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A quartz tuning fork is the key component of high-resolution atomic force microscope. Because of its
high quality factor, a quartz tuning fork can also be used for high-sensitivity magnetometry. We develop a
highly sensitive torque differential magnetometry using the qPlus mode of a quartz tuning fork. The tuning
fork is driven by an ac voltage, and its deflection is measured by the resultant ac current. We observe a sharp
resonance of the quartz tuning fork at low temperatures down to 1.6 K. We calibrate our torque differential
magnetometry by measuring the angular dependence of the hysteresis loop in single-crystal Fe0.25TaS2.
Furthermore, we demonstrate the high sensitivity of the torque differential magnetometry by measuring the
quantum oscillations of a bismuth single crystal. The extracted Fermi-surface cross sections are consistent
with those of bismuth crystals.
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I. INTRODUCTION

Quartz resonators have been widely used as frequency
standards in wrist watches due to its low internal dissipation
and insensitivity to acceleration [1]. Among them, quartz
tuning forks (QTFs) are the most useful because of the
surprisingly high quality factor (Q factor) and low fre-
quency variation at room temperature. Furthermore, the
relatively high spring constant keff provides additional
advantages, like smaller oscillation amplitude [2] and larger
linear operation range [3].
QTFs were introduced into scanning near-field acoustic

microscopy as an alternative method for imaging the
topography of nonconducting surfaces by Günther et al.
[4]. Later on, QTFs were used to fulfill tip-sample distance
control in near-field optical microscopes [5]. Shear-force
detection was used in these microscopes and was explicitly
investigated by Karrai and Tiemann [6]. Implementation of
a tuning-fork sensor suitable for high-resolution atomic
force microscopy (AFM) imaging was achieved by involv-
ing phase-locked-loop (PLL) control [7]. By attaching a
magnetic tip on a QTF, magnetic force microscopy can
bring a spatial resolution of several tens of nanometers
[8,9]. Giessibl also demonstrated an alternative configura-
tion of QTF-based AFM (called a qPlus sensor) which

maintains both high scanning speed and high atomic
resolution [10].
Apart from the application in scanning probe micros-

copy, QTFs have the potential for high-sensitivity magne-
tometry due to a high quality factor Q (approximately 104)
and high sensitivity [11]. Cantilever-based torque magne-
tometry with resolution better than 104μB was widely used
to study small magnetization signals in magnetic thin layers
[12] and individual nanotubes [13]. In these experiments,
the readout of the magnetization signal usually involves
mechanical oscillator drive and optical detection of canti-
lever deflection, often resulting in a cumbersome setup that
is sensitive to the environment. It is necessary to develop an
easy-to-set-up and highly sensitive magnetometry.
In the QTF-based torque magnetometry, magnetization

coming from the sample generates a torque which changes
the effective spring constant keff of the QTF. This change
leads to a change in the resonance frequency. Thus, it can
be read out by its electrical response, such as current.
Furthermore, cooling down to cryogenic temperature can
effectively maximize the signal-to-noise ratio of the QTF
[14,15]. This can, therefore, be a platform for a potentially
easy-to-set-up sensitive magnetometry. However, QTF-
based torque magnetometry has not been widely studied
and is not thoroughly understood. A major reason for this
scenario is that the quality factor is very sensitive to the
mass of the attached specimen and drops dramatically when
the two prongs are not well balanced, making it impractical
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for resonant detection. Previous QTF-based torque mag-
netometry was investigated with attaching an iron wire to
one prong of a free tuning fork [11]. There have been no
prior studies on qPlus-mode magnetometry where one
prong is mechanically fixed.
In this article, we demonstrate that a qPlus-like setup of a

QTF, dubbed torque differential magnetometry, can achieve
a several times larger Q factor than prior non-qPlus-like
setups, even with a relatively massive sample [11]. The QTF
device is integrated on the rotator probe of a Janis variable
temperature insert (VTI) system which provides a low-
temperature and -vacuumenvironment.We test two different
measurement circuits and achieved high sensitivity mea-
surements in both low and high magnetic fields. In order to
calibrate the order of magnitude of magnetization measured
with the quartz tuning fork, we measure the hysteresis loop
of the well-studied ferromagnetic material Fe0.25TaS2 with
different methods of magnetometry. Our analysis demon-
strates that torque differential magnetometry can achieve a
sensitivity which is comparable to that of the commercial
Magnetic Property Measurement System (MPMS), as well
as the cantilever-based torque magnetometer. Furthermore,
we demonstrate the high sensitivity of our torque differential
magnetometry by measuring the de Haas–van Alphen effect
in a bismuth single crystal. Quantum oscillations are
observed in a magnetic field of up to 10 T, and the extracted
Fermi surfaces are consistent with previous results [16]. The
observation of a hysteresis loop, as well as the quantum
oscillations, indicate thatQTF-basedmagnetometry is a very
promising characterization tool for studying the magnetic
properties of many alternative materials.

II. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 1(a), which
depicts one prong of a QTF firmly glued on the side of an
L-shaped substrate with H74F epoxy from Epotek.
Figure 1(b) shows the side view of the experimental setup
under the microscope. The L-shaped substrate is machined
from brass, which has high density and high thermal
conductivity. Attaching a heavy mass to the tuning fork
is crucial for obtaining a high quality factor. The sample is
attached to the top of the free prong. The magnetic field is
applied in the plane formed by two crystalline axes
[inset of Fig. 1(b)]. The QTFs (MS1V-T1K) are from
Microcrystal and have a freestanding resonance frequency
f0 ¼ 215 Hz ¼ 32 768 Hz. The original QTF is sealed in a
metal case which holds a rough vacuum and can be gently
removed with pliers. The spring constant of the quartz
tuning fork can be calculated with the beam formula [17]

k ¼ Et3w
4△L3

; ð1Þ

where E is Young’s modulus of quartz, t is the thickness, w
is the width, and △L is the effective length. After plugging

in the numbers from Refs. [2,17], △L ¼ 2400 μm,
t ¼ 214 μm, w ¼ 130 μm, and E ¼ 79.1 GPa, the result-
ing theoretical spring constant is approximately 1822 N/m.
However, the calculation with the beam model is only a
rough estimation for the spring constant and barely agrees
with the geometrical configuration of the qPlus sensors.
The effective length △L ¼ L − L0 is ambiguously defined
since it largely depends on the mounting position L of the
sample as well as the determination of the beam origin L0

[18]. Furthermore, the assembling procedure, such as the
nonsymmetric alignment of the sample, affects the spring
constant of the QTF [19]. The rigid bonding between the
sample and the QTF, and between the QTF and the
substrate, is crucial for obtaining a high Q factor [20].
The whole device is tightly fixed on a 16-pin socket which
seats on the rotator probe of a Janis VTI system and stays in
vacuum during the whole measurement.
In our experiments, we perform frequency-dependent

current measurements with the direct-mode circuit shown
in Fig. 1(c). A Keysight 33520B function generator is used
to provide a 10-mV ac voltage across the QTF. The signal
frequency is read by a Keysight 53230A frequency counter.
At the same time, the responding current ~IðωÞ due to the
piezoelectric effect is measured with a Stanford Research
830 lock-in amplifier whose reference signal comes from
the function generator.
The field-dependent current measurement is achieved

with both a direct-mode circuit and a PLL-mode circuit
[Fig. 1(d)]. In direct mode, the frequency of the function
generator is always fixed at the resonance frequency of the
QTF at zero field. When the magnetic field is changing, the
magnetization in the sample generates a torque on the free

(d) 

(a) (b) 

(c) 

FIG. 1. (a) Experimental setup. One prong of the QTF is firmly
glued on the side of an L-shaped substrate. The sample is attached
on top of the free prong. (b) Side view of the experimental setup
under the microscope. (Inset) Sketch of the measurement setup,
where the magnetic field is applied in the a-c plane of the sample.
The sample stage is rotatable up to 90°. θ is the angle between the
c axis and H. Schematic of the experimental circuit in (c) direct
mode and (d) PLL mode.
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prong of the QTF, which modifies the resonance frequency
of the QTF. The lock-in amplifier measures the amplitude
and phase of the current through the QTF. All data
acquisition is fulfilled by LabVIEW programing.
The phase shift of the current depends on how much the

resonance frequency deviates from the excitation fre-
quency. Compared with the direct mode, the PLL mode
[7] can directly measure the frequency change of the QTF
when applying a field. The shift of the QTF is quite steep at
the resonance frequency [11] because of its high Q factor.
This slope can be used to convert the phase signal to the
frequency change. In the PLL-mode measurement, the
drive frequency of QTF is modulated by a feedback loop
to maintain a constant phase. The phase-locked loop is
achieved by sending the phase of the current to the input of
a Stanford Research SIM960 analog proportional-integral-
derivative (PID) controller, while the output of the PID is
used to modulate the frequency of the function generator
and is recorded by a Keithley 2182A nanovoltmeter.

III. TORQUE DIFFERENTIAL MAGNETOMETRY

In our experiment, the magnetization from the sample is
represented by the frequency change of the QTF. Here, we
give a brief mechanical model which is similar to the
mechanism of the frequency-modulated cantilever magne-
tometry [21]. In the qPlus configuration, only one prong of
the QTF can oscillate freely, while the other prong is tightly
fixed on the substrate. The free prong is equivalent to a
quartz cantilever which performs harmonic oscillation
when applying ac voltage. In the PLL mode, the QTF is
driven at its resonance frequency ω0 during the measure-
ment. The displacement of the free prong is given by
xðtÞ ¼ x0 cosðω0tÞ. In the presence of an external magnetic
field H, the magnetization M from the sample applies a
torque τ ¼ M ×H on the QTF. The motion of the QTF can
be expressed as

meff
d2x
dt2

þ γ
dx
dt

þ keffx ¼ Fdrive þ Fτ; ð2Þ

in whichmeff is the effective mass of the free prong, γ is the
damping factor, keff is the effective spring constant, Fdrive is
the driving force, and Fτ is the force coming from the
magnetic torque. Fτ can be further expressed as Fτ ¼
τ=Leff , where Leff is the effective length of the QTF.
Here, we define the angle between H and c axis as the
tilt angle θ. While the free prong keeps oscillating, the
motion adds a small oscillation change to the θ which
makes θ0ðtÞ ¼ θ þ ΔθðtÞ. ΔθðtÞ also varies with the same
frequency ω0 of the driving force and can be written as
ΔθðtÞ ¼ Δθ0 cosðω0tÞ, in which Δθ0 relates to the oscil-
lation amplitude of the free prong Δθ0 ¼ x0=Leff . In other
words, the deflection of QTF (x) is ΔθðtÞ ¼ xðtÞ=Leff . The
force change can be expanded as

Fτ½θ þ ΔθðtÞ� − FτðθÞ ≈
∂Fτ

∂θ ΔθðtÞ ¼ 1

Leff

∂Fτ

∂θ xðtÞ: ð3Þ

Therefore, the magnetic torque results in a change of
effective spring constant

Δkeff ¼ k0eff − keff ¼
1

Leff

∂Fτ

∂θ ¼ 1

L2
eff

∂τ
∂θ : ð4Þ

Thus, the shift of the resonance frequency becomes

Δω0 ≈ ω0

Δkeff
2keff

¼ ω0

2L2
effkeff

∂τ
∂θ

: ð5Þ

Therefore, in PLL mode, the frequency shift is proportional
to the derivative of the magnetic torque with respect to the
tilt angle θ, which means that the quartz tuning fork is
actually a torque differential magnetometer [3].
When the magnetic field is applied in the a-c plane of the

crystal [inset of Fig. 1(b)], the magnetic torque can be
expressed with the components along the crystalline c and
a axes by

τ ¼ MaHc −McHa: ð6Þ

For a paramagnetic or diamagnetic material [22],

τ ¼ μ0χaHaHc − μ0χcHcHa

¼ μ0ΔχH2 sin θ cos θ; ð7Þ

where μ0 is the vacuum permeability and Δχ ¼ χa − χc is
the magnetic susceptibility anisotropy. With the same
derivation, the frequency shift for a paramagnet material is

Δω0 ≈ ω0

μ0ΔχH2 cos 2θ
2L2

effkeff
¼ ω0

MeffH cos 2θ
2L2

effkeff
; ð8Þ

in which Meff ¼ μ0ΔχH is the effective magnetization.
If the sample is not paramagnetic along all crystal axes,

the θ dependence of the frequency shift is a little bit
different. Take Fe0.25TaS2 as an example. It is a paramagnet
along the a axis but a ferromagnet along the c axis [23].
When the magnetization along the c axis is saturated, the
magnetic torque can be written as

τ ¼ 1

2
μ0χaH2 sin 2θ −MsH sin θ; ð9Þ

in which Ms is the saturation magnetization along the c
axis. In Fe0.25TaS2, the magnetization in the a-b plane is
very low compared to the saturation magnetization along
the c axis [23]. As a result, the frequency shift is as follows:
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Δω0 ¼ ω0

μ0χaH2 cos 2θ
2L2

effkeff
− ω0

MsH cos θ
2L2

effkeff
: ð10Þ

Furthermore, given that the magnetic torque is domi-
nated by the second term in Eq. (9), the dominating term in
Eq. (10) would be the second term, which means the
frequency shift is proportional to H. Later, we demonstrate
the angular dependence of the frequency shift at Hc in
Fe0.25TaS2 single crystal.

IV. RESULTS

A. Hysteresis loop in Fe0.25TaS2

In order to calibrate the order of magnitude of the
magnetic moment measured by the quartz tuning fork as
well as to verify the theoretical model of torque differential
magnetometry, we measure the hysteresis loop of a well-
studied ferromagnetic material Fe0.25TaS2 with different
methods of magnetometry. The Fe0.25TaS2 sample used
here were grown by the chemical vapor deposition method
[24]. Both the magnetization and the resistivity are
extremely anisotropic, with the magnetic moments aligned
parallel to the c crystallographic direction [23–25].
Anisotropic magnetization is taken with the Quantum

Design Physical Property Measurement System (PPMS)
using the vibrating-sample magnetometer (VSM) option at
1.9 K. The sample measured in PPMS (sample A) has a
dimension of 0.9 × 0.75 × 0.05 mm. As shown in Fig. 2(a),
a sharp hysteresis loop is observed when H∥c. The H∥c
magnetization saturates at 5.2 T (Ms ∼ 10−3 emu) and is
about 1 order of magnitude larger than the H∥ab mag-
netization (Mab ∼ 10−4 emu).
The angular-dependent magnetic torque of sample B is

measured with a cantilever-based torque magnetometer.
The experimental setup is similar to the one in Ref. [22], a
(0.3 × 0.16 × 0.05)-mm single crystal is put on the tip of a
beryllium copper cantilever with a magnetic field applied in
the a-c plane. The magnetic torque τ coming from the
sample is measured by tracking the capacitance change
between the cantilever and a gold film underneath [26].
Figure 2(b) shows the torque vs H at θ ¼ −34.8°, in which
θ is the angle between H and the c axis. The bow-tie
feature corresponds to the sharp jump in the magnetization
at the coercive field Hc. As demonstrated in the previous
session, the magnetic torque in this material is dominated
by the second term in Eq. (9). Thus, the torque signal
should be proportional to sin θ. The loop height is
defined as the torque change at the coercive field
τc ¼ τupc ðHcÞ − τdownc ðHcÞ. The angular-dependent torque
measurement is made between −45° and 45°. The angular-
dependent data show that the loop closes exactly at θ ¼ 0°,
and the loop size gradually increases as θ deviates from 0°
[Fig. 2(e)]. Theoretically, the torque signal should get a
maximum at θ ¼ �45°. Unfortunately, we are not able to
get the angular dependence above 45° due to the limitation

of our rotator. The angular-dependent Δτc=2Hc data can be
well fitted with Eq. (9) [the red dashed line in Fig. 2(e)],
which indicates that the magnetization from the c axis is
about 45 times larger than the contribution from the a-b
plane. For comparison, we also fit the angular-dependent
data with a sinusoidal function (the blue dashed line). It
turns out that, with a large magnetic anisotropy, Fe0.25TaS2
can be approximated with a 3D Ising model.
Sample B is then attached to the free prong of a qPlus-

mode quartz tuning fork, with the magnetic field applied in
the a-c plane. The field-dependent frequency shift is
measured using the PLL mode, and the frequency shift
vsH at θ ¼ −38° is shown in Fig. 2(c). A similar hysteresis
loop with a bow-tie feature is observed. Here, the loop
height is defined as the frequency shift jump at the coercive
field Δfc ¼ fupc ðHcÞ − fdownc ðHcÞ, the loop width is
defined as 2Hc. The angular-dependent hysteresis loops
show that the loop height gets a maximum at θ ¼ 0° and
continuously increases as θ deviates from 0°. Figure 2(d)
shows the angular-dependent Δfc=2Hc, which can be well
fitted with Eq. (10) (the red dashed line). The magnetic
anisotropy derived from the fitting is consistent with the
result of the cantilever data [Fig. 2(e)]. If we treat the
Fe0.25TaS2 sample as a 3D Ising system, the angular
dependence of Δfc=2Hc can be well fitted with the second
term of Eq. (10) (the blue dashed line). This angular-
dependent behavior verifies that the tuning fork is actually
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FIG. 2. Hysteresis loop in Fe0.25TaS2. (a)MðHÞ curves forH∥c
(black) and H∥ab (red) measured by VSM in sample A at 1.9 K.
(b) Torque vsH measured by torque magnetometer in sample B at
1.7 K. (c) Frequency shift vs H measured with a quartz tuning
fork in sample B at 1.7 K. θ is the angle betweenH and the c axis.
The differential of torque is derived with Eq. (5). Arrows here
denote the direction of the magnetic-field change. (d) Δfc=2Hc
vs θ for the quartz tuning fork. (e) Δτc=2Hc vs θ for the
cantilever. The blue dashed lines are the theoretical fitting with
the magnetization only along the c axis. The red dashed lines
represent a theoretical fitting with magnetization coming from
both the c axis and the a-b plane.
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measuring the differentiation of magnetic torque, not the
torque itself. The coefficient in front of cos θ in the fitting
function equals ½ðf0MsÞ=ð2L2

effkeffÞ�. The resonance fre-
quency f0 of the QTF with the Fe0.25TaS2 sample attached
is 30 432 Hz, the effective length of QTF is Leff ¼ 2.4 mm,
the saturation magnetization is Ms ¼ 3.55 × 10−7 emu.
Then the spring constant can be calculated as k ¼
2131 N=m after plugging in all of these numbers, which
is consistent with the calculated spring constant in the
previous session and the reported values (103–104 N=m) in
previous studies [10,17,27,28].

B. Quantum oscillations in bismuth

We also took the field-dependent measurement for
single-crystal bismuth (Bi) with the qPlus-mode QTF.
The orientation of the bismuth crystal is confirmed by
x-ray diffraction. A (0.6 × 0.2 × 0.13)-mm (approximately
156-μg) Bi crystal is attached on top of the free prong. The
zero-field resonance curve is measured with the direct
mode at 1.6 K, as shown in Fig. 3. The amplitude of the
current shows a sharp peak at resonance frequency f0,
while the slope of the phase curve is quite steep. Fitting the
magnitude and the phase of the current with Eqs. (1) and (2)
in Ref. [27] gives a quality factor around 20 000 and
f0 ¼ 15 198 Hz. The phase of the current has a linear
relationship with a frequency within�0.3 Hz around f0, so
we can use the phase deviation to infer the shift of the
resonance frequency △f if f0 þ△f is in this linear range.
However, strong magnetic torque in a high field could
result in a large frequency shift beyond the linear range. In
this situation, the PLL mode has to be involved to track the
variation of f0 in a broad range.
To verify that the direct mode can produce the same

result as the PLL mode in this linear range, field-dependent
measurements up to 10 T are performed with both modes.

The crystal orientation is shown in the inset of Fig. 3, the
magnetic field is rotating in the trigonal-binary plane of
the Bi crystal, and θ denotes the angle between the field and
the trigonal axis. Figures 4(a) and 4(b) show that the
frequency shift in the PLL mode and the phase of the
current in the direct mode show the same pattern (later, we
compare the periodicity to 1=μ0H). Figure 4(c) is the
effective magnetization Meff calculated from the frequency
shift with Eq. (8). Comparing Figs. 4(a) and 4(b), the direct
mode is better at revealing high-pitched oscillations with
respect to μ0H at low field. The reason is that, when the
magnetic field changes, the magnetization of the sample
changes the resonance frequency of the QTF and produces
a phase shift on the current. With a sweeping rate of 0.23 T
per minute, to obtain a stable PLL, the integration gain can
not be too large, which means the time constant of the PLL
cannot be too small. The PID takes quite a long time to
gradually reach a stable output which tunes the frequency
of the function generator to the new resonance frequency.
However, before the PID generates a stable output, the
variation of magnetization forces it to achieve a new
resonance frequency. Thus, the direct mode is advanta-
geous in low-field measurements since the phase of the
current always responds more rapidly than the PID output.
In our experiment, we perform angular-dependent mea-

surements up to 10 T at 1.6 K. Figure 5 shows the raw data
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taken with the direct mode at six selected angles. WhenH is
increasing, the Landau-level energies are also increasing.
Every time the Fermi surface passes through a Landau level,
the derivative of free energy F overH has an extreme slope.
Hence, the Landau-level crossings can be observed as a
series of anomalies in the phase of the current versusH. IfH
is at an angle α to the normal direction of a Fermi surface, the
extreme slope happens at fields Bn, given by [29]

1

Bn
¼ 2πe

ℏ
ðnþ γÞ 1

SðαÞ ; ð11Þ

where ℏ denotes the reduced Plank constant, e is the
electrical charge, n is a positive integer, γ is the Onsager
phase, and SðαÞ is the Fermi-surface cross section at the
magnetic-field tilt angle α. We use ðn;�Þ to denote the sub-
Landau levels due to the Kramers degeneracy. For the
electron pocket, the index field Bn is distinguished
by a minimum in the phase of the current, as shown in
Figs. 5(a)–5(e). For the hole pocket, Bn is revealed by peaks
in the phase of the current, as shown in Fig. 5(f).
Landau-level indices n vs 1=Bn measured at three

selected angles are plotted in Fig. 6(a). For the hole pocket,
e.g., θ ¼ −43°, the data points fall on a straight line which
has an intercept of 0 asH approaches infinity. However, for
the electron pocket, e.g., θ ¼ −11°, 33°, the infinite field

limit of the index plot intercept is around −0.2. This linear
relationship confirms that the above indexing is consistent
and that the slope corresponds to the dominant quantum
oscillation frequency at each angle, from which we can
extract the Fermi-surface cross section projected on the
plane perpendicular to H.
At each angle, quantum oscillations could come from

both electron and hole pockets. Multifrequencies of
the quantum oscillations are revealed by the fast Fourier
transform (FFT) of the field-dependent phase data.
A polynomial background is subtracted before the FFT
process. Figure 6(b) shows the angular dependence of the
quantum oscillation frequencies which can be fit with a 3D
ellipsoidal Fermi-surface model [29]. The red dashed lines
denote quantum oscillation periods coming from two
electron pockets which are symmetric with respect to the
bisectrix axis. The blue dashed line represents the periods
originating from the hole pocket that extends along the
trigonal axis. Our results are consistent with previous de
Haas–van Alphen measurements in Bi [16]. In the canti-
lever-based torque magnetometry measurement done by Li
et al. [30], the Bi sample has a mass of 0.12 g (770 times
larger than our sample), and the quantum oscillation starts
to show up at B ∼ 0.5 T. With a much smaller sample, a
quantum oscillation is revealed at a comparable magnetic
field in our experiment, which indicates that QTFs are
advantageous in small-signal detection.
The electronic properties of Fermi surfaces can be

revealed by tracking the temperature dependence and
the magnetic-field dependence of the quantum oscillation
amplitude, which is well defined by the Lifshitz-Kosevich
(LK) formula [29]. The oscillation amplitude is determined
by the product of the thermal damping factor RT and the
Dingle damping factor RD, as follows:
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RT ¼ αTm�=B sinhðαTm�=BÞ; ð12Þ

RD ¼ expð−αTDm�=BÞ; ð13Þ

where the effective mass m ¼ m�me and the Dingle
temperature TD ¼ ℏ=2πkBτS. me is the bare electron mass,
τS is the scattering rate, kB is the Boltzmann constant, and
α ¼ 2π2kBme=eℏ ∼ 14.69 T=K. Figure 7(a) shows the
temperature-dependent frequency shift after subtracting a
polynomial background between 1.5 and 15 K. Fitting the
temperature dependence of the normalized frequency
shift at μ0H ¼ 2.41 T yields m ¼ 0.065me for the hole
pocket, which is within a 20% error of the reported value
in Ref. [31].

V. DISCUSSION

The frequency sensitivity of the direct mode can be
estimated in the following way. From the resonance curve
of the QTF with a Bi sample attached (Fig. 3), the slope of
the phase vs frequency is 132°=Hz. The main uncertainty of
the direct-mode measurement depends on the uncertainty
of the phase measured by the lock-in amplifier. In our setup,
the error from the phase measured by the lock-in is �0.5°,
which means that the frequency sensitivity is about
�3.8 mHz. This value is about 7 to 8 times higher than
the frequency sensitivity achieved by the free tuning-fork
magnetometer [11].
As for the PLL mode, the major limitation for the

sensitivity comes from the output of the PID. Taking the
hysteresis loop measurement as an example, the uncertainty
for thePIDoutput is about3 × 10−3 V,which corresponds to
1.8 × 10−3 Hz. The sensitivity of the saturation magnetiza-
tion is estimated at δMs∼2.8×10−10Am2∼2.8×10−7 emu
at 5 T, which is comparable to the best claimed sensitivity of
the latest MPMS (sensitivity of approximately 5×10−8 emu)

by Quantum Design. With the magnitude of our magnetic
moment signal being about 10−4 emu, the signal-to-noise
ratio for our setup is 103. The sensitivity of a QTF-based
differential torque magnetometer is comparable to the
sensitivity of the cantilever-based torquemagnetometer used
for the hysteresis loop measurements. In our torque magne-
tometer experiment, the uncertainty of the beryllium copper
cantilever’s capacitance is about10−5 pF,which corresponds
to a magnetic moment of 1 × 10−7 emu at 5 T. In the
cantilever-based torque magnetometry, a thinner cantilever
beam can achieve a higher sensitivity (10−10 emu). This is
the case because a thinner beam has a lower spring constant,
whichmakes the relative capacitance change (ΔC=C0) larger
and results in higher sensitivity. However, it would not
sustain the rather large torque signal from the ferromagnet
(10−4 emu). Finally, we note that the majority of the
frequency noise comes from the commercial analog PID
feedback controller used in our electronics. In future studies,
the performance and sensitivity of torque differential mag-
netometry can be improved by using a dedicate PLL with
tunable bandwidth. The magnitude of Ms for Fe0.25TaS2
sample B is about 10−4 emu, so the signal-to-noise ratio for
our setup is 103.
The frequency sensitivity in the PLL mode is higher than

the sensitivity in the direct mode, which is counterintuitive
at first glance. This is the case because the qPlus-mode
QTF with a Fe0.25TaS2 sample attached has a 2.25 times
larger Q factor than the QTF with a Bi sample attached. An
approximate estimation of the slope of the phase curve for
the Fe0.25TaS2 sample is around �297°=Hz. This slope
results in a frequency sensitivity of about �1.68 mHz,
which is smaller than the frequency sensitivity in the PLL
mode (1.8 mHz). This comparison indicates that a higherQ
factor can help significantly in increasing the sensitivity of
the direct mode.
Apart from the dc magnetic field, QTFs could potentially

be used in a pulsed field of up to 65 T as well. As an
insulator, quartz does not have a problem with eddy
currents present in metal cantilevers. Furthermore, the
resonance frequency of the QTF is much higher than that
of the traditional cantilever (≤ ∼ 100 Hz), which reduces
the coupling between the QTF signal and the low-fre-
quency mechanical vibration coming from the environ-
ment. The response time of the magnetometry needs to be
much smaller than the ring-up time of the pulsed field
(about 8 ms). Therefore, a QTF with a higher resonance
frequency is desirable in the pulsed field measurement.
In conclusion, we develop in this paper a qPlus-like

setup for torque differential magnetometry with a QTF.
With the sample attached, the QTF maintains an excellent
Q factor of approximately 104 at 1.6 K. Two different
circuits for low- and high-field measurements maintain
high sensitivity in both conditions. The hysteresis loop
measurement in the ferromagnetic Fe0.25TaS2 single crystal
proves that a QTF can achieve a sensitivity of magnetic
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moment measurement at around 10−7 emu, which is
comparable to other state-of-the-art magnetometers. The
field-dependent measurement on the well-studied metal Bi
gives solid evidence for the observation of quantum
oscillations. Our measurements on ferromagnet and quan-
tum oscillations demonstrate that our qPlus QTF magne-
tometry is a reliable method for conducting torque
differential magnetometry measurements, especially at
cryogenic temperatures and intense magnetic fields.
Since the magnetic torque is the derivative of the free
energy with respect to the tilt angle, the qPlus QTF
magnetometry measures the second derivative of the free
energy with respect to the tilt angle, thus providing a
powerful probe to resolve the electronic and magnetic
anisotropy of alternative solid-state materials.
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