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The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are
studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-
induced vertex correction to a bare polarization function of electrons within the ladder approximation, and
the intralayer and interlayer screening of defect-electron interactions is also taken into account in the
random-phase approximation. The numerical results of defect effects on both energy-loss and optical-
absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and
wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a
layered structure. For completeness, the production rate for Frenkel-pair defects and their initial
concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the
defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast
model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum
devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend
the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead
to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low
dark current density but also for radiation tolerance or mitigating the effects of the radiation.
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I. INTRODUCTION

Point defects (vacancies and interstitials) are produced
by displacements of atoms from their thermal-equilibrium
lattice sites [1,2], where the lattice-atom displacements are
mainly caused by a proton-irradiation-induced primary
knock on atom (PKA) on a time scale shorter than
100 ps for building up point defects without thermal
reactions. These initial displacements are followed immedi-
ately by defect mutual recombinations or reactions with
sinks (clustering or dissolution of clusters for point-defect
stabilizations) [3,4] on a time scale shorter than 10 ns, then
possibly by thermally activated defect migrations [5] up to
a time scale much longer than 10 ns (steady-state distri-
butions). Such atom displacements depend not only on the
energy-dependent flux of protons but also on the differ-
ential energy transfer cross sections (probabilities) for
collision between atoms, interatomic Coulomb interactions
and even kinetic-energy loss to core-level electrons of an
atom (ionizations). The sample temperature at which the
irradiation is done also significantly affects the diffusion of

defects, their stability as clusters, and the formation of
Frenkel pairs [6]. One of the effective calculation methods
for studying the nonthermal spatiotemporal distributions of
proton-irradiation-induced point defects is the molecular-
dynamics (MD) model [7]. However, the system size
increases quadratically with the initial kinetic energy of
protons, and the time scale can easily run up to several
hundred picoseconds. In this case, the defect reaction
process driven by thermal migration cannot be included
in the MD model due to its much longer time scale.
Practically, if the system time evolution goes above 100 ps,
either the kinetic lattice Monte Carlo [8] or the diffusion-
reaction equation [9,10] method should be used instead.
In the presence of defects, dangling bonds attached to

these point defects can capture Bloch electrons through
multiphonon emission to form localized charge centers. The
randomly distributed charge centers will further affect
electron responses to either an external ballistic electron
beam [11] or incident photons [12]. Physically, the defect
modifications to the electron response function can be
addressed by a vertex correction [12] to a bare electron
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polarization function in the ladder approximation (LA)
[13]. In addition, both the intralayer and interlayer screening
corrections in a multi-quantum-well system can be included
by using the random-phase approximation (RPA)
[13,14]. The many-body theory presented here is crucial
for understanding the full mechanism for characterizing
defects [15] and defect effects [16], as well as for developing
effective mitigation in early design stages of electronic
devices. Equipped with this multi-time-scale microscopic
theory [17], the experimental characterization of postirra-
diated test devices [18] is able to provide useful information
on the device architecture’s susceptibility to space radiation
effects [19]. Furthermore, our physics model should also
allow for the accurate prediction of device-performance
degradation by using the spaceweather forecast [20,21] for a
particular orbit. With this paper, we expect to bridge the gap
between researchers studying radiation-induced damage in
materials [1,2,22,23] and others characterizing irradiation-
induced performance degradation in devices [24,25].
As for applications of the current theory, wewould like to

emphasize that space-based infrared (IR) imaging is
expected to face the most stringent performance require-
ments on the quantum-well (QW) focal plane array (FPA)
[26,27] due to the high payload cost, complexity, and
remoteness the space environment imparts, as well as
incident photon-flux levels occurring in space environments
that are an order of magnitude or more lower than those
found in terrestrial ones. Space applications also set up the
unique requirement of radiation tolerance (or radiation
hardness) on two elements of the hybridized QW FPA,
i.e., the Si-CMOS readout integrated circuit and the photo-
detector array. FPAs developed for these purposes in a space
environment are meticulously characterized for their sensi-
tivity, uniformity, operability, and radiation hardness. IR
detector arrays operated in the space environment are sub-
jected to a variety of radiation sources while in orbit, e.g.,
electrons, protons, and some heavy ions confined by Earth’s
magnetic field (Van Allen radiation belts). This result
indicates that QW photodetectors for space-based surveil-
lance or space-situational awareness must be characterized in
advance and should acquire not only high performance (high
quantum efficiency and low dark current density) [28,29] but
also radiation tolerance or an ability towithstand the effects of
the radiation they would expect to encounter in a given orbit.
Detector technologies that operate in the harsh radiation
environment of space with better radiation tolerance would
lead to greater flexibility in orbit selection, technical appli-
cations, and system sustainability and, therefore, are of more
value to the space-based sensing community.
The rest of the paper is organized as follows. In Sec. II,

we present our theoretical model and numerical results to
highlight the defect effects on losses of electron energy and
photons in multi-quantum-well systems, where defect
potentials and vertex corrections, defect effects on partial
and total polarization functions, electron-energy-loss

functions and intrasubband and intersubband absorption
spectra have been demonstrated and analyzed. In Sec. III,
ultrafast dynamics related to defect production, as well as
the follow-up defect diffusion and reaction, are studied and
a steady-state one-dimensional distribution function of
point defects are calculated to provide a direct input for
modeling the defect effects discussed in Sec. II. Finally, a
summary and some remarks are presented in Sec. IV.

II. EFFECTS OF POINT DEFECTS

In this section, we first look into effects of point defects
on the electron polarization function in a single wide
quantum well. After generalizing the system to multiple
quantum wells, we further study the kinetic-energy loss of a
parallel (or perpendicular) electron beam. For comparison,
we also calculate the loss of incident photons with a field
polarization parallel (perpendicular) to the quantum-well
planes, corresponding to intrasubband [30] (intersubband
[31]) optical transitions of electrons.

A. Effects on electron polarization function

Since the wave functions of individual point defects are
spatially localized, we expect that the interaction between
electrons and charged point defects can only affect the
screening to the intralayer Coulomb interaction. Therefore,
we start with a study of defect effects in a single quantum
well. The exchange-interaction-inducedvertex correction to a
bare polarization function of electrons in a quantum well has
been addressed before [12] within the ladder approximation.
For ann-dopedquantumwell, the total electronpolarization

function [32] can be written as a sum of partial polarization
functions, i.e., ~χðq∥;ωÞ ¼

P
n≤n0χn;n0 ðq∥;ωÞ, where q∥ is an

electron wave number, ω is the angular frequency of an
electrical (or optical) perturbation, and n ≤ n0 ¼ 1; 2;…
labels different energy subbands. Here, each partial polariza-
tion function χn;n0 ðq∥;ωÞ can be calculated through an inverse
dielectric function Kn;n0;m;m0 ðq∥;ωÞ, according to [11]

χn;n0 ðq∥;ωÞ¼
X
m≤m0

Kn;n0;m;m0 ðq∥;ωÞχð0Þm;m0 ðq∥;ωÞΓm;m0 ðq∥;ωÞ;

ð1Þ
where Γm;m0 ðq∥;ωÞ represents a defect-vertex correction,
which is determined by Eq. (7) below, and the bare polari-

zation function χð0Þn;n0 ðq∥;ωÞ takes the form

χð0Þm;m0 ðq∥;ωÞ ¼
1

2π2

Z
∞

0

dk∥k∥

Z
2π

0

dθk∥;q∥

×

�
f0½εmðk∥Þ� − f0½εm0 ðjk∥ þ q∥jÞ�

ℏωþ iγ0 − εm0 ðjk∥ þ q∥jÞ þ εmðk∥Þ

þ f0½εm0 ðjk∥ þ q∥jÞ� − f0½εmðk∥Þ�
ℏωþ iγ0 − εmðk∥Þ þ εm0 ðjk∥ þ q∥jÞ

�
.

ð2Þ
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Here, θk∥;q∥ is the angle betweenwavevectorsk∥ andq∥, γ0 is
the level broadening, εnðk∥Þ ¼ εn þ ℏ2k2∥=2μ

� are subband
energies, εn ¼ π2ℏ2n2=2μ�L2

W ,μ
� is the effectivemass,LW is

the well width, f0ðxÞ ¼ f1þ exp½ðx − ucÞ=kBT�g−1 is the
Fermi function, and uc and T are the chemical potential and
temperature of the electrons, respectively.
In addition, the inverse dielectric functionKl;l0;m;m0 ðq∥;ωÞ

in Eq. (1) satisfiesX
m≤m0

Kl;l0;m;m0 ðq∥;ωÞϵm;m0;n;n0 ðq∥;ωÞ ¼ δl;nδl0;n0 ; ð3Þ

where ϵm;m0;n;n0 ðq∥;ωÞ is the dielectric function and can be
calculated within the RPA [14] as (see the right panel of
Fig. 1)

ϵm;m0;n;n0 ðq∥;ωÞ
¼ δm;nδm0;n0 − χð0Þn;n0 ðq∥;ωÞΓn;n0 ðq∥;ωÞVm;m0;nn0 ðq∥Þ; ð4Þ

and the second term corresponds to the defect correction. In
Eq. (4), Vm;m0;n;n0 ðq∥Þ represents the intralayer Coulomb
matrix elements, given by [33]

Vm;m0;n;n0 ðq∥Þ

¼ e2

2ϵ0ϵdðq∥ þ qsÞ

×
Z

dz
Z

dz0½FmðzÞ��Fm0 ðzÞe−q∥jz−z0j½F nðz0Þ��F n0 ðz0Þ;

ð5Þ
where ϵd is the host-material dielectric constant, F nðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2=LW

p
sin½ðnπ=LWÞðzþ LW=2Þ� is the wave function of

the nth subband, and

qs ¼
e2

2πϵ0ϵd

X
n

Z
∞

0

dk∥k∥

�
−
∂f0½εnðk∥Þ�
∂εnðk∥Þ

�
; ð6Þ

which plays the role of the inverse of a static screening
length [33]. The particle-in-a-box model for electrons in a
quantum well not only is a reliable model for a number of
existing realistic situations in semiconductor physics but also
proves helpful for considering a simple mathematical model
to reveal the details of an otherwise complicated theory for
effects of defects. Furthermore, this model has been estab-
lished to work satisfactorily for electrons in wide quantum
wells with high-potential barriers and low electron densities
for which tunneling is insignificant. Therefore, the overlap
of electron wave functions in adjacent wells becomes
negligible.
For the defect-vertex correction [12] Γn;n0 ðq∥;ωÞ

introduced in Eqs. (1) and (4), we find the following
self-consistent equation within the LA (the left panel
of Fig. 1):

Γn;n0 ðq∥;ωÞ ¼ 1þ
�
Z�e2

2ϵ0ϵd

�
2 1

2π2

Z
∞

0

dp∥p∥χ
ð0Þ
n;n0 ðp∥;ωÞΓn;n0 ðp∥;ωÞ

× δ

�
εn0

�
q∥
2

�
− εn

�
p∥

2

��Z
L0=2

−L0=2
dz0ρdðz0ÞjUn;n0 ðq∥; p∥jz0Þj2

¼ 1þ
�
Z�e2

2ϵ0ϵd

�
2 2μ�

π2ℏ2
χð0Þn;n0 ðq�∥;ωÞΓn;n0 ðq�∥;ωÞ

�Z
L0=2

−L0=2
dz0ρdðz0ÞjŪn;n0 ðq∥; z0Þj2

�
; ð7Þ

where q�∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2∥ þ 8μ�εn0n=ℏ2

q
, εn0n ¼ εn0 − εn ≥ 0, and the defect interaction with electrons jŪn;n0 ðq∥; z0Þj2 ≡

jUn;n0 ðq∥; q�∥jz0Þj2 is calculated as

jŪn;n0 ðq∥; z0Þj2 ¼
Z

π

0

dθ

�
e−Δ

2

n0nðq∥;θÞΛ
2
∥=4

Δn0nðq∥; θÞ þ qs

�2�Z LW=2

0

dzF nðzÞF n0 ðzÞ½e−Δn0nðq∥;θÞjz−z0j � e−Δn0nðq∥;θÞjzþz0j�
�

2

; ð8Þ

the sign þ (−) corresponds to the case with n ¼ n0 ¼ 1 or 2 (n0 ¼ 2 and n ¼ 1), L0 is the system size, Z� is the trapped

charge number of a point defect, 2Δ2
n0nðq∥; θÞ ¼ q2∥ − q∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2∥ þ 8μ�εn0n=ℏ2

q
cos θ þ 4μ�εn0n=ℏ2, Λ∥ is the correlation length

for randomly distributed point defects, and ρdðz0Þ stands for the one-dimensional distribution function of point defects
determined in Sec. III A. Here,

R L0=2
−L0=2

dz0ρdðz0ÞjŪ1;2ðq∥; z0Þj2 ¼ 0 if ρdðz0Þ ¼ ρdð−z0Þ.

FIG. 1. (Left panel) Graphic representation for the ladder
approximation used in Eq. (7). (Right panel) Graphic represen-
tation for the random-phase approximation employed in Eq. (21).
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The lowest-order approximate result of Eq. (7) can be
obtained by simply replacing Γn;n0 ðp∥;ωÞ with 1 on the
right-hand side of this equation. Therefore, the correction to
Γn;n0 ðq∥;ωÞ ≈ 1 becomes proportional to the total number
of point defects or the integral of jŪn;n0 j2 with respect to z0.
In general, the solution of Eq. (7) includes all of the higher
orders of jŪn;n0 j2 by going beyond the second-order Born
approximation [34].
The results calculated from Eq. (8) for jŪn;n0 ðq∥; z0Þj2 are

shown in Fig. 2, where the features in jŪn;nj2, with
n ¼ 1, 2, for the intrasubband interactions in Figs. 2(a)
and 2(c) result from the symmetry and antisymmetry
properties of the first two electron wave functions in a
quantum well. On the other hand, jŪ1;2j2 in Fig. 2(b) for
intersubband interactions displays the overlap of these two
electron wave functions with opposite symmetries, leading
to two peaks and one node around z0 ¼ 0. From Figs. 2(a)
and 2(c), we further find that both the peak strength and
the peak width decrease with an increasing q∥, and the
reduction of peak strength with q∥ can be seen more clearly
from Fig. 2(d). In addition, a finite value of Δ21ðq∥; θÞ at
q∥ ¼ 0 leads to a negligible jŪ1;2j2 value, and, furthermore,
the widths of the dual peaks in Fig. 2(b) spread out
significantly with q∥.
Based on the calculated jŪn;n0 ðq∥; z0Þj2 value in Fig. 2,

Eq. (7) can be applied to compute the dynamical defect-
vertex correction Γn;n0 ðq∥;ωÞ with respect to unity in the
ladder approximation. In order to simulate the physical
distribution of defects shown in Fig. 9, we assume

a regional form, i.e., ρdðz0Þ=κ¼ρ1Θð−z0−LW=2Þ þ
ρ2Θðz0−LW=2Þþ½ρ0þz0ðΔρ=LWÞ�ΘðLW=2− jz0jÞ, where
ΘðxÞ is a unit-step function and κ is a scaling number.
Similar dependences on both ω and q∥ are seen in Figs. 3(a)
and 3(b), respectively, where a very strong intrasubband-
scattering resonance associated with a sign switching
in Re½Γn;nðq∥;ωÞ� − 1 (q∥ ¼ q�∥ for n ¼ n0 ¼ 1, 2) occurs
only within the small-value q∥ − ω region due to the

presence of the χð0Þn;nðq∥;ωÞ interaction term in Eq. (7). In
this case, the intrasubband-scattering resonance is deter-
mined by the peak of

Γn;nðq∥;ωÞ ¼
�
1 −

�
Z�e2

2ϵ0ϵd

�
2 2μ�

π2ℏ2
χð0Þn;nðq∥;ωÞ

×

�Z
L0=2

−L0=2
dz0ρdðz0ÞjŪn;nðq∥; z0Þj2

��
−1
:

ð9Þ

The strength of this intrasubband-scattering resonance
decreases rapidly with increasing q∥ due to a reduced
jŪn;nðq∥; z0Þj2 value from the suppressed long-range intra-
subband scattering, as displayed in Fig. 2(d). For intersub-
band excitation with n ¼ 1 and n0 ¼ 2, on the other hand,

(a) (b)

(c) (d)

FIG. 2. jUn;n0 ðq∥; z0Þj2 (in units of k−2F ) as functions of z0kF in
(a) for jŪ1;1j2 and q∥=kF ¼ 0.1 (black), 0.5 (red), 1.0 (blue), and
2.0 (green); in (b) for jŪ1;2j2 and q∥=kF ¼ 0.1 (black), 1.0 (red),
2.0 (blue), and 3.0 (green); and in (c) for jŪ2;2j2 and q∥=kF ¼ 0.1
(black), 0.5 (red), 1.0 (blue), 2.0 (green), and 3.0 (orange).
(d) The same expression as a function of q∥=kF for jŪ1;1j2,
kFz0 ¼ 0.0 (black) and 2.0 (red), and, for jŪ2;2j2, kFz0 ¼ 0.0
(blue) and 2.0 (green). Here, kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnQW
p

is the Fermi wave
vector, nQW ¼ 1.0 × 1011 cm−2 is the quantum-well doping
density, LW ¼ 100 nm, μ� ¼ 0.067m0, with free-electron mass
m0, and Λ∥ ¼ 10 Å.

(a) (b)

(c) (d)

FIG. 3. 3D plots of a dimensionless Γn;n0 ðq∥;ωÞ value from the
self-consistent solution of Eq. (7). Here, Z� ¼ 1, T ¼ 4 K,
EF¼ℏ2k2F=2μ

�, ϵd¼13.3, L0=LW ¼ 10, ρ1 ¼ 3.0 × 106 cm−1,
ρ2¼2.5×106 cm−1, ρ0¼1.5×106 cm−1, Δρ ¼ 1.0 × 106 cm−1,
and κ ¼ 10. The other parameters are the same as those in Fig. 2.
Results for the real part of Γn;n0 ðq∥;ωÞ with n ¼ n0 ¼ 1,
n ¼ n0 ¼ 2, and n ¼ 1, n0 ¼ 2 are presented in (a), (b), and
(c), respectively, while the result for the imaginary part of
Γ1;2ðq∥;ωÞ is displayed in (d). Here, both subbands are occupied.
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the two Γ1;2 terms with q∥ and q�∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2∥ þ 8μ�ε21=ℏ2

q
are

coupled to each other, as can be verified by Eq. (7). As a
result, the broad intersubband-scattering resonance shows
up in Figs. 3(c) and 3(d), along with a sign switching
in Re½Γ1;2ðq∥;ωÞ� − 1 and a peak in Im½Γ1;2ðq∥;ωÞ�.
Furthermore, it is very important to notice that the broad
intersubband-scattering resonance in Figs. 3(c) and 3(d),
due to elastic coupling between the q∥ and q�∥ electron
states in the two subbands, is different from the sharp

intersubband-plasmon resonance determined by χð0Þ1;2ðq∥;ωÞ
in Eq. (2).
The calculated Γn;n0 ðq∥;ωÞ in Fig. 3 is substituted into

Eq. (4) to find the intralayer dielectric function modified by
defects in the RPA. Graphically, the dispersion relations
of intrasubband-plasmon modes appear as peaks in the
density plot for the absolute value of the real part of

1=Det½ ϵ↔ðq∥;ωÞ� within the (ω, q∥) plane, where the

dielectric-function matrix ϵ↔ðq∥;ωÞ is defined in Eq. (4).
In the absence of defects, from Figs. 4(a) and 4(c), we find
two intrasubband-plasmon modes and two particle-hole

continua (i.e., Imfχð0Þn;nðq∥;ωÞg), correspondingly, for two
occupied subbands in a quantum well. By further intro-
ducing defects to the quantum well in Fig. 4(b), the
dispersion of the lower plasmon mode has been modified
noticeably for small qx values due to energy shifts from the
contribution of RefΓn;nðq∥;ωÞg, as shown in Fig. 3. Such a
modification to the plasmon dispersion relation can have a
nonlinear κ dependence for large κ values (or higher defect
densities). The defect effect on the intersubband-plasmon
mode is very weak and is not shown in Fig. 4.
By using Eq. (3) with this modified dielectric function,

the resulting inverse dielectric function is further input into
Eq. (1) to compute related changes in the screened partial
polarization functions δχn;n0 ðq∥;ωÞ of a single quantum
well. For intrasubband excitations in Figs. 5(a) and 5(c), the
defect-induced change δIm½χ1;1ðq∥;ωÞ� displays a peak
shift (sign switching) to a lower and lower value of ω
with an increasing κ value. However, δIm½χ1;1ðq∥;ωÞ� is

reduced significantly for a larger q∥ value due to weakened
scattering interaction, as shown in Fig. 2(d). It is also
interesting to notice that the depolarization shift of a

plasmon peak (Im½χ1;1ðq∥;ωÞ� vs Im½χð0Þ1;1ðq∥;ωÞ�) in the
two insets (i1) and (i3) [with Γn;n0 ðq∥;ωÞ≡ 1] also
increases with q∥, but it will not show up in
δIm½χ1;1ðq∥;ωÞ� for defect effects. This pure plasmon
depolarization shift to a higher ω value is rooted in a
many-body screening effect and is slightly reduced by
defect scatterings. Similar features in δIm½χ1;2ðq∥;ωÞ� can
also be found in Fig. 5(d) for intersubband losses, but their
magnitudes become much smaller due to very weak
intersubband-scattering processes. In addition to the shift
of this broad intrasubband-plasmon peak by defects, we
also expect defect effects on a sharper intersubband-
plasmon-loss peak (around ℏω ∼ ε21) for a smaller q∥
value, as presented in the inset of Fig. 5(b), where nearly

(a) (b) (c)

−

−

−

−

0.26

0.52

0.78

1.04

0.00

FIG. 4. Density plots for 1=RefDet½ ϵ↔ðq∥;ωÞ�g associated with two interlayer plasmon modes in (a) and (b), as well as for

Imfχð0Þn;nðq∥;ωÞg [in units of ð2μ�=ℏ2Þ] related to two particle-hole continua in (c) with n ¼ 1, 2, where the dimensionless dielectric-

function matrix ϵ↔ðq∥;ωÞ is defined in Eq. (4). In addition, κ ¼ 0 in (a) and (c), while κ ¼ 25 in (b). The other parameters used in the
calculations are the same as those in Figs. 2 and 3.

(a) (b)

(c) (d)

−− −

−

−

−

−

−

−

−

−
− −

−

−

−

−
−

FIG. 5. (a),(c) δIm½χ1;1ðq∥;ωÞ� and (b),(d) δIm½χ1;2ðq∥;ωÞ�
calculated from Eq. (1) as functions of ℏω=EF for κ ¼ 5
(red), 7 (blue), and 10 (green). Here, the parameters and units

used for χð0Þn;n0 ðq∥;ωÞ are the same as those in Figs. 2–4. Results
are shown for (a),(b) q∥=kF ¼ 0.1 and (c),(d) 2.5. The inset of

each panel compares the bare Im½χð0Þn;n0 ðq∥;ωÞ� value and the
screened Im½χn;n0 ðq∥;ωÞ� value under RPA in the absence of
defects.
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no shift of the intensive intersubband-plasmon peak is
found.

B. Effects on energy loss of electron beams

In Sec. II A, we discuss the effects of defects on the
intralayer partial polarization function χn;n0 ðq∥;ωÞ. Here,
we extend our study to the kinetic-energy loss of a ballistic
electron beam by further taking into account the defect
effects on the interlayer total polarization function. A full
review on the excitation of collective modes, such as
plasmons, in bulk materials, planar surfaces, and nano-
particles was reported in Ref. [35], and the light emission
induced by the electrons has proven to be an excellent
probe of plasmons, combining subnanometer resolution in
the position of the electron beam with nanometer resolution
in the emitted wavelength.
Let us assume that a semi-infinite semiconductor occu-

pies the z > 0 half-space and consider a classical (heavy
and slow) point charge Q0 moving along a prescribed path
RðtÞ in the air space (z < 0) outside the semiconductor
region. In such a case, we find that the external potential
Φext associated with this moving charged particle in the
quasistatic limit satisfies the instantaneous Poisson equa-
tion [36,37], i.e.,

∇2
rΦextðr; tjRÞ ¼ −

Q0

ϵ0
δ½r −RðtÞ�; ð10Þ

whereRðtÞ ¼ fR∥ðtÞ; ZðtÞg is the trajectory of the charged
particle, and r ¼ fr∥; zg is a position vector. The solution
of Eq. (10) inside the region of ZðtÞ < z < 0 is found to be

Φ<
extðr;tjRÞ¼

Z
d2q∥

ð2πÞ2
Z

∞

−∞

dω
2π

ϕextðq∥;ωjRÞeiq∥·r∥−iωte−q∥z;

ð11Þ

where the Fourier-transformed external potential is calcu-
lated as

ϕextðq∥;ωjRÞ ¼ −
Q0

2ϵ0q∥
F 0ðq∥;ωjRÞ; ð12Þ

and its structure factor is

F 0ðq∥;ωjRÞ ¼
Z

∞

−∞
dt0eq∥Zðt0Þeiωt0−iq∥·R∥ðt0Þ: ð13Þ

From a physics perspective, the existence of Φext inside
the semiconductor induces a potential Φind outside the
semiconductor (i.e., z < 0) due to the charge-density
fluctuation, yielding

Φ<
indðr; tjRÞ ¼ −

Z
d2q∥

ð2πÞ2
Z

∞

−∞

dω
2π

ϕextðq∥;ωjRÞ

× eiq∥·r∥−iωtSðq∥;ωÞeq∥z; ð14Þ

where Sðq∥;ωÞ is the so-called surface-response function
[11] determined later by matching the boundary condition.
Within the semiconductor region (0 ≤ z ≤ L0), we write
down similar expressions for the external Φ>

ext and induced
Φ>

ind potentials, given by

Φ>
extðr; tjRÞ ¼

Z
d2q∥

ð2πÞ2
Z

∞

−∞

dω
2π

ϕextðq∥;ωjRÞ

× eiq∥·r∥−iωtΦ>
0 ðzjq∥Þ; ð15Þ

Φ>
indðr; tjRÞ ¼ −

Z
d2q∥

ð2πÞ2
Z

∞

−∞

dω
2π

ϕextðq∥;ωjRÞ

× eiq∥·r∥−iωtϕ>
indðzjq∥;ωÞ; ð16Þ

where Φ>
0 ðzjq∥Þ is the bare external potential in the

electrostatic limit (q∥c ≫ ω) for a slab of semiconductor
material of thickness L0, Φ>

0 ð0jq∥Þ ¼ 1 − gslabðq∥Þ, and
gslabðq∥Þ is the surface-response function for a dielectric
slab without doping electrons [11]. Since the total potential
Φ>

0 ðzjq∥Þ þ ϕ>
indðzjq∥;ωÞ inside the semiconductor (z > 0)

equals the screened external potential, we get ϕ>
ind in

Eq. (16) from [38]

ϕ>
indðzjq∥;ωÞ¼

Z
dz0½ϵ−1ðz;z0jq∥;ωÞ−δðz− z0Þ�Φ>

0 ðz0jq∥Þ:

ð17Þ

In Eq. (17), the inverse dielectric function can be deter-
mined from

ϵ−1ðz; z0jq∥;ωÞ ¼ δðz − z0Þ

þ
Z

dz00Vcðz; z00jq∥Þχðz00; z0jq∥;ωÞ;

ð18Þ

where the interlayer Coulomb coupling Vcðz; z0jq∥Þ,
including the image potentials, is calculated as [11]

Vcðz; z0jq∥Þ ¼
β0ðq∥Þe2

2ϵ0ϵdðq∥ þ qsÞ
½e−q∥jz−z0j þ α20e

−2q∥L0eq∥jz−z0j

þ α0e−q∥jzþz0j þ α0e−2q∥L0eq∥jzþz0j�; ð19Þ

and α0¼ðϵd−1Þ=ðϵdþ1Þ, β0ðq∥Þ¼1=½1−α20expð−2q∥L0Þ�.
For a multi-quantum-well system, the density-density-

response function in Eq. (18) takes the form [36]

HUANG, IUROV, GAO, GUMBS, and CARDIMONA PHYS. REV. APPLIED 9, 024002 (2018)

024002-6



χðz; z0jq∥;ωÞ ¼
XN
j;j0¼0

δðz − jaÞ~χeðj; j0jq∥;ωÞδðz0 − j0aÞ;

ð20Þ

where a is the well separation, L0 ¼ Na, and the screened
polarization function ~χeðj; j0jq∥;ωÞ within the RPA can be
obtained from the following self-consistent equations [36]:

~χeðj; j0jq∥;ωÞ ¼ ~χjðq∥;ωÞδj;j0

þ ~χjðq∥;ωÞ
XN

j00ð≠jÞ¼0

Vcðja; j00ajq∥Þ

× ~χeðj00; j0jq∥;ωÞ: ð21Þ

Here, the summation over j00 excludes the intralayer term
with j00 ¼ j, the integers j ¼ 0; 1;…; N labels different
wells, and ~χjðq∥;ωÞ ¼

P
n≤n0χn;n0 ðj; jjq∥;ωÞ is the total

polarization function for the jth quantum well, as discussed
in Sec. II A.
By combining Eqs. (17), (18), and (20), ϕ>

indðzjq∥;ωÞ in
Eq. (16) can be rewritten simply as

ϕ>
indðzjq∥;ωÞ ¼

XN
j;j0¼0

Vcðz; jajq∥Þ~χeðj; j0jq∥;ωÞΦ>
0 ðj0ajq∥Þ:

ð22Þ
By matching the boundary condition for the total potential,
i.e., 1 − Sðq∥;ωÞ ¼ ½1 − gslabðq∥Þ� þ ϕ>

indð0jq∥;ωÞ at the
surface z ¼ 0, we are able to find the surface-response
function introduced in Eq. (14) from

Sðq∥;ωÞ ¼ gslabðq∥Þ

−
XN
j;j0¼0

Vcð0; jajq∥Þ~χeðj; j0jq∥;ωÞΦ>
0 ðj0ajq∥Þ;

ð23Þ
where [36]

gslabðq∥Þ ¼ 2α0β0ðq∥Þe−q∥Na sinhðq∥NaÞ; ð24Þ

and the external electrostatic potential in Eqs. (17) and (23)
inside a slab of semiconductor (0 ≤ z ≤ Na) is found
to be [36]

Φ>
0 ðzjq∥Þ ¼

�
1 − gslabðq∥Þ

2
þ 1þ gslabðq∥Þ

2ϵd

�
e−q∥z

þ
�
1 − gslabðq∥Þ

2
−
1þ gslabðq∥Þ

2ϵd

�
eq∥z: ð25Þ

The absorbed kinetic energy ΔEabsfRg of an electron
beam can be calculated by integrating the Poynting vector

over the surface and over time in the air region, which leads
to [38]

ΔEabsfRg

¼ϵ0

Z
d2r∥

Z
∞

−∞
dt Re

�
½Φ<

totðr;tjRÞ��∂
2Φ<

totðr;tjRÞ
∂t∂z

�				
z¼0

;

ð26Þ

where Φ<
totðr; tjRÞ is the total potential outside the semi-

conductor region (z < 0), calculated by combining
Eqs. (11) and (14) and given by

Φ<
totðr; tjRÞ ¼

Z
d2q∥

ð2πÞ2
Z

∞

−∞

dω
2π

½e−q∥z − Sðq∥;ωÞeq∥z�

× eiq∥·r∥−iωtϕextðq∥;ωjRÞ: ð27Þ

Substituting this result into Eq. (26), we find

ΔEabsfRg ¼ Q2
0

2ϵ0

Z
d2q∥

ð2πÞ2
Z

∞

−∞

dω
2π

�jF 0ðq∥;ωjRÞj2ω
q∥

�

× ImfSðq∥;ωÞg; ð28Þ

where ImfSðq∥;ωÞg is the so-called loss function [11].
Specifically, for a charged particle moving parallel to the

surface, we have RðtÞ ¼ fV∥t; Z0g and obtain

jF 0ðq∥;ωjRÞj2 ¼ lim
ΔT→∞

				
Z

ΔT=2

−ΔT=2
dt0e−q∥Z0eiðω−q∥·V∥Þt0

				
2

¼ 2πΔTe−2q∥jZ0jδðω − q∥ · V∥Þ; ð29Þ

which leads to the following power absorption for the
parallel electron beam:

ΔEabsðV∥Þ
ΔT

¼ Q2
0

2ϵ0

Z
d2q∥

ð2πÞ2 e
−2q∥jZ0j

�
q∥ · V∥

q∥

�

× Im½Sðq∥;q∥ · V∥Þ�: ð30Þ

More interesting, if a charged particle moves away from the
surface perpendicularly, we can writeRðtÞ¼f0;Z0−V⊥tg,
with an impact parameter jZ0j (Z0 < 0) and 0 ≤ t ≤ T0 for
the damped particle, and obtain

jF 0ðq∥;ωjRÞj2 ¼ lim
T0→∞

				
Z

T0

0

dt0e−q∥ðjZ0jþV⊥t0Þeiωt0
				
2

¼ lim
T0→∞

				 e−q∥jZ0j

q∥V⊥ − iω
½1 − eðq∥V⊥−iωÞT0 �

				
2

¼ e−2q∥jZ0j

ω2 þ q2∥V
2⊥
; ð31Þ
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which yields the energy absorption for the perpendicular
electron beam

ΔEabsðV⊥Þ ¼
Q2

0

2ϵ0

Z
d2q∥

ð2πÞ2
Z

dω
2π

�
ω

q∥

�
e−2q∥jZ0j

ω2 þ q2∥V
2⊥

× ImfSðq∥;ωÞg: ð32Þ

In this case, the integral over ω with respect to the loss
function ImfSðq∥;ωÞg includes the damping contributions
from both the particle-hole and collective excitation modes
of electrons [39].
Multiple plasmon excitations in graphene materials by a

single electron were predicted to give rise to a unique
platform for exploring the bosonic quantum nature of these
collective modes [40]. Such a technique not only opens a
viable path toward multiple excitation of a single plasmon
mode by a single electron but also reveals electron probes
as an ideal tool for producing, detecting, and manipulating
plasmons in graphene nanostructures.
For a single quantum well, the surface response function

Sðq∥;ωÞ ¼
P

n≤n0Sn;n0 ðq∥;ωÞ can be obtained by setting
j ¼ j0 ¼ 0 in Eq. (23), and the total loss function is just
Im½Sðq∥;ωÞ� ¼

P
n≤n0Im½Sn;n0 ðq∥;ωÞ�. Here, the defect-

induced change δIm½Sn;n0 ðq∥;ωÞ� directly relates to the
imaginary part of the screened partial polarization function
δIm½χn;n0 ðq∥;ωÞ� presented in Fig. 5. For q∥=kF ¼ 1.0, we
determine from Figs. 6(a) and 6(c) that δIm½Sðq∥;ωÞ� is
dominated by δIm½S1;1ðq∥;ωÞ� for a stronger intrasubband-
scattering process, which increases with the defect-density
scaling number κ. The sign switching reflects the shift of a
loss peak [see the insets of Figs. 6(a) and 6(c)] to a lower
value of ω. As q∥=kF is increased to 2.5 in Figs. 6(b) and
6(d), the resonant peak of Im½Sðq∥;ωÞ�moves to a higher ω

value [comparing insets (i1) and (i2) to (i3) and (i4)].
However, the similar defect-related features as used in
Figs. 6(a) and 6(c) are greatly weakened due to a dramatic
reduction of scattering interactions, as shown in Fig. 2(d).
For a multi-quantum-well system, the interlayer

Coulomb coupling Vcðja; j0ajq∥Þ in Eq. (21) will modify
the intralayer total polarization function ~χjðq∥;ωÞ, as well
as the surface-response function in Eq. (23). From the
comparison of single- and multi-quantum-well systems in
Fig. 7, we find that the intersubband-plasmon loss
Im½S1;2ðq∥;ωÞ� is strongly coupled to the intrasubband-
plasmon loss Im½S1;1ðq∥;ωÞ� by interlayer Coulomb cou-
pling, as shown in inset (i4). Here, the weaker
Im½S1;1ðq∥;ωÞ� peak in inset (i2) is greatly enhanced by
its sitting on the shoulder of a much stronger
Im½S1;2ðq∥;ωÞ� peak in inset (i4), giving rise to a profile
for the total Im½Sðq∥;ωÞ� peak. As q∥=kF ¼ 0.1, the defect-
induced peak shift in δIm½S1;1ðq∥;ωÞ� to lower ω can be
seen in Fig. 7(b), but not for δIm½S1;2ðq∥;ωÞ� in Fig. 7(d),
except for a significant enhancement of the shoulder peak
with an increasing κ value by interlayer Coulomb coupling.
Moreover, by comparing Fig. 7(a) to Fig. 7(b), we find that
both Im½S1;1ðq∥;ωÞ� and δIm½S1;1ðq∥;ωÞ� are dominated by
the intralayer Coulomb coupling Vm;m0;n;n0 ðq∥Þ given
by Eq. (5).

C. Effects on loss of photons

In Sec. II B, the defect effects on the energy loss of
electron beams in a multi-quantum-well system is

−

−
−

−− −
−−

(a)

(c) (d)

(b)

FIG. 6. Changes of loss function δIm½Sn;n0 ðq∥;ωÞ� calculated
from Eq. (23) as functions of ℏω=EF in the single quantum well
for (a),(c) q∥=kF ¼ 1.0 and (b),(d) q∥=kF ¼ 2.5, with κ ¼ 5 (red),
7 (blue), and 10 (green). The inset of each panel displays the
dimensionless loss function Im½Sn;n0 ðq∥;ωÞ� in the absence of
defects. Here, the parameters used in numerical calculations are
the same as those in Figs. 2 and 3.

(a)

(c)
(d)

(b)

−
− −

−

FIG. 7. Changes of loss function δIm½Sn;n0 ðq∥;ωÞ� calculated
from Eq. (23) as functions of ℏω=EF in single and multiple
quantum wells at q∥=kF ¼ 0.1 for (a),(c) NL ¼ 1 and (b),(d)
NL ¼ 3, with κ ¼ 5 (red), 7 (blue), and 10 (green). For defect
distribution, we still use ρdðz0Þ=κ ¼ ρ1Θð−z0 − LW=2Þþ
ρ2Θðz0 − LW=2Þ þ ½ρ0 þ z0ðΔρ=LWÞ�ΘðLW=2 − jz0jÞ for each
quantum well and the two outer barriers, while ρdðz0Þ=κ is set
to ρ2 for the regions between the two adjacent quantum wells.
The inset of each panel displays Im½Sn;n0 ðq∥;ωÞ� in the absence of
defects. (b),(d) a=LW ¼ 4 and the other parameters used in the
numerical calculations are the same as those found in Figs. 2
and 3.
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discussed. As a comparison, the defect effects on the loss of
photons (or photon absorption) in the same system are
investigated here. In this case, the absorption coefficients
for both intrasubband and intersubband optical transitions
of electrons can be calculated from [41]

βabsðωÞ ¼
ϵdω

nrðωÞc
�
1þ 1

expðℏω=kBTÞ − 1

�

× ImfαLðωÞg; ð33Þ
where ℏω is the incident-photon energy and the dynamical
refractive-index function nrðωÞ is

nrðωÞ ¼
ffiffiffiffiffi
ϵd
2

r n
1þ RefαLðωÞg

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ RefαLðωÞ�2 þ ½ImfαLðωÞ�2

q o
1=2

: ð34Þ
For intrasubband transitions with an optical probe field

polarized parallel to the quantum-well planes, αLðωÞ in
Eqs. (33) and (34) is the Lorentz ratio, calculated as [12]

αLðωÞ ¼ α∥LðωÞ

¼ −
�

2e2

ϵ0ϵdLW

�
πR2

0

XN
j¼0

Z
d2q∥

ð2πÞ2 e
−q2∥R

2
0
=4Q∥

j ðq∥;ωÞ;

ð35Þ

where R0 is the radius of a normally incident Gaussian
light beam, N þ 1 is the total number of quantum wells in
the system, and the optical-response function [42]
Q∥

j ðq∥;ωÞ for the jth well is found to be

Q∥
j ðq∥;ωÞ ¼

X
n

~χn;nðj; jjq∥;ωÞ
�
ℏq∥
μ�ω

�
2

: ð36Þ

By including the couping due to interlayer
Coulomb interactions, the partial polarization function
~χn;nðj; j0; q∥;ωÞ introduced in Eq. (36) with j ¼ j0 needs
to be computed from the following self-consistent
equations [36] (taking n ¼ n0 and j ¼ j0 afterwards), i.e.,

~χn;n0 ðj; j0jq∥;ωÞ ¼ χn;n0 ðq∥;ωÞδj;j0

þ χn;n0 ðq∥;ωÞ
XN

j00ð≠jÞ¼0

Vcðja; j00ajq∥Þ

× ~χn;n0 ðj00; j0jq∥;ωÞ; ð37Þ

where χn;n0 ðq∥;ωÞ≡ ~χn;n0 ðj; jjq∥;ωÞ and the interlayer
Coulomb matrix elements Vcðja; j00ajq∥Þ are still found
from Eq. (19). By further taking into account the coupling
between different subbands in each quantum well, the
screened partial polarization function χn;n0 ðq∥;ωÞ in
Eq. (37) must be calculated from Eq. (1) after finding
the inverse dielectric function from Eqs. (3) and (4).

On the other hand, for a spatially uniform optical probe
field polarized perpendicular to the quantum-well planes,
the Lorentz ratio αLðωÞ in Eqs. (33) and (34) for intersub-
band transitions becomes [12]

αLðωÞ ¼ α⊥L ðωÞ ¼ −
2e2

ϵ0ϵdLW

XN
j¼0

Q⊥
j ðq∥ ¼ 0;ωÞ; ð38Þ

where we assume q∥=kF ¼ ffiffiffiffiffi
ϵd

p
ω=kFc ≪ 1, and kF is the

Fermi wave number of electrons in quantum wells. In this
case, the optical-response function for the jth well in
Eq. (38) takes the form [42]

Q⊥
j ðq∥;ωÞ ¼

X
n<n0

~χn;n0 ðj; jjq∥;ωÞ
				
Z

∞

−∞
dzF n0 ðzÞzF nðzÞ

				
2

:

ð39Þ

Moreover, the influence of interlayer Coulomb coupling
on the intersubband partial polarization function
~χn;n0 ðj; j0jq∥;ωÞ should still be determined from Eq. (37)
(setting j ¼ j0 afterwards).
A periodic stack of graphene layers embedded within a

dielectric bulk is expected to have the properties of a one-
dimensional photonic crystal with stop bands at certain
frequencies. As an incident electromagnetic wave is
reflected from these stacked graphene layers, the tuning
of the graphene Fermi energy or conductivity renders the
possibility of controlling these stop bands, leading to a
tunable spectral-selective mirror [43]. In addition, a
transfer-matrix method is applied to explore optical reflec-
tion, transmission, and absorption in single-, double-, and
multilayer graphene structures [44]. Both the total internal
reflection in single-layer graphene and the thin-film inter-
ference effects in double-layer graphene are shown for
increasing light absorption.
For intrasubband electron transitions induced by an

optical field with a polarization parallel to the quantum-
well plane, we present in Fig. 8(a) the defect modification
to the absorption coefficient δβ∥absðωÞ calculated with
Eqs. (33) and (35). Here, the low-energy photon absorption
peak in inset (i1) is attributed to the excitation of intra-
subband plasmons, and this peak is shifted to an even lower
ω value with an increasing κ value. On the other hand, for
the intersubband transition of electrons under an optical
field polarized perpendicular to the quantum-well plane, we
display in Fig. 8(b) the defect changes in absorption
coefficient δβ⊥absðωÞ calculated from Eqs. (33) and (38).
In this case, however, a high-energy and broad photon
absorption peak in inset (i2) results from intrasubband-
plasmon excitations, and no shift associated with this peak
with κ is found.
As displayed in Figs. 8(a) and 8(b), reductions in proton-

induced defects in both δβ∥absðωÞ for intrasubband
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absorption and δβ⊥absðωÞ for intersubband absorption give
rise to a decreased photoresponsivity [28,29] of quantum-
well infrared detectors. As a consequence of this reduction,
the lifetime of satellite onboard electronic and optoelec-
tronic devices is shortened greatly. Therefore, the current
theory can lead to a more realistic characterization of
quantum-well photodetectors for not only high quantum
efficiency and low dark current density [28,29] but also
radiation tolerance or the ability to withstand the effects of
the radiation they experience in a particular orbit.

III. ULTRAFAST POINT-DEFECT DYNAMICS

In Sec. II, we discuss only the effects of point
defects on losses of electron energy and photons in a

multi-quantum-well system. In this section, we explore
ultrafast dynamics for the production of Frenkel-pair
defects and their follow-up reactions and diffusions in
the same system. In this way, the spatial dependence of the
one-dimensional distribution function ρdðzÞ introduced in
Eq. (7) for the defect-electron interaction can be extracted.
It is known that Frenkel-pair production is followed
subsequently by diffusion and reactions to reach defect
stabilization through diffusion-induced recombination and
reactions with residual defects in the system. Here, the
diffusion of point defects is driven by forces other than the
concentration gradient of defects, e.g., compressive stress
near sinks. The reactions, on the other hand, are enabled by
the presence of growth-induced dislocation loops at the two
interfaces of a quantum well.

A. Defect diffusion-reaction equations

Let us start by considering an N-layered material
structure in the z direction. Each material layer is charac-
terized by the (bulk) irradiation parameters Gj

0, R
j, Dj,

and ΓjðtÞ, with layer labels j ¼ 1; 2; 3;…; N, for produc-
tion and recombination rates, diffusion coefficient, and
bulk-sink annihilation, respectively. In modeling a meso-
scopic-scale sample, the interface-sink strengths ½κjðtÞ�2,
with j ¼ 1; 2; 3;…; N − 1, also need to be taken into
account.
For a reaction-rate control system, we can write down the

diffusion-reaction equations [1] for the concentrations of
point vacancies and interstitial atoms as

∂cjvðz; tÞ
∂t −Dj

v
∂2cjvðz; tÞ

∂z2 ¼ Gj
0 −

Bj
ivΩjðDj

i þDj
vÞ

ðaj0Þ2
cjiðz; tÞcjvðz; tÞ

−
X∞
l¼4

Bjþ1
v Djþ1

v ajþ1
0

1 − ðBjþ1
v =2πÞ lnfπ½Rjþ1

vd ðlÞ�2σjþ1
dl ðl; tÞg σ

jþ1
dl ðl; tÞcjþ1

v ðz; tÞδðz − zjþ1Þ

−
X∞
l¼4

Bj
vD

j
va

j
0

1 − ðBj
v=2πÞ lnfπ½Rj

vdðlÞ�2σjdlðl; tÞg
σjdlðl; tÞcjvðz; tÞδðz − zjÞ; ð40Þ

∂cjiðz; tÞ
∂t −Dj

i
∂2cjiðz; tÞ

∂z2 ¼ Gj
0 −

Bj
ivΩjðDj

i þDj
vÞ

ðaj0Þ2
cjiðz; tÞcjvðz; tÞ

−
X∞
l¼4
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i Djþ1
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j
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FIG. 8. Changes of intrasubband δβ∥absðωÞ and intersubband
δβ⊥absðωÞ absorption coefficients (in units of kF) calculated from
Eqs. (35) and (38) as functions of ℏω=EF for NL ¼ 1 and κ ¼ 5
(red), 7 (blue), and 10 (green). The insets (i1) and (i2) of (a) and
(b), respectively, present β∥absðωÞ and β⊥absðωÞ (in units of kF) in the
absence of defects. Here, kFR0 ¼ 50 and the other parameters
used in the numerical calculations are the same as those found in
Figs. 2 and 3.
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where the small thermal-equilibrium concentration of point
vacancies is neglected at low temperatures, Bj

iv is the bias
factor for recombinations [1], Bj

v ≠ Bj
i are the bias factors

for vacancies (v) and interstitials (i), and Dj
v and D

j
i are the

diffusion coefficients. The terms on the right-hand side of
the equations correspond to diffusion sources and reactions,
integer j is the layer index, integer l indicates the number
of interstitials enclosed within a planar dislocation loop
[45], zj and zjþ1 represent the left and right interface

positions of the jth layer, cjvðz; tÞ and cjiðz; tÞ are the
concentrations of point vacancies and interstitials, and Gj

0 is
the production rate for Frenkel pairs. Here, ρdðzÞ can be
obtained by multiplying the sample cross-section area with
cjvðz; tÞ and cjiðz; tÞ. In addition, in Eqs. (40) and (41), we
use the facts that, in a reaction-rate control system, Rj ≡
Γj
i;v ¼ Bj

ivΩjD
j
i;v=ðaj0Þ2 for the vacancy-interstitial recom-

bination rate, Γj
fi;vgdðl; tÞ ¼ ½κjfi;vgdðl; tÞ�2Dj

fi;vg=σ
j
dlðl; tÞ

is the rate for the interaction between defects and interface
dislocation loops, and ½κjfi;vgdðl; tÞ�2 ¼ Bj

fi;vgdðlÞσjdlðl; tÞ
for the dislocation loop-sink strength, where Ωj is the

atomic volume, aj0 is the lattice constant, and cjFP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gj
0ðaj0Þ2=½Bj

ivΩjðDj
i þDj

vÞ�
q

is the initial number of

Frenkel pairs. Furthermore, Bj
fi;vgdðlÞ∼Bj

i;v and

Rj
fi;vgdðlÞ∼laj0=2π are the bias factors for the reactions

and the capture radii of vacancy-dislocation loop (vd) and
interstitial-dislocation loop (id), and, finally, σjdlðl; tÞ is the
growth-strain-induced interface dislocation-loop (enclosing
l captured interstitial atoms) areal density.
The diffusion coefficients Dj

i;v for point vacancies and
interstitials can be calculated from [1]

Dj
i;v ¼ αjðaj0Þ2ωj

D exp

�
−
Ej
i;v

kBT

�
; ð42Þ

where Ej
i;v represents the migration energies for point

vacancies and interstitials, αj is determined by the diffusion
mechanism and crystal symmetry, ωj

D ¼ ð6π2=ΩjÞ1=3vs is
the Debye frequency, and vs is the sound velocity of the
host semiconductor.
The interface dislocation-loop density σjdlðl; tÞ in

Eqs. (40) and (41) can be found from the following reaction
equation [1] (for l ≥ 4), i.e.,

∂σjdlðl; tÞ
∂t ¼ ½βjvðlþ 1; tÞþαjiðlþ 1; tÞ�σjdlðlþ 1; tÞ

þ βjiðl− 1; tÞσjdlðl− 1; tÞ
− ½βjvðl; tÞþ βjiðl; tÞþαjiðl; tÞ�σjdlðl; tÞ; ð43Þ

where σjdlðl; t ¼ 0Þ ¼ σj0δl;4 and σ
j
0 is the initial density for

the smallest interface dislocation loops containing four
interstitials, the absorption [βji;vðl; tÞ] and emission

[αjiðl; tÞ] rates are given by [1]

βji;vðl; tÞ ¼ laj0B
j
i;vD

j
i;vc

j
i;vðzj; tÞ; ð44Þ

αjiðl; tÞ ¼ laj0B
j
i

�
Dj

i

Ωj

�
exp

�
−
Ej
b;iðlÞ
kBT

�
; ð45Þ

and Ej
b;vðlÞ is the binding energy for a planar cluster of l

interstitials.
We show in Figs. 9(a) and 9(c) the steady-state spatial

distributions for concentrations of point vacancies cjvðzÞ
and interstitials cjiðzÞ in an AlAs=InAs=GaAs single-
quantum-well system. We notice from Eqs. (40), (41),
and (43) that both cjvðzÞ and cjiðzÞ in a steady state
eventually become proportional to Gj

0, although cjFP is

initially proportional to
ffiffiffiffiffi
Gj
0

q
. In Fig. 9, the comparison of

results at T ¼ 400 K (upper panels) and 300 K (lower
panels) are presented to demonstrate the diffusion of point
vacancies into the well through both interfaces due to
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FIG. 9. Concentrations of (a),(c) point vacancies cjvðzÞ and
interstitials cjiðzÞ, and (b),(d) dislocation-loop densities σjdlðlÞ at
two interfaces, in an AlAs-205 Å=InAs-75 Å=GaAs-255 Å sin-
gle quantum well at (a),(b) T ¼ 400 K and (c),(d) 300 K. Here,
the Gj

0 values are 4.6, 0.9, and 2.1 in units of 10
17 cm−3 sec−1 and

the cjFP values are 1.2, 0.8, and 1.0 in units of 10
9 cm−3 for j ¼ 1,

2, 3. In addition, the σj0 values are 2.0, 1.0 in units of 10
9 cm−2 for

j ¼ 1, 2. The values for other parameters, i.e., the bias factors, the
absorption and emission rates, and the diffusion coefficients, are
obtained from crystal symmetries [1] and by scaling melting
temperatures with respect to SiC materials [46].
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thermally enhanced diffusion coefficients of vacancies.
However, the interstitial concentration around the left
interface is greatly depleted (there is a deep dip) at T ¼
400 K as a result of large absorptions by dislocation loops,
although they still diffuse into the well through the right
interface. In Figs. 9(b) and 9(d), we display results for
steady-state distributions of dislocation-loop densities
σjdlðlÞ (l ≥ 4) as functions of the loop-site number,
corresponding to the left (j ¼ 1) and right (j ¼ 2) inter-
faces at T ¼ 300 and 400 K. Here, the increases of
dislocation-loop densities (l ¼ 4) at the left interface
and the simultaneous swellings of dislocation loops
(l > 4) at the right interface are found due to the enhanced
reactions with point interstitials by their increased diffusion
coefficients. Moreover, the defect diffusions occur mainly
around interfaces between two adjacent layers or across the
interfaces, and cjvðzÞ ≠ cjiðzÞ due to their different diffusion
coefficients, although these two concentrations are initially
identical.
If the penetration depth of protons is larger than the

sample thickness, the overall distribution of defects for a
multiple-quantum-well structure can be determined by
repeating the single-well defect distribution along the
growth direction. Therefore, our defect diffusion-reaction
model for the AlAs=InAs=GaAs quantum well is adequate
for the multi-quantum-well system.

B. Defect production by proton radiation

The diffusion-reaction equations presented in Sec. III A
can be applied to find the spatial dependence of the one-
dimensional distribution function ρdðzÞ of the defects.
However, the initial conditions of these equations require
the production rate and the concentration of proton-
produced Frenkel pairs. Therefore, we must study the
production dynamics of point defects under proton irradi-
ation with different kinetic energies, which connects the lab-
measured defect effects (∝ number of point defects) to
space-measured energy-dependent proton fluxes in a par-
ticular Earth orbit. For this purpose, an atomic-level
molecular-dynamics simulation approach is employed, with
help from a Tersoff potential fitted by parameters [46,47].
For a bulk material, the production rate per unit volume

G0ðEiÞ (sec−1 cm−3) for the displacement atoms in a crystal
lattice can be calculated from [1]

G0ðEiÞ ¼ natσDðEiÞF 0ðEiÞ; ð46Þ

where Ei (MeV) is the incident proton kinetic energy,
nat (cm−3) is the crystal atom volume density, F 0ðEiÞ
(cm−2 sec−1) is the incident energy-dependent proton flux,
and σDðEiÞ (cm2) is the energy-dependent displacement
cross section.
Physically, the displacement cross section σDðEiÞ in

Eq. (46) describes the probability for the displacement of

struck lattice atoms by incident protons; therefore, we can
directly write

σDðEiÞ ¼
Z

εmaxðEiÞ

Ed

dεTQðεTÞσCðEi; εTÞNMDðεTÞ; ð47Þ

where σCðEi; εTÞ [cm2 ðkeVÞ−1] is the differential energy
transfer cross section by collision with the lattice, which
measures the probability that an incident proton with
kinetic energy Ei will transfer a recoil energy εT (keV)
to a struck lattice atom, NMDðεTÞ (no unit) represents the
average number of displaced atoms produced by collision
with the lattice, and Ed labels the energy threshold, i.e., the
energy required to produce a stable Frenkel pair. In
addition, εmaxðEiÞ ¼ ½4m0M0=ðm0 þM0Þ2�Ei is the upper
limit for the recoil energy gained by the struck lattice atom,
where M0 refers to the mass of the lattice atoms and m0 to
the mass of the incident protons.
The function QðεTÞ (dimensionless) introduced in

Eq. (47) is the so-called Lindhard partition function and
is written as [48–50]

QðεTÞ ¼
1

1þKLgðεT=ELÞ
; ð48Þ

where the Ziegler-Biersack-Littmark (ZBL) reduced-
energy EL is defined as

EL ¼
�
m0 þM0

M0

�
Z1Z2e2

4πϵ0au
; ð49Þ

while the reduced electronic energy-loss factor KL is

KL ¼ Z2=3
1 Z1=2

2

12.6ðZ2=3
1 þ Z2=3

2 Þ3=4
½ð1þ ðM0=m0Þ�3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M0=m0

p ; ð50Þ

m0 ¼ 1.67 × 10−27 kg is the proton mass, au ¼
0.8853aB=ðZ2=3

1 þ Z2=3
2 Þ1=2 is the ZBL universal screening

length, aB ¼ 4πϵ0ℏ2=mee2 ¼ 0.5292 Å is the Bohr radius,
me is the free-electron mass, and the Lindhard function
gðxÞ is calculated as

gðxÞ ¼ xþ 0.40244x3=4 þ 3.4008x1=6: ð51Þ

In the current case, we set Z1 ¼ 1 (proton), Z2 ¼ 31 (Ga),
or 33 (As) for the nuclear charge number of lattice atoms.
Moreover, the differential energy transfer cross section

σCðEi; εTÞ [cm2 ðkeVÞ−1] can be approximated as [50]

σCðEi; εTÞ ¼ −
πa2u
2

α2sðEiÞ
h0f½τðEi; εTÞ�1=2g

½τðEi; εTÞ�3=2εmaxðEiÞ
; ð52Þ
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where τðEi; εTÞ ¼ α2sðEiÞεT=εmaxðEiÞ is the dimensionless
collision parameter, and αsðEiÞ ¼ Ei=EL is the scaled ZBL
reduced energy. The function h0ðxÞ introduced in Eq. (52)
is defined as

h0ðxÞ ¼
lnAðxÞ
2BðxÞ þ ax

2AðxÞBðxÞ

−
x lnAðxÞð1þ bcxc−1 þ d=2x1=2Þ

2B2ðxÞ ; ð53Þ

where AðxÞ¼1þax, BðxÞ¼xþbxcþdx1=2, a ¼ 1.1383,
b ¼ 0.013 21, c ¼ 0.212 26, and d ¼ 0.195 93 are four
parameters.
Finally, NMDðεTÞ in Eq. (47) can be computed by using

MD simulations. As shown in Fig. 10, the calculated
NMDðεTÞ can be fitted reasonably well by a simple power
law, i.e., NMDðεTÞ ¼ A0½εTðkeVÞ�n with proper fitting
parameters A0 and n. Finally, by combining the results
in Eqs. (46)–(52), for a given flux spectrum F 0ðEiÞ, we get
the production rate G0ðEiÞ per unit volume as

G0ðEiÞ¼−
nat πa2uA0

2

�
α2sðEiÞF 0ðEiÞ

εmaxðEiÞ
�

×
Z

εmaxðEiÞ

Ed

dεTQðεTÞ½εTðkeVÞ�n
h0f½τðEi;εTÞ�1=2g
½τðEi;εTÞ�3=2

;

ð54Þ

which can be evaluated numerically once the fitting
parameters A0 and n are obtained. Here, G0ðEiÞ is related

to the more familiar nonionizing energy loss [22] NIELðEiÞ
by G0ðEiÞ ¼ ðρat =nat Þð0.4=EdÞF 0ðEiÞNIELðEiÞ, with
ρat being a crystal atom weight density [22].
Furthermore, the concentration cFPðEiÞ for Frenkel-pair
defects can be roughly estimated from cFPðEiÞ ¼
G0ðEiÞðτ0 þ τt=2Þ, where τt is the effective proton transit
time through the sample, and τ0 ∼ 10 ns, which is propor-
tional to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 0ðEiÞ

p
, is the time required to reach a steady

state for generation of Frenkel-pair defects after the
production has been balanced by the recombination.
We present in Fig. 11 the numerical results for a

calculated number of lattice-atom displacements as a
function of time after a Ga PKA has been introduced to
a GaAs crystal with the recoil energy εT ¼ 10 keV. From
Fig. 11, we find that the number of lattice-atom displace-
ments reaches a peak value Npk at about t ¼ 0.8 ps. After
this peak time, only 13% of the displaced atoms recombine
with vacancies, and most antisite defects are generated
during the collisional phase. In addition, a steady state with
εT ¼ 10 keV has been reached for t > 10 ps, where As
defects are slightly higher than Ga defects due to the
smaller formation energy for As defects [23].
The numerical results for the number N FðεTÞ of Ga and

As displaced atoms and antisite defects as a function of
recoil energy εT at t ¼ 10 ps are displayed in Fig. 12,
where the Norgett-Robinson-Torrens (NRT) result is given
by N FðεTÞ ¼ NNRTðεTÞ≡ 0.8εT=2Ed. It is clear from this
figure that the number of defects at steady state is found to
be much higher than that given by the NRT value.
Moreover, nonlinear dependence on εT is limited only
for low-energy PKA recoils.
In order to provide initial Frenkel-pair defect concen-

trations and its production rate, we show in Fig. 13 the
numerical result of Eq. (54) for G0ðEiÞ. It is clear from this
figure that there exists a peak for G0ðEiÞ as a function of
incident-proton kinetic energy due to competition between
increasing the εmaxðEiÞ value and decreasing the σCðEi; εTÞ
value at the same time.
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FIG. 10. Total number NMDðεTÞ of defects in MD simulation
as a function of the PKA energy EPKA ≡ εT scaled by the number
Npk of defects at the peak time in Fig. 11, where the formulas are
NMDðεTÞ¼A0½εTðkeVÞ�n and Npk ¼ B0½εTðkeVÞ�l, with param-
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from the fitting (the dashed curve). Here, the display is in
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fitting result is presented on a logarithm scale with a straight-line-
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IV. SUMMARY AND REMARKS

In conclusion, we investigate in this paper the effects of
point defects on the loss of either electron kinetic energy or
incident photons in a multi-quantum-well system. The
influence of proton-radiation-produced defects is taken
into account by applying the vertex correction to a bare
polarization function of electrons in quantum wells within
the ladder approximation, which goes beyond the usual
second-order Born approximation. Both intralayer and
interlayer dynamical screenings to the defect-electron
interaction are also considered under the random-phase
approximation. Furthermore, the defect effects on the
electron-energy loss function, as well as on intrasubband
and intersubband optical absorption, are shown and
discussed.
To find the distribution function of point defects in a

layered structure for calculations of defect effects, we apply
the diffusion-reaction-equation method, where the reac-
tions of point defects with the growth-induced dislocation

loops on interfaces of the multilayered system are included,
and the increase and decrease of dislocation-loop density
and point-defect concentrations are found at the same time
due to the thermal enhancement of defect diffusion. In
addition, the Frenkel-pair defect production rate and the
initial concentration of Frenkel pairs are obtained from an
atomic-level molecular-dynamics model after fitting the
numerical results for Frenkel pairs as a function of energy
of a primary knock on atom.
The defect-effect, diffusion-reaction, and molecular-

dynamics models presented in this paper can be combined
with a space-weather-forecast model [20,21] which pre-
dicts spatiotemporal fluxes and particle velocity distribu-
tions. In addition, the atomic-level molecular-dynamics
model employed in this paper is based on a fitted short- and
long-range interaction among all atoms from extensive
calculations using the first-principle density-functional
theory for an individually considered material. With this
combination of theories, the predicted irradiation condi-
tions for particular satellite orbits allow electronic and
optoelectronic devices to be specifically designed for
operation in space with radiation-hardening considerations
[17] (such as self-healing and mitigation). This approach
will effectively extend the lifetime of satellite onboard
electronic and optoelectronic devices in nonbenign orbits
and will greatly reduce the cost. The theory in this paper
can be applied to space-based sensing and imaging, and it
can lead to a more realistic characterization of quantum-
well photodetectors for not only high quantum efficiency
and low dark current density but also radiation tolerance or
mitigation of the effects of the radiation.
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