height and width of the
Gaussian pulse and can be tuned much faster than Δ1 [9]. In
this experiment, it reaches about 15 GHz. Therefore, we
mainly focus on the fast phase rotations.
Figures 4(a) and 4(b) show the experimental data. First, we

initialize the qubits at state j000i.We apply to the target qubit
an ultrashort voltage pulse. We choose the pulse height such
that it drives the target qubit across its anticrossing point and
induces LZS interferences. Next, we change the initial state
to j010i, j001i, or j011i, under which circumstances the
same pulse is unable to drive the target qubit above its
anticrossing point and phase rotations cease.

Qubit 2 is set at j0i2 in Fig. 4(a) and at j1i2 in Fig. 4(b).
We change qubit 3 from j0i3 to j1i3 by scanning ε3.
Therefore, we are comparing the phase rotations of the
target qubit for all four configurations of control qubits:
j0i2j0i3, j0i2j1i3, j1i2j0i3, and j1i2j1i3. For j0i2j0i3,
Fig. 4(a) shows persistent fast rotations. Roughly, we
can see that a 2π phase rotation costs about 65 ps (15 GHz).
For configurations j0i2j1i3 and j1i2j0i3, these fast and

clear rotations are gone. There are some residual back-
ground fluctuations. These are due to the large pulse
amplitude to drive the target qubit across, more than
exactly to, its anticrossing point to induce LZS interfer-
ences. For configurations j0i2j1i3 and j1i2j0i3, this large
pulse may reach close to the anticrossing point and,
therefore, causes residual oscillations. Nonetheless, both
experiments and simulations show that these residual
oscillations are very weak compared with the rotations
in the j0i2j0i3 configuration. Furthermore, increasing the
coupling strengths will completely eliminate these resid-
uals. For j1i2j1i3, the coupling energy nearly doubles those
of the former two configurations. In this case, the residual
fluctuations disappear, meaning that the phase rotations are
completely suppressed.
The above experiment shows that the target qubit’s phase

rotations can be turned on or off by varying two control
qubits’ states. Principally, a nonadiabatic pulse and an
adiabatic pulse can be combined to make arbitrary quantum
operations for a qubit, including both amplitude and phase
rotations [31] and, therefore, to perform arbitrary three-
qubit controlled quantum operations.

(a) (b)

(c) (d)

FIG. 3. (a),(b) Coherent am-
plitude rotations of qubit 1
controlled by qubit 3 and qubit
2, respectively. (c) Theoretical
simulation of (a). Presented
is the j0i1-state probability
differentiated over ε1. (d) Qu-
bit 1’s coherent rotations
controlled by two control qu-
bits all together. Qubit 2 and
qubit 3 are set as j0i2j0i3,
j0i2j1i3, j1i2j0i3, and j1i2
j1i3, respectively.
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Figures 4(c) and 4(d) show our simulation results,
which basically support the experimental data. We also
notice some deviations. In Fig. 4(a), the observed
phase rotations are not ideally periodic as predicated
in Fig. 4(c). We think this indicates the existence of
pulse reflection. The pulse may reflect back and forth.
When the original pulse is ultrashort (<150 ps), the
reflection pulse is superimposed on the peak of the
original pulse and mainly increase its height. When
the original pulse is wider (>150 ps), the reflection
pulse is superimposed on the shoulder of the original
pulse and mainly increases its width. Therefore, the
LZS phase-rotation period becomes shorter when W1 <
150 ps because it decreases with pulse height and
increases with pulse width [32]. This pulse imperfec-
tion is an example of the extreme technical challenges
we face to implement full coherent three-qubit control,
considering the requirement of precise synchronization
and alignment of multiple ultrashort pulses.

IV. CONCLUSION

In summary, in a semiconductor three-qubit system, we
demonstrate gate-voltage control of strong interqubit cou-
plings by using a specially designed device structure. We
successfully demonstrate coherent control of both ampli-
tude and phase of one target qubit by the preprepared states
of two control qubits and the basic functionalities of a
Toffoli gate. We hope our first work in a semiconductor to
go beyond the two-qubit limit will provide useful insight
into research on multiple qubits in semiconductor devices.

A natural extension of this work will be the dynamic
control of all qubits to realize full quantum gates. Multiple
ultrashort pulses need to be precisely synchronized to
coherently rotate each qubit. Another equally important
task is to improve the sensitivity of all QPCs to read out the
probability of each qubit state.
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APPENDIX A: QPC CHARGE SENSING

We use the modulation technique to increase the
signal-noise ratio in charge occupation detection.
Basically, we modulate a plunger gate of each quantum
dot with the ac sine out of a lock-in amplifier and measure
the ac component of each QPC current at the modulated
frequency. The lock-in ac sine out is combined with a
dc bias voltage before it is applied to the plunge gates.
The QPC of each quantum dot is biased with dc current
in the range of 1–2 nA. The ac voltage component on

(a) (b)

(c) (d)

FIG. 4. (a),(b) Coherent
phase rotations of qubit 1 con-
trolled by qubit 2 and qubit 3,
respectively. Qubit 2 is fixed
at state j0i2 and j1i2, respec-
tively. (c),(d) Theoretical sim-
ulations.
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(a)

(b) (c) (d)

(e) (f)

ac in

ac out ac out

ac out

ac in

ac in

lock in-1 lock in-2

lock in-3

FIG. 5. (a) Sketch diagrams of the modulation measurement of all the three double quantum dots. (b)–(d) Charge stability diagrams of
all three double quantum dots measured through the differential current of each QPC. (e) The green dotted line represents the raw data of
the Larmor oscillations of qubit 1 detected by the transport current through the QPC formed by gates L1, L2, and L3. The blue solid line
represents the background curve. (f) The black dotted curve represents normalized Larmor oscillations obtained by dividing the raw data
by the background. The red solid line represents the theoretical fit.
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he plunger gate modulates the electron energy on the
quantum dot, and the ac current component senses the
resulted variation of electron charge occupation on
the dot. Therefore, in this way, we are actually differ-
entiating the QPC current with respect to the plunger
gate voltage, or, equivalently, measuring the derivative
of the charge occupation with respect to the electron
energy.
This technique is proven to provide a better signal-to-

noise ratio and is widely accepted in this research area.
In Fig. 5(a), we illustrate the block diagrams for all
three QPCs. Because we have three double quantum
dots, we need to carefully choose the ac frequencies
for each lock-in amplifier to avoid mutual interference.
For instance, we can set the frequencies on each lock-in
as 73, 173, and 231 Hz, respectively. In Figs. 5(b)–5(d), we
show the measured charge diagrams for each quantum
dot.
We can also detect the dc transport current through the

QPCs to directly measure the probability of qubit states.
However, because of the large number of qubits, the
working ranges of the QPCs are limited, and the probability
measurement cannot give results when all qubits are
functioning. Nonetheless, we directly measure the proba-
bility of qubit states for a single qubit to calibrate the
device. For instance, we can set voltages on L1, L2, and L3

to form a single dot and to function as a sensitive QPC,
which can be utilized to measure the probability of qubit 1’s
states. Figures 5(e) and 5(f) show an example of Larmor
oscillations for qubit 1. Figure 5(e) records the transport
current through the QPC formed by gates L1, L2, and L3.
After proper numerical processing, we obtain normalized
qubit-state probability. The Larmor oscillations have a
decaying envelope due to the dephasing time T�

2, whose
value is estimated to be around 1.2 ns by fitting the
Larmor oscillations with a decaying cosine curve: a0 exp
½−ðW1/T�

2Þ2�cosð2πΔ1W1þb0Þþa1W1þa2.

APPENDIX B: CONVERT GATE VOLTAGES
TO DETUNING ENERGY

In the main text, we always show the detuning energies
for each qubit. Experimentally, these detunings are
obtained in the following way. For example, Fig. 6 shows
how we convert the voltages to detuning energies when
measuring the coupling strength between qubit 1 and qubit
2. Figs. 6(a) and 6(b) present the charge stability diagrams
of qubit 1 and qubit 2, respectively. Taking qubit 1 as an
example, we increase VU2 and decrease VU4 simultane-
ously to vary the detuning energy ε1 from negative to
positive value. This is done along the blue dashed line
shown in Fig. 6(a). Suppose voltages on gates U2 and U4
are changed by ΔVU2 and ΔVU4, respectively, the detuning
ε1 can be described as [25]

ε1L ¼ −α2ΔU2 − k4α2ΔU4;

ε1R ¼ −α4ΔU4 − k2α4ΔU2;

ε1 ¼ ε1L − ε1R ¼ −ðα2 − k2α4ÞΔU2

− ðα4 − k4α2ÞΔU4:

Here, α2 and α4 are the energy lever arms of VU2

and VU4, respectively; k2 < 1 and k4 < 1 describe the
cross talking between two gates. If the slope of the
blue dashed line is −tgðθÞ, then ΔVU4 ¼ −tgðθÞΔVU2

and ε1 can be estimated through the variation of VU2

alone:

ε1 ¼ −
�
1þ tgðθÞ α4 − k4α2

α2 − k2α4

�
ðα2 − k2α4ÞΔU2

≡−γ2ΔU2:

The ideal case is to compensate ΔVU2 and ΔVU4 in
such a way that the total energy ε1L þ ε1R remains
unchanged. Based on this, we can calculate the ideal
value of tgðθÞ. Practically, we choose tgðθÞ close to the
ideal value and try not to change it in the following
experiments.
The lever arms αi and ki can be obtained from

quantum-dot Coulomb blockade diamonds and charge
stability diagrams. A more direct way to obtain the
energy-conversion factor γi is through PAT measurement.
Shining a microwave to one gate of qubit 1, in the proper
conditions we see the PAT effect caused by electrons
absorbing the energy of one or more photons and
tunneling from one side of the DQD to the other side.
We scan ΔVU2 and compensate ΔVU4 in the way that we
describe above and measure the voltage spacing between
the two observed PAT peaks (valleys). The relationship
between the voltage spacing and the photon energy will
tell us the energy conversion factor γ2. Experimentally,
we calculate that γ2 is approximately 35 μeV/mV. For
qubit 2, the conversion factor of ΔVU8 is about
38 μeV/mV. For qubit 3, the conversion factor of
ΔVL4 is estimated to be 32 μeV/mV. These values are
in the same magnitude as the lever arms α2, α4, and so on,
as obtained in the quantum-dot transport measurement.
More details of the PAT measurement can be found in our
earlier papers [33,34].
Figures 6(c) and 6(d) present the measurement of

coupling strength J12 when we vary VU2 and compensate
VU4, and vary VU8 and compensate VU6, as indicated by the
blue dashed lines in Figs. 6(a) and 6(b). After subtracting
the offsets from and multiplying the conversion factors to
the gate voltages, we convert the x axis and y axis into
detuning energies, as shown in Figs. 6(e) and 6(f). From
these two figures, we can tell that J12 is about 105 μeV.
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APPENDIX C: TUNING OF COUPLING
ENERGY

Figures 7(a) and 7(b) show the measurement of J13 as we
close gate voltage VH to −0.85 V. The results tell us that
J13 is about 50 μeV. This is much smaller than the one
presented in Figs. 1(d) and 1(e), where J13 is about
135 μeV and VH is much more open (−0.81 V). This
means that adjusting the voltage on a pair of “T gates”
(H1 and H2) can effectively tune the coupling between
qubit 1 and qubit 3.
We try to repeat controlling the coherent rotations of

qubit 1 by the state of qubit 3 when VH is −0.85 V. The
data are shown in Fig. 7(c). We can see that although
the state of qubit 3 has an effect on the Larmor
oscillations of qubit 1, there are obviously considerable
residual oscillations when qubit 3 is switched to state
j1i3. This partial suppression of Larmor oscillations

suggests that in this condition, J13 is not strong enough,
and the energy spectrum of qubit 1 does not shift far
enough away after coupled to qubit 3.
In Fig. 7(d), we show that we can systematically tune

the value of J13 by closing or opening VH. These data are
taken in another device with similar geometry and have
been reported elsewhere [27]. The voltage value is not the
same as in the device in this paper. Nonetheless, we can
see that the coupling energy can be tuned from 0 to
above 100 μeV.
For the coupling between qubit 1 and qubit 2, because

tunneling is likely to occur when VU5 is not closed enough,
we do not have many data points to systematically show the
dependence of coupling energy J12 on VU5.
When coupling strengths are strong enough, the con-

ditioning of the target qubit’s coherent oscillations becomes
possible. To illustrate the mechanism of conditioning, we
show in Fig. 7(e) typical experimental data of the Larmor

FIG. 6. (a),(b) Charging
diagram of qubit 1 and qu-
bit 2. Blue dashed lines
indicate the direction of
gate compensation and de-
tuning energy variation. (c),
(d) To measure the coupling
energy J12, we scan VU8

and compensate VU6 to vary
ε2, and scan VU4 and com-
pensate VU2 to vary ε1. (e),
(f) Voltage values are con-
verted to energy.
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oscillations of the target qubit when it is decoupled from
both control qubits. The x axis is the pulse width and the
y axis is the detuning energy where the pulse drives the
target qubit to denoted as εP1. Recorded is the differential
current through QPC 1. We can see that the experimentally
observed Larmor oscillations have a limited line width
below the anticrossing point (εP1 < 0) and have much
broader decaying tails above the anticrossing point
(εP1 > 0).
In the central panel of Fig. 7(f), the black dots are a

typical curve of Larmor oscillations when the pulse
drives the qubit to the anticrossing point (εP1 ¼ 0). In
the top panel, the blue dots show residual Larmor
oscillations if the pulse drives the qubit above the
anticrossing point by an amount about the same as
JðεP1 ¼ −100 μeVÞ. Because the qubit coherence time
is lower when detuning is off the anticrossing point, the
Larmor oscillations dephase much faster. However, we

still see residual oscillations, meaning that the enhanced
dephasing effect alone does not completely suppress
Larmor oscillations.
On the bottom panel, the red dots show that the

Larmor oscillations are basically gone if the pulse
drives the qubit below the anticrossing point
(εP1 ¼ −100 μeV). This is because Larmor precession
reaches the maximum at the anticrossing point and
deteriorates quickly with respect to the detuning for
this two-level quantum system. Below the anticrossing
point, Larmor precession has a small line width. If the
pulse drives the qubit below the anticrossing point by
an amount larger than the line width, the Larmor
oscillations will be completely suppressed.
In conclusion, when the target qubit is coupled to the

control qubits, if the J-induced detuning is larger than a
certain line width, the target qubit’s Larmor oscillations
will be completely suppressed.

FIG. 7. (a),(b) When VH
is −0.85 V, the coupling
between qubit 1 and qubit
3 J13 is measured to be
about50 μeV. (c)Tentative
control experiment of
qubit 1’s coherent rotations
by qubit 3 when VH is
−0.85 V. (d) Dependence
of coupling energy J13 on
VH . (e) Larmor oscillations
of qubit 1 dependent on
the detuning energy that
the adiabatic pulse drives
the qubit to. (f) The top,
central, and bottom panels
compare the Larmor oscil-
lations if the pulse drives
the qubit above, to, and
below the anticrossing
point.
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APPENDIX D: PULSE IMPERFECTION
AND ITS EFFECT

Because the qubit decoherence time in our experiment is
approximately 1 ns, an ultrashort voltage pulse will be
needed to operate all three qubits. This stringent require-
ment on pulse-shaping brings many technical challenges.
For instance, the imperfections of pulse shape in the
ultrashort pulse-width regime has some effects on our
LZS interference patterns, as can be seen in Fig. 4 in
the main text. In Fig. 4(a), we notice that the period of
phase rotations is apparently shorter when the pulse width
is ultrashort, that is, between 100 and 150 ps. We explain
this nonperiodicity as pulse reflection.
When we apply high-frequency voltage pulses, there can

be reflection on the circuit board where the device is
mounted. The reflected wave comes back to the device and
is superimposed on the original pulse. This modifies the
pulse shape and gives rise to unexpected phenomena. In our
example, we think the reflection pulse is superimposed on
the peak of the original pulse and increases the pulse height
when the original pulse is ultrashort (<150 ps). When the
original pulse is wider (<150 ps), the reflection pulse is
superimposed on the shoulder of the original pulse and
mostly increases the pulse width. The period of LZS phase
rotations decreases with pulse height and increases with
pulse width. This is in agreement with the observed
nonperiodicity in Fig. 4(a).
We simulate this effect and present the results in Fig. 8.

We assume the reflection wave arrives at the device 30 ps

later than the original pulse. Thewidth of the reflectionwave
is assumed as 100 ps, and its amplitude is assumed to be one-
third of the original pulse amplitude. Figure 8(a) shows that
the pulse height is obviously increased when the original
pulsewidth is 100 ps. Figure 8(b) shows that the pulse height
almost does not change, and the pulse width essentially
increases when the original pulse width is 300 ps.
As a result, nonperiodicity appears in the simulated LZS

pattern, as shown in Fig. 8(c). The spacing between the first
two peaks is 41 ps, significantly smaller than the following
peak spacing, which is from 73 to 88 ps in this figure.
In contrast, the simulated LZS interference without pulse
reflection shows nearly perfect periodicity (80 ps) when the
pulse width is from 100 to 400 ps, as presented in Fig. 8(d).
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