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We present frequency-tuning mechanisms for dielectric resonators, which undergo “supermode”
interactions as they tune. The tunable schemes are based on dielectric materials strategically placed
inside traditional cylindrical resonant cavities, necessarily operating in transverse-magnetic modes for use
in axion haloscopes. The first technique is based on multiple dielectric disks with radii smaller than that of
the cavity. The second scheme relies on hollow dielectric cylinders similar to a Bragg resonator, but with a
different location and dimension. Specifically, we engineer a significant increase in form factor for the
TM030 mode utilizing a variation of a distributed Bragg reflector resonator. Additionally, we demonstrate an
application of traditional distributed Bragg reflectors in TM modes which may be applied to a haloscope.
Theoretical and experimental results are presented showing an increase inQ factor and tunability due to the
supermode effect. The TM030 ring-resonator mode offers a between 1 and 2-order-of-magnitude
improvement in axion sensitivity over current conventional cavity systems and will be employed in
the forthcoming ORGAN experiment.
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I. INTRODUCTION

For many years, scientists have suspected the presence of
a large amount of so called “dark matter” in the galactic
halo, motivated by a number of gravitational observations.
However, the nature of this matter remains unknown,
although many have suggested that it may be composed
of new particles not included in the standard model. One
popular dark-matter candidate is a weakly interacting slim
particle [1] known as the axion. Axions were first proposed
in 1977 as a consequence of an elegant solution to the
strong CP problem in QCD [2]. Since the expected
properties of the axion (finite mass with weak coupling
to regular matter) align with the desired properties of dark
matter, it was proposed in 1983 that dark matter might be
composed of axions [3].
The most mature and common laboratory search tech-

nique for axions is known as the haloscope, which was first
proposed by Sikivie in 1983 [4,5]. The haloscope aims to
detect axions via their coupling to photons. It is thought that
axions will convert into photons in the presence of other
photons (a formof the Primakoff effect). Inmost haloscopes,
a strong, external static magnetic field provides a source of
virtual photons for axions to scatter off and create real
photons. Because of conservation of energy, the frequency
of the generated real photon corresponds directly to themass
of the axion (with some narrow linewidth as a result of

velocity dispersion). Many axion haloscopes are curre-
ntly operational, most notably the Axion Dark Matter
Experiment, the first andmostmature such experiment [6,7].
A confounding concern for axion haloscopes is the fact

that the mass of the axion is largely unknown (other than
some broad cosmological limits [8,9]), meaning that the
frequency of the generated photons is also unknown.
Additionally, the strength of the axion coupling to photons
is unknown, which creates a large parameter space for
searching. The critical parameter which haloscopes ulti-
mately wish to constrain or bound is the Peccei-Quinn
symmetry breaking scale, fa. This scale determines both
the axion mass and the strength of its coupling to photons
according to

ma ∼
4.51 × 1015

fa
eV

gaγγ ¼
gγα

faπ
:

Here, gγ is an axion-model-dependent parameter of order 1,
and α is the fine-structure constant [10–14].

II. HALOSCOPES AND DIELECTRIC MATERIALS

In a haloscope, a resonant cavity is embedded in a strong
static magnetic field. If axions are present due to an
abundance in galactic-halo dark matter, a small number
will convert into real photons with a frequency correspond-
ing to the axion mass. It is advantageous to tune the
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resonant frequency of the cavity to the corresponding
photon frequency in order for the signal to be resonantly
enhanced. Once the signal is trapped in the cavity, it can be
read out via low-noise electronics. The expected signal
power in a haloscope is given by [15]

Pa ∝ g2aγγB2CVQL
ρa
ma

:

Here, B is the field strength of the external magnetic field,
V is the volume of the detecting cavity, QL is the loaded-
cavity quality factor (provided it is lower than the expected
axion-signal quality factor of approximately 106), ρa is the
local axion dark-matter density, and C is a mode-dependent
form factor of order 1 [16], defined generally in dielectric
and magnetic materials as

C ¼ j R dVcE⃗c · ⃗ẑj2
2V

R
dVcϵrjEcj2

þ
ω2
a

c2 j
R
dVc

r
2
B⃗c ·

⃗ϕ̂j2

2V
R
dVc

1
μr
jBcj2

:

Here, Ec and Bc are the cavity electric and magnetic fields,
respectively, and ϵr and μr are the relative dielectric and
magnetic constants of the media. It is worth noting that the
two terms in this equation are equal to one another, and we
may present it as

C ¼ j R dVcE⃗c · ⃗̂zj2
V
R
dVcϵrjEcj2

: ð1Þ

We could equivalently present the shorter equation as twice
the second term in the full equation, depending on Bϕ. The
scanning rate of a haloscope is given by [17]

df
dt

∝
1

SNR2
goal

g4aγγB4C2V2ρ2aQLQa

m2
aðkBTnÞ2

: ð2Þ

Here SNRgoal is the desired signal-to-noise ratio of the
search, Qa is the axion-signal quality factor, and Tn is the
effective noise temperature of the first stage amplifier, with
later amplifier contributions suppressed by the gain of this
amplifier. This is the quantity that must be maximized in
design of an experiment, for which C2V2G can be viewed
as a figure of merit for resonator design, as these are the
only resonator-dependent terms. G is the mode geometry
factor given by

G ¼ ωμ0
R jH⃗j2dVR jH⃗j2dS ;

which is directly proportional to the mode quality factor
according to

Q ¼ G
Rs

;

where ω is the angular resonant frequency, μ0 is the
permeability of free space, H⃗ is the cavity magnetic field,
and Rs is the surface resistance of the material. In this
calculation, there is the implicit assumption that any
dielectric adds no loss. This assumption is valid when
using low-loss materials such as sapphire and rutile
[18–20], as the loss produced at the cavity walls will
usually be orders of magnitude greater for transverse-
magnetic (TM) modes with an azimuthal mode number
of zero. Otherwise, one must compute the filling factor in
the dielectric and multiply by its loss tangent to calculate
the effect on the Q factor.
Recently, there has been much interest in the use of

dielectric materials in axion haloscopes [21–23]. There are
many reasons for this interest. First, as evident in the form-
factor expression given by Eq. (1), the relative dielectric
constant of a medium has an impact on the coupling of the
axion to the cavity resonance, and this dependence can be
exploited to boost the form factor with careful placement of
the dielectrics. Second, dielectric resonators are well known
for their high quality factors and are often employed in
other areas, such as metrology, where high-quality reso-
nances are required. Additionally, the introduction of
dielectrics into a cavity provides many more free param-
eters and opportunities for broken symmetry that can be
exploited to create a frequency-tuning mechanism.
Furthermore, as there is increased interest in axion

searches in mass ranges above and below the range tradi-
tionally searched by cavity experiments [24–30], dielectrics
have attracted increased interest due to their ability to lower
the resonant frequency of a cavity by lowering the speed of
propagation of resonant photons, or increasing the effective
optical-path length.
In the push towards higher frequency and mass

searches, it would be beneficial to utilize high-order
resonant modes, as they can provide high-frequency
resonances in large resonator volumes. However, in a
traditional empty resonator, higher-order resonances have
significantly reduced form factors due to a high degree of
field variation. For example, comparing a TM010 mode
with a TM020 mode in the empty cavity, the lower-order
mode has all of its Ez field in the same direction, and thus
the form factor is high (approximately 0.69). By contrast,
the higher-order mode has an out-of-phase Ez field
component which “cancels out” part of the coupling
and reduces the form factor to about 0.13. As we discuss
below, careful placement of dielectric materials can assist
with this problem. Moreover, the modes in the empty
cavity resonator have frequencies which are independent
of length, and elaborate tuning mechanisms must there-
fore be implemented [17]. We show in the proceeding
section that the concept of supermode tuning allows for
altering resonator frequency by simply varying the posi-
tions of two components of the resonator along the length
of the cylinder.
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III. DIELECTRIC-RESONATOR PROPOSALS

The Electric Tiger and MADMAX experiments propose
utilizing multiple dielectric disks or slabs and simultane-
ously tuning multiple gap spacings [21,31,32], with the
former being a resonant system and the latter broadband.
While sensitive and valuable proposals, they present some
practical challenges. One potential problem with such
modes in a resonant system is that they are of extremely
high order and, without proper design, can suffer from
mode crowding and require the disks to be larger than the
spot size to maintain a high Q factor. In this work, we
propose a different technique which utilizes a supermode
tuning mechanism in a dielectric loaded-cavity resonator.
For this technique, only two pieces of dielectric are
required (utilizing more pieces is possible but does not
offer any advantages) and, like MADMAX and Electric
Tiger, the tuning is “built-in,” which is to say that we do
not need to introduce extra material into the cavity to tune
the modes. We propose two different types of dielectric
resonators which utilize this technique, and we determine
the sensitivity of each scheme to axions. We compare these
results with a haloscope tuned by traditional means.

A. Dielectric disks

The first scheme proposed here relies on multiple
dielectric disks (with a minimum of 2), located in a
cylindrical conducting shell with a variable gap between
them. The simplest dielectric modes that tune in frequency

are known as supermodes [33–35]. In the two-disk struc-
ture, symmetric and antisymmetric supermodes span both
cylindrical disks of the dielectric (in this case, sapphire)
and occupy the entire volume. The magnetic field Bϕ

density plots are shown in Fig. 1, computed using the finite-
element method in COMSOL MULTIPHYSICS. The higher-
frequency mode is the antisymmetric mode with a zero in
the field between the two disks and each antinode out of
phase, while the symmetric mode is lower in frequency,
with two antinodes in phase. In the limit where the gap
spacing is large, the frequency of the symmetric mode
approaches the frequency of the antisymmetric mode with
the final mode separation depending on the mode confine-
ment within the dielectric. This effect can be seen in Fig. 2.
The initial frequency difference between the symmetric and
antisymmetric modes defines the potential maximum pos-
sible tuning range using this technique. We note that these
symmetric and antisymmetric supermodes arise as per-
turbed versions of the cavity TM012 and TM013 modes,
respectively. The analytical solutions for the Bϕ compo-
nents of TM01p modes are

Bϕðr; zÞ ∝ J00

�
ζ0;1
R

r

�
cos

�
pπ
L

z

�
; ð3Þ

where J00 is the derivative of the zeroth-order Bessel J
function, ζ0;1 is the first root of the zeroth-order Bessel
J function, R is the cavity radius, and L is the cavity length.
If we observe the Bϕ mode profiles as a function of z for a

FIG. 1. Bϕ field distribution for an antisymmetric and symmetric supermode pair. The plots on the left show Bϕ as a function of z for
fixed radius, while the axes show negative and positive field values (in T). Both representations are computed in COMSOL. As the gap is
increased, the lower mode (TM012-like) can be identified as having in-phase lobes in the two dielectric pieces (symmetric supermode),
while the upper mode (TM013-like) has similar lobes, which are out of phase (antisymmetric). In the limit where the gap spacing is large,
the frequency of the symmetric mode approaches the frequency of the antisymmetric mode, depending on the mode confinement within
the dielectric. The symmetric supermode is sensitive to axions, as the field is largely in phase across the volume, while the antisymmetric
mode is not. The sapphire disks are represented by heavy dark lines.
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fixed value of r presented in Fig. 1, we can see that the
symmetric mode conforms to this field structure for a p
value of 2, with some compression and distortion due to the
presence of the dielectric, while the antisymmetric mode
conforms to a p value of 3, with similar compression and
distortion. This supermode interaction can provide large-
frequency tuning ranges over small displacements. In an
ideal situation, the uppermost disk would be displaced
upwards, while the lower disk would be displaced down-
wards to maintain symmetry. In practice, it is more feasible
to leave one disk stationary and adjust the position of the
other relative to it. Over a short tuning range, this is not a
large deviation from the ideal. For the specific parameters
which are modeled for our study, in order to achieve tuning
of roughly 500 MHz from the starting frequency of
4.66 GHz, it is necessary to increase the gap between
the disks by only a small fraction (2%) of the length of the
resonator (in this case, 1 mm). The C2V2G product and
resonant frequencies as a function of gap size for this
example (cavity radius of approximately 41 mm, height of
about 50 mm, sapphire radius of 21 mm, sapphire height of
2.74 mm, central teflon post radius of 2 mm, and a
symmetric supermode starting frequency of 4.66 GHz)
are shown in Fig. 2. These dimensions are chosen due to the
availability of materials, but the resonator may be arbitrar-
ily scaled to provide any desired frequency.
We perform proof-of-concept measurements to verify

that the modes behave as expected. A resonator with the
above dimensions is constructed, and the disks are placed
on teflon rods. The lower disk remains stationary, while the
upper disk is displaced upwards using a micrometer, which
of course yields slightly different results than those pre-
sented in Fig. 2. Two probes are inserted into the cavity to
read out the relevant modes in transmission. The expected
and measured frequencies as a function of gap size are
presented in Fig. 3.
This resonant structure is valuable as it contains a built-in

highly responsive frequency-tuning mechanism and is

readily scalable to different frequencies. Furthermore, it
is a relatively simple structure compared to other proposed
resonators that rely on many more dielectric disks or slabs,
and it is more practical to implement experimentally.
The responsiveness of the resonant frequency to position
displacement is particularly appealing, combined with the
fact that spurious mode density in the region is very low.
We decide to investigate the effect of tuning multiple

disks (where n equals the number of disks) in our cavity
resonator by implementing a finite-element model in
COMSOL. The results are shown in Fig. 4. In this case,
we implement a copper cavity of radius 31 mm and height

FIG. 2. Calculated frequencies (in GHz) for the symmetric and antisymmetric supermodes (left panel, blue and orange lines,
respectively), and the C2V2G product for the symmetric supermode (right panel) vs gap size (in mm) for the disk resonator discussed in
the text.

FIG. 3. Density plot of transmission measurements in the proof-
of-concept experiment. Lighter colors represent more transmis-
sion, whereas darker colors represent less transmission. The
orange overlaid data represents the frequency of the most
sensitive mode vs gap size computed via finite-element analysis.
We attribute the frequency discrepancy at small gap sizes to a
misalignment between the two disks, which has less impact on
the modes as the gap size increases. We observe multiple mode
crossing with dissimilar modes, while the higher-frequency
antisymmetric supermode is too high in frequency (roughly
8 GHz, per Fig. 2) to be observed in this plot.
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37 mm, with multiple disks supported by a central sapphire
rod 3 mm in diameter. Here, we assume that the amount of
sapphire remains constant in each simulation, i.e., for
n ¼ 2, the individual disk’s height is 6 mm, for n ¼ 4,
the individual disk’s height is 3 mm, and for n ¼ 6, the
individual disk’s height is 2 mm. The equivalent supermode
behaves in a very similar way in all cases, as can be seen in
Fig. 4, where we show the frequency and the C2V2G value
versus x × n=2, where x is the individual gap between
two adjacent disks. Thus, for simplicity (and for sensitivity)
the n ¼ 2 choice is optimum for this type of tuning.
Introducing more disks will lead to greater technical
difficulties in simultaneously tuning all disks, and it
does not yield an increased sensitivity. Higher-order modes
equivalent to those used by Electric Tiger and MADMAX
will exist; however, in a closed cavity, the density of modes
would be too great: these types of modes are best suited to
open resonators to avoidmode crowding. To keep the highQ
factor of the supermodes, the cavity must be present, as the
relevant modes are of low azimuthal order, and the modes
would thus radiate a significant amount of energy without a
cavity and exhibit a degraded Q factor.

B. Dielectric rings

The previous supermode scheme based on disks has a
reduced form factor and volume due to much of the in-
phase field being present in the dielectric [see Eq. (1)]. To
improve on this and confine most of the energy in a larger
volume and in free space, we propose another supermode
scheme that relies on hollow dielectric cylinders of care-
fully selected thickness and located correctly within a
cylindrical conducting shell. This setup is similar to a
Bragg resonator but requires different conditions to achieve
optimal axion sensitivity, so we name the resonators
“dielectric boosted axion sensitivity” (DBAS) resonators.
In a traditional Bragg resonator, a dielectric layer inside

a cavity creates a virtual boundary condition and thus
increases the geometry factor of the resonance, as the mode
electromagnetic field is shielded from the comparatively

lossy conducting cavity walls. This effect is well docu-
mented in the literature for a variety of nonaxion-sensitive
transverse-electric modes, and it is used to boost quality
factors, as all wall losses may be decoupled from the mode
simultaneously [36–40]. For this effect to work, the
electric-field pattern of the mode must be tangential to
the cavity walls. Thus, to apply it to an axion-sensitive TM
mode only the cylindrical walls can make use of the Bragg
effect. This effect may be achieved by increasing the radius
of the cavity slightly and placing a dielectric boundary
inside.
When the correct parameters, such as the dielectric

thickness and the size of the gap between the dielectric
and the conducting walls are met, the geometry factor of
the resonance increases dramatically, the frequency
decreases slightly, and the axion form factor decreases
due to the increase in overall volume. A representation of
the z-direction electric field of a TM020 mode (again
computed via finite-element analysis), confined by a
sapphire cylinder such that the Bragg condition is met,
is shown in Fig. 5. The geometry factor in this case is
increased by a factor of approximately 1.4 when compared
with an empty TM020 resonator at the same frequency. This
effect may be applied to any mode in the TM0n0 family;
however, the location and dimensions of the ring relative to
the outer wall of the cavity for the optimal geometry factor
will be different for each mode.

1. Bragg resonators for TM modes

We investigate this effect for different TM modes via
finite-element modeling in COMSOL MULTIPHYSICS and
perform proof-of-concept measurements. For fixed sap-
phire ring dimensions (outer radius of 24.41 mm and
thickness of 3.4 mm) we vary the size of the gap between
the walls of the resonator and the interior sapphire ring,
computing the geometry factors and frequencies of the
first four TM modes. The results of this finite-element
modeling, with overlayed experimental results and includ-
ing measured quality factors, are shown in Fig. 6 and

FIG. 4. Comparison
of supermode frequency
tuning (left panel) and
sensitivity (right panel)
as a function of x×n=2.
The inset in the left panel
shows a schematic of a
multidisk resonator of
n ¼ 4, with each disk
separated by x mm.
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Table I. While such resonators boast increased quality
factors compared to traditional TM modes, they are not the
most axion-sensitive resonant structures that can be con-
structed with dielectric rings.

2. Dielectric boosted axion sensitivity,
or DBAS, resonators

As discussed previously, it is possible to use dielectrics
to alter the axion coupling to a cavity resonance by
changing the field structure within the cavity. Consider
that, for a TM0n0 mode inside a cylindrical resonator,

E⃗cðrÞ ¼ E0eiωtJ0

�
ζ0;n
R

r

�
ẑ; R ¼ ζ0;nc

ω
;

where E⃗c is the mode electric field, E0 is a constant related
to the amplitude of the field, ω is the mode angular resonant
frequency, J0 is the zeroth-order Bessel J function, ζ0;n is

the nth root of the zeroth-order Bessel J function, R is the
cavity radius, r is the radial distance from the center of the
cavity, ẑ is the cavity z-direction unit vector, and c is
the speed of light. The z component of the electric field
takes the form of a Bessel J function and alternates in phase
accordingly, as illustrated for a TM030 mode in Fig. 7.
Upon inspection of Eq. (1), it is clear that the form factor

would increase if a higher proportion of the z component of
the electric field is in the same phase, as the numerator of
the first term in the expression would increase. In order to
achieve this increase, we can place a dielectric ring with the
correct thickness and in the correct position such that the
out-of-phase electric field is confined in the dielectric, and
thus its contribution to the form factor is reduced. This
technique will not work for a TM010 mode, where the field
is all in the same direction, and tends to work best for odd-
numbered modes.
To illustrate this effect, we shall consider a TM030 mode.

We know that the radial distance from the center of the

FIG. 5. A 2D axisymmetric visualization of the z component of the electric field for a TM020-like mode confined inside a sapphire ring,
such that the Bragg effect is achieved (left panel), and a similar visualization of a TM030-like mode designed such that the out-of-phase
electric field is contained in the sapphire ring and suppressed. We name this phenomenon the dielectric boosted axion sensitivity
(DBAS) effect (right panel). The sapphire rings are represented by heavy dark lines.
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FIG. 6. Resonant frequencies (left panel) and geometry factors (right panel) as a function of the size of the gap between the sapphire
ring and the cavity wall, computed via finite-element analysis for the first four TM modes. TM010 is shown in blue, TM020 in orange,
TM030 in green, and TM040 in red. The sapphire ring is of fixed dimensions (outer radius of 24.41 mm, thickness of 3.24 mm, and height
of 31.98 mm). The TM modes become Bragg confined modes in the regions where the geometric factor is enhanced and the field is
antiresonant in the reflectors. These regions can be seen to be quite broad over gap-size variations. Experimental measurements of mode
frequencies from cryogenic proof-of-concept measurements are overlaid on the left plot.
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resonator to the point where the field changes direction is
given by

r ¼ ζ0;1
ζ0;3

R ∼ 0.278R: ð4Þ

We should leave this region as vacuum, as we do not wish
to reduce the contribution of this section of the field to the
form factor. We also know that the radial distance from the
center to the point where the field changes direction for
the second time, i.e., comes back into phase with the first
region, is given by

r ¼ ζ0;2
ζ0;3

R:

Thus, we conclude that the region containing an electric
field out of phase with the other two regions is of width

ζ0;2 − ζ0;1
ζ0;3

R ∼ 0.36R; ð5Þ

beginning at r ¼ ½ðζ0;1Þ=ðζ0;3Þ�R. The final vacuum region
of in-phase field is of thickness

ζ0;3 − ζ0;2
ζ0;3

R ∼ 0.362R: ð6Þ

The middle, out-of-phase region in Eq. (5) is the region in
which we wish to place a dielectric. Considering that the
speed of light is reduced in a dielectric medium by a factor
of

ffiffiffiffi
ϵr

p
, we can consider the space inside the dielectric to be

effectively increased by this same factor. Thus, to meet our
condition that the out-of-phase field be confined in the
medium, we construct our dielectric region such that its size
is reduced compared with Eq. (5) by the same factor.
Put simply, our dielectric ring should have the thickness

ζ0;2 − ζ0;1
ζ0;3

ffiffiffiffi
ϵr

p R ∼ 0.107R ð7Þ

for sapphire, ϵr ∼ 11.349. Now, of course, as the middle
region is reduced in size by a factor of

ffiffiffiffi
ϵr

p
, which is over 3

for sapphire, these fractions of R [0.278, 0.107, and 0.362;
Eqs. (4), (6), and (7)] do not sum to unity but are, rather,
fractions relative to one another. That is to say, the ratio of
the first vacuum region thickness to the sapphire region
thickness should be 0.278

0.107. In order to simplify this process,
we can multiply all of the relevant thicknesses by

1
0.278þ0.107þ0.362 ∼ 1.34 such that they sum to unity.
Specifically, the regions should be of thicknesses
0.372R, 0.143R, and 0.485R, respectively.
As an aside, this increase in size makes intuitive sense, as

the introduction of the dielectric reduces the frequency of
the cavity slightly, and the ratio by which we multiply the
values is almost exactly equal to the ratio of the radius of an
equivalent-frequency empty cavity to the radius of the
cavity containing the dielectric ring. We may equivalently
think of it as follows: the regions should be of the
thicknesses presented in Eqs. (4), (6), and (7) if we replace
R in these equations by R0, the radius of a larger cavity
increased in size relative to the cavity containing the
dielectric ring by a factor of approximately 1.34 (for
sapphire), such that the frequency of this larger empty
cavity is the same as that of the smaller cavity containing
the ring. Consider R0 the effective radius of the cavity due to
the effect of the dielectric.
While hopefully illustrative, this method is not very

helpful in designing a cavity, as we do not know what the
final frequency of the ring cavity is going to be until we
have decide on a ring thickness, which, by this method, we
cannot find until we know the radius R0 of the larger
equivalent cavity—which we, in turn, cannot find until we
know the final ring-cavity frequency. We should instead opt
for the “sum-to-unity” method outlined above and employ
thicknesses of 0.372R, 0.143R, and 0.485R for the first-
vacuum, dielectric, and second-vacuum regions, respec-
tively (for sapphire, in a TM030 mode, this same process
may be followed for other materials in other modes). These
are the dimensions for the air and sapphire layers that
should be chosen if we wish only to constrain the out-of-
phase field within the dielectric and maximize our axion
cavity form factor. This method can be easily extended

TABLE I. Measured quality factors for the first four TM modes
from proof-of-concept experiments.

Mode
Quality factor
(sapphire ring)

Frequency
(sapphire ring) (GHz)

TM010 25 028 1.92
TM020 75 086 5.63
TM030 98 600 11.694
TM040 63 120 14.96

FIG. 7. Representation of the Ez component of the TM030 mode
as a function of radial distance from the center of the cavity. The
mode takes the form of a Bessel J function.
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following the above methodology to any odd n-valued
TM0n0 mode, with ðn − 1Þ=2 layers of dielectric. The
TM030 mode is presented here, as it is the most straightfor-
ward and most experimentally practical to implement,
requiring only one dielectric ring.
We conduct finite-element modeling of a TM030-like

resonator with a sapphire ring placed to satisfy the con-
ditions above, and we can report form factors on the order
of 0.47, compared to 0.053 for an empty-cavity TM030

mode. Furthermore, the geometry factor with the correctly
placed sapphire is 791, compared to 269 for an empty
TM010 cavity of the same frequency and aspect ratio. A
representation of the z-direction electric field in this case is
shown in Fig. 8.
Interestingly, we can exploit a supermode-type tuning

effect with this structure in a similar fashion to the disk
structure discussed above. If we split the dielectric ring in
the axial direction, we observe that there are again two
modes, the symmetric TM030 mode occupying the entire
dielectric ring, and a higher-frequency antisymmetric mode

which contains a single variation in the longitudinal
direction, a TM031 mode. If we increase the gap size
between the two parts of the ring, we observe that the
frequency of the axion-sensitive symmetric supermode,
TM030, increases while retaining good sensitivity. For a
cavity with a radius of 63.8 mm and a height of 108 mm,
and a sapphire ring of thickness 9.12 mm with a TM030-like
starting frequency 4.83 GHz, we observe tuning of approx-
imately 1.6 GHz as the ring is separated and removed from
the cavity. The C2V2G product and resonant frequencies
for this resonator, computed via finite-element analysis is
shown in Fig. 9. This supermode tuning scheme works the
same way for either a traditional Bragg resonator or the
DBAS resonator. We stress that this or similar techniques
could be applied to other Bragg resonant structures, in
other applications, to create highly tunable resonators. For
example, the same ideas could be applied to high-Q TE
modes based on Bragg reflectors to create highly tunable
cavities, whereas traditional Bragg resonators are stationary
in frequency.

FIG. 8. Ez field distri-
bution for the two
modes discussed in the
text as the gap between
the sapphire rings in-
creases. Redder colors
represent higher posi-
tive Ez values, whereas
bluer colors represent
higher negative field
values. The lower mode
is a TM030-like mode,
with high axion sensi-
tivity, whereas the
higher mode is a
TM031-like mode with
no axion sensitivity.

FIG. 9. (Left panel) Frequency (in GHz), and (right panel) C2V2G product vs gap size (in m) for the ideal DBAS resonator discussed in
the text.
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These dimensions are chosen so that the resonator
could be compared to the sapphire disk resonator. It is
important to note that, similar to tuning the sapphire
disk resonator, there are practical considerations in the
design of a DBAS-effect resonator. In order to reduce
complexity, we may again choose to displace only one
of the two rings inside the cavity, adjusting the gap
between them. In such a case, it is optimal to place the
break in the ring below the halfway point, as this
positioning provides more symmetry over the range of
tuning. With the break in the middle, the only point of
axial symmetry is at zero gap, whereas, with the cut
below the middle, there are two points of axial
symmetry over the tuning range.
It is worth noting that, while there are mode crossings

with azimuthally varying (m > 0) modes, a finite-element
analysis does not predict avoided level crossings and
an associated reduction in sensitivity. We believe that
this lack of predicted avoided level crossings is a result of
orthogonality between these higher-order modes and the
axion-sensitive m ¼ 0 mode. Consequently, it is possible
to employ the standard technique of filling the resonator
with a different material, such as liquid helium, and
rescanning over the regions where the sensitive
m ¼ 0 mode crosses these higher-order modes [15].
Resonators of this type are very useful in the push

towards higher-frequency haloscopes, where it is beneficial
to utilize higher-order modes so that larger cavities may be
employed. Traditionally, this approach has not been
appealing, as the form factors for these higher-order modes
are significantly reduced such that the product CV remains
nearly constant. We present a scheme for utilizing large
resonators with higher-order modes, while still maintaining
appreciable form factors and high axion sensitivity. The
scheme also comes with a built-in tuning mechanism which
is highly responsive to position displacement based on
supermode tuning.
It is important to note that the optimal condition for a

geometry factor (the Bragg effect) and the optimal
condition for a form factor (the DBAS effect) are not
the same, and a trade-off may consequently be required.
The optimal C2V2G product may occur for a slightly
different dielectric thickness and location depending on
the specific parameters of the cavity and experiment, such
as length, mode frequency, and desired tuning range. In
order for a shift away from the DBAS condition to be
optimal, we must be gaining in geometry factor much
faster than we are losing in form factor (as the figure of
merit depends on the form factor quadratically, but only
linearly in geometry factor), but this condition may be
possible depending on the specific geometry of the
resonator under design, and the relative narrowness or
broadness of the Bragg and DBAS regions. This scenario
is very complex to model analytically, so, in order to
design resonators for a haloscope based on these

techniques, we employ an iterative method where we
adjust the dielectric thickness and location (starting with
the DBAS result and making small changes) and compare
results until the optimal parameters are found. An
example of results of this kind of iterative process are
shown in Fig. 10. In any case, we may wish to call the
optimal resonator (which may be a hybrid Bragg
and DBAS resonator) a “Bragg-Axion” or “Braxion”
resonator.

C. Comparison with a traditional tuning rod

It is a common technique for tuning a haloscope to
introduce a conducting rod into the cavity, and slide it
radially from the outer region of the cavity into the center.
This conducting rod breaks symmetry in the TM0n0 mode
family and alters the frequency of the cavity. We present a
C2V2G plot and the tuning range for such a cavity
(Fig. 11), employing a TM010 mode, computed via
finite-element analysis. This cavity is designed such that
the tuning range and frequencies are comparable to the
two schemes presented in this article. It is clear from the
results that the DBAS resonator scheme proposed here
outperforms the traditional tuning rod in a TM010 cavity
around 5 GHz. The DBAS resonator has C2V2G products
that are, at their peak, between 1 and 2 orders of
magnitude greater than the traditional tuning rod. The
dielectric disk scheme has C2V2G products that are lower
by an order of magnitude; however, the resonator tunes
extraordinarily quickly, and spurious mode density in the
neighborhood is low. This type of resonator would be of
interest in an experiment that requires a very fast scanning
rate, such as those proposed to search for streaming dark
matter [41]. We consider these, particularly the DBAS
resonator, to be valuable resonant structures for axion
haloscopes, and such resonators will be employed in the
forthcoming ORGAN experiment [42].

FIG. 10. C2V2G product versus thickness of the dielectric
region as a fraction of cavity radius, with each point scaled to
5 GHz for comparison. The gap size and other parameters are
kept constant in this sweep. As shown, the optimum lies near
0.15, which is close to what is predicted in the text for the DBAS
effect.

TUNABLE SUPERMODE DIELECTRIC RESONATORS FOR … PHYS. REV. APPLIED 9, 014028 (2018)

014028-9



IV. CONCLUSION

In this article, we present two interesting dielectric
resonator designs for axion haloscopes. Additionally, the
concept of a Bragg resonator is applied to TM modes
showing increased quality factors, rather than the usual TE
modes for such structures. Both haloscope schemes have
built-in tuning mechanisms that are highly responsive to
position displacement based on supermode interactions.
The first haloscope scheme confines most of the field in the
dielectric, while the second confines only the lesser, out-of-
phase field components in the dielectric. The advantages
of these schemes in regard to different axion searches are
discussed. The microwave cavity Bragg and dielectric
boosted axion sensitivity conditions are discussed and
compared, as they are different. Results of the finite-
element analysis allow the optimization of the sensitivity
and scan rate based on the figure of merit, C2V2G. We
undertake a proof-of-concept experiment for the dielectric
disk resonator scheme, as well as for the Bragg effect in
TM modes, showing good agreement with the modeling.
Finally, we compare these two resonator schemes with a
traditional conducting rod-tuned haloscope and find that
particularly the second proposed scheme, the DBAS
resonator, is far superior.
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