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We use micromagnetic simulations to map out and compare the linear and auto-oscillating modes in
constriction-based spin Hall nano-oscillators as a function of the applied magnetic field with a varying
magnitude and out-of-plane angle. We demonstrate that, for all possible applied field configurations, the
auto-oscillations emerge from the localized linear modes of the constriction. For field directions tending
towards the plane, these modes are of the so-called edge type, i.e., localized at the opposite edges of the
constriction. By contrast, when the magnetization direction approaches the film normal, the modes
transform to the so-called bulk type, i.e., localized inside the constriction with substantially increased
precession volume, consistent with the redistribution of the magnetic charges from the edges to the top and
bottom surfaces of the constriction. In general, the threshold current of the corresponding auto-oscillations
increases with the applied field strength and decreases with its out-of-plane angle, consistent with the
behavior of the internal field and in good agreement with a macrospin model. A quantitative agreement is
then achieved by taking into account the strongly nonuniform character of the system via a mean-field
approximation. Both the Oersted (Oe) field and the spin-transfer torque from the drive current increase the
localization and decrease the frequency of the observed mode. Furthermore, the antisymmetric Oe field
breaks the lateral symmetry, favoring the localized mode at one of the two constriction edges, particularly
for large out-of-plane field angles where the threshold current is significantly increased and the edge
demagnetization is suppressed.

DOI: 10.1103/PhysRevApplied.9.014017

I. INTRODUCTION

It is well known that ferromagnetic insulators can be
excited into strongly nonlinear magnetodynamical states
by the application of sufficiently strong rf magnetic fields
[1–4]. The same approach, although possible, is rather
inefficient for magnetic metals, as they typically exhibit
much higher magnetic losses [5,6]. However, with the
emergence of spin-transfer torque (STT) [7–9], it has
become possible to excite and sustain highly nonlinear,
nanoscale magnetization dynamics in metals, including
propagating spin waves (SWs) [10–13], localized bullets
[14–16], vortices [17], and droplets [18–22]. The majority
of these studies have been devoted to extended geometries,
where dissipative magnetic solitons are typically nucleated
by employing the negative nonlinearity [23] of the system
that pushes the original ferromagnetic resonance (FMR)
mode into the fundamental magnonic band gap, where
the propagation of spin waves is ultimately forbidden.
This results in self-localization of the magnetization
dynamics in the vicinity of the spin-polarized current
source.

However, patterned magnetic structures support natural
confinement of the magnetization dynamics, in the form of
so-called edge magnonic modes [24]. These excitations are
again typically observed in the fundamental band gap,
which is similar to the case of dissipative magnetic solitons.
Since nanopatterned materials are at the core of the
emerging spintronics-based technologies, it is essential
to understand their response to the application of spin-
polarized currents. Prominent examples of such systems are
the so-called nanoconstriction- [25,26] and nanowire-based
[27,28] spin Hall nano-oscillators (SHNOs) [29–31], where
pure spin currents are injected from a heavy metal (such as
Pt or W) to an adjoint ferromagnetic layer [e.g., NiFe or
CoFeB]. In constrictions and wires with widths below
200 nm, the injected spin current density is sufficient to
nucleate self-sustained magnetization dynamics and then
drive it into a strongly nonlinear regime. In contrast to
extended geometries, however, the auto-oscillations in
nanowire SHNOs have been shown to emerge from the
semiconfined linear modes of the bulk and edge types [27].
It was later demonstrated that the edge mode becomes
further localized with an increase of its amplitude [28].
Because of the significant shrinking of the nonlinear edge
mode, it shows a much-reduced linewidth, as it interacts
and scatters less with other modes. This property is
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essential for successful application of SHNOs for micro-
wave signal generation.
Although constriction-based SHNOs show even lower

linewidths and, in addition, an unprecedented ability to
establish mutual synchronization over large distances and
device counts in out-of-plane fields [32], their dynamics
has not yet been analyzed in detail. Kendziorczyk and
Kuhn [33] simulated current-driven dynamics of constric-
tion-based SHNOs in in-plane fields and demonstrated that
the auto-oscillations are strongly localized to the constric-
tion edges, consistent with the appearance of minima in the
static internal field. While this correspondence might
suggest that auto-oscillations originate from the linear
localized mode of the nanoconstriction, the relation
between the two has not been investigated. At the same
time, Awad et al.’s micromagnetic simulations of mutually
synchronized SHNOs in close-to-perpendicular fields
demonstrated that mutual synchronization is possible to
establish thanks to auto-oscillation modes inside the con-
striction that further extending into the SHNO leads [32]. A
detailed study of the out-of-plane angular dependence of
both linear and auto-oscillating spin-wave modes in con-
striction-based SHNOs is hence required, both to establish
their relation and investigate a possible crossover from edge
to bulk localization. Here, we employ micromagnetic
simulations to demonstrate the origin and spatial properties
of the auto-oscillations in constriction-based SHNOs for a
wide range of field magnitudes and out-of-plane angles. We
show that the field dependence of the threshold current
agrees quite well with a macrospin model that neglects
spin-wave radiation losses; the agreement essentially
becomes perfect when the macrospin model is refined
using a mean-field approach. We then explicitly demon-
strate that, for all field angles, the auto-oscillations emerge
from the localized linear modes of the constriction. For
fields tending towards the plane, these localized modes
reside at the constriction edges. However, when the
magnetization direction approaches the film normal, the
edge modes move into the interior of the constriction,
transforming into a so-called bulk type with a significantly
increased volume of precession.

II. MICROMAGNETIC SIMULATIONS

Here, we simulate a stack of 6-nm Pt and 5-nm Py layers
containing a round-shaped nanoconstriction having a
100-nm width, an opening angle of 22°, and a curvature
radii of 50 nm, as is schematically shown in Fig. 1(a). The
particular choice of sample geometry follows those already
investigated experimentally in the literature. The electrical
current density and the corresponding Oersted (Oe) field
are simulated in COMSOL [34] assuming the full-scale Pt=Py
bilayer and an electrical current of Iref ¼ 2 mA, while
linear scaling is assumed for all other values. The Oe field
and the current density are sampled at the Py and Pt sites,
respectively. The data are then estimated on the rectangular

mesh that is matched to the micromagnetically simulated
domain. The corresponding profiles are shown in Figs. 1(b)
and 1(c).
We assume that the electrical current density in Pt, je,

leads to a pure-spin-current injection into Py along the
interface normal with the magnitude of js¼ðI=IrefÞθSHjjej,
where θSH is the Pt spin Hall angle and I is the applied
current. Although the applied current bends in the vicinity
of the constriction edges, it is still dominated by the
longitudinal component (y axis). Therefore, we assume
that, in accordance with the properties of the spin Hall
effect, the injected spin current is uniformly polarized
antiparallel to the x axis, i.e., σ ¼ −x. We assume that the
injected spin current produces a dampinglike torque of the
following form [35,36]:

τDLm × σ ×m; ð1Þ

where τDL and m are the magnitude of the torque and
reduced magnetization vector, respectively. We neglect the
contributions from any Rashba fieldlike torque, as it is
measured to be a few times smaller than the dampinglike
one [36]. In accordance with the literature [36,37], we
assume τDL to be of the Slonczewski form

τDL ¼ γjeℏϵ
etμ0Ms

; ð2Þ

where Ms, γ, and t are the saturation magnetization,
the gyromagnetic ratio, and the thickness of the ferromag-
netic layer, respectively. The spin-polarization efficiency, ϵ,
is given by

(a)

(b) (c)

FIG. 1. (a) Schematic of the simulated Py=Pt-constriction
SHNO. (b) Magnitude of the lateral electrical current density
in Pt, and (b) out-of-plane component of the Oersted (Oe) field in
Py calculated for an applied current of 2 mA.
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ϵ ¼ θSHΛ2

ðΛ2 þ 1Þ þ ðΛ2 − 1Þðm · σÞ ; ð3Þ

where Λ ≥ 1 is the parameter describing the transport
properties of the system with respect to the relative
orientation between the magnetization in the ferromagnet
and the spin-current-polarization direction. In contrast to
spin-transfer torque, spin-orbit torque is estimated to be
practically independent of the corresponding angle [38,39],
i.e., Λ ¼ 1. Finally, we would like to point out that the
experimental routine that we use to estimate a spin Hall
angle of θSH ¼ 0.08 from the 10-μm-wide wires is based on
the very same model.
The micromagnetic simulations are carried out using

the MUMAX3 solver [40] with the input provided by the
COMSOL simulations described above. Although the struc-
ture includes a heavy-metal layer, only the ferromagnetic
part is explicitly considered in the simulations. The corre-
sponding Py layer has dimensions of 2 μm × 2 μm × 5 nm
subdivided into a rectangular mesh of Δx × Δy × Δz ¼
3.9 × 3.9 × 5 nm3 cells. Owing to the difference in elec-
trical resistances of the Pt and Py layers, the current mostly
flows through the heavy metal. Therefore, any contribution
of the current going via the ferromagnet to themagnetization
dynamics, e.g., via a (nonadiabatic) spin-transfer torque, is
therefore neglected in the micromagnetic simulations. The
Py layer is assumed to have a saturation magnetization of
μ0Ms ¼ 0.754 T, a Gilbert damping of 0.02, a gyromag-
netic ratio of 29.53 GHz=T, and an exchange stiffness of
10 pJ=m, as dictated by our experimental studies [32,41].
The magnetic field, B0, is applied at a fixed in-plane

angle of 24°, which is similar to how SHNOs are typically
measured [25,32]. The applied field strength, B0, and out-
of-plane angle, θ0, are then varied. The magnetization
dynamics is simulated by integrating the Landau-Lifshitz-
Gilbert-Slonczewski equation over 187 ns, with the first
62 ns discarded in the subsequent analysis to exclude
transient effects. For the sake of consistency, the linear
eigenmodes of the system are estimated at the threshold
current by taking into account both the Oe field and the
STT. To avoid auto-oscillations, the damping of the system
is increased 1.02 times, and the system is then excited
by a sinc rf field with an amplitude of 1 mT and a cutoff
frequency of 40 GHz. The linear response is captured over
125 ns. The frequencies and spatial profiles of linear and
auto-oscillating modes of the system are extracted using
methods explained elsewhere [42,43].

III. RESULTS AND DISCUSSION

For any given configuration of the applied magnetic
field, we first want to estimate the auto-oscillation thresh-
old current, Ith. For this purpose, at a given value of the
applied current, we first run the simulations for 5 ns, where
the system undergoes some transient behavior, and over the

next 10 ns monitor the behavior of the maximum torque; if
the maximum torque increases, we assume that auto-
oscillations have started. Using this criterion, we then
employ the so-called bisection method to estimate the
threshold current in a range of [0.5, 5.0] mA by iteratively
shrinking this interval until its bounds are separated by
1 μA, which gives Ith � 0.5 μA. Compared to the total
energy, the torque shows a significantly smaller degree of
numerical noise [40], which makes it more suitable for this
particular type of analysis.
The results of these calculations are shown in Fig. 2(a).

In general, we find that Ith increases with field strength and
decreases with increasing field angle. This behavior can be
understood using the model developed in Ref. [23]: assum-
ing a macrospin approximation (no propagating SWs),
an isotropic spin-polarization efficiency ϵ ¼ 0.04, and an
easy-plane shape anisotropy, and neglecting any magneto-
crystalline anisotropy, the following expression holds:

Ith ¼
α

σ0 cosΩ

�
ωB þ ωM

2

�
; ð4Þ

where ωM ¼ γμ0Ms cos2 θ, σ0 ¼ ½ðϵγℏÞ=eMsSt� is the
magnitude of the STT, S ¼ Iref=max js is the effective
area of pure-spin-current injection, Ω ¼ arc cosðm0 · σÞ is
the angle between the polarization of the pure-spin current
and the equilibrium magnetization direction, m0, and θ is
its out-of-plane angle. ωB ¼ γB, where B is the magnitude
of the internal magnetic field, which, according to the
magnetostatic boundary conditions, reads

B ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ0Ms

B0

sin θ

�
μ0Ms

B0

sin θ − 2 sin θ0

�s
: ð5Þ

(a) (c)

(b) (d)

Ω

FIG. 2. Auto-oscillation threshold current vs applied field
strength and out-of-plane angle as estimated (a) using micro-
magnetic simulations, (b) a macrospin model given by
Eqs. (4) and (5), and (c) a mean-field model given by Eqs. (7)
and (6). (d) The efficiency of pure-spin-current injection vs
applied field geometry.

ORIGIN OF MAGNETIZATION AUTO-OSCILLATIONS IN … PHYS. REV. APPLIED 9, 014017 (2018)

014017-3



It follows from Eqs. (4) and (5) that the threshold current
increases with the magnitude of the applied field and
decreases with its out-of-plane angle, which is consistent
with our simulations.
However, at high fields and large angles, which make the

magnetization approach the film normal, the threshold
current again increases due to (a) an increase of the internal
field given by Eq. (5), and (b) a decrease of the STT
efficiency as Ω approaches π=2. For applied fields close to
or exceeding μ0Ms, the out-of-plane angles of the equi-
librium magnetization and the applied field increase simul-
taneously, so the corresponding two contributions to Ith
counteract each other. This interplay explains the observed
flattening—or even the increase—of the threshold current
at high fields, and it is captured well by both simulations
[Fig. 2(a)] and the macrospin model [Fig. 2(b)], which
agree, at least qualitatively, in this region.
The agreement is, however, substantially worse below

0.7 T, where an increase in Ith is observed in the simulations
despite an increase of the out-of-plane angle of the applied
field and virtually no changes to the direction of the
equilibrium magnetization. This discrepancy could be
attributable to the reduction of the STT efficiency, e.g.,
due to the rotation of the magnetization in-plane, which
would reduce Ω. To further examine the validity of the
model given by Eq. (4), we employ a mean-field approach
to estimate the relevant parameters, given by the set
℘ ¼ fB; θ;Ω; jsg, from the simulations as follows:

℘̄ ¼
P

i

P
j ℘ijm2

ijP
i

P
j m

2
ij

ð6Þ

where mij is the spatial profile of the auto-oscillations
amplitude and the bar symbol denotes the averaged value.
The summation is performed over the 500 × 500 nm2

domain around the nanoconstriction, where most of the
auto-oscillation amplitude is localized. Since the spin
current is strongly nonuniform, and assuming that the
spatial profiles of the auto-oscillations can change with
the applied field, the STT magnitude is expected to be
mode specific. To account for this effect, we renormalize
the STT magnitude to σ00 ¼ σ0j̄s=max js and, finally, get

Ith ¼
γα

σ00 cos Ω̄

�
B̄þ 1

2
μ0Mscos2θ̄

�
. ð7Þ

The data calculated using Eq. (7) are shown in Fig. 2(c).
A quite remarkable quantitative agreement with the sim-
ulation is observed. The agreement is achieved without
including any radiation losses (i.e., propagating SWs), thus
confirming the localized character of the auto-oscillations,
which is consistent with Refs. [25,33]. The increasing Ith at
high out-of-plane angle and for weak applied fields is
now fully recovered, which is consistent with the reduction
of the pure-spin-current injection efficiency shown in

Fig. 2(d). Specifically, we observe not only the in-plane
rotation of the equilibrium magnetization, as captured by
the cosΩ term, but also the reduction of the mean-field
value of the injected pure-spin-current magnitude, i.e.,
j̄s=max js, which confirms changes of the auto-oscillations
vs the applied field geometry.
The auto-oscillation power spectra and linear eigenm-

odes of the nanoconstriction, calculated at the threshold
current for various field geometries, are shown in Fig. 3.
The auto-oscillations always appear below the frequency of
the (quasi)uniform FMR, which again confirms their
localized character. However, in contrast to the extended
geometries, where nonlinearity driven self-localization of
the SWs happens, in our case, the auto-oscillations essen-
tially coincide with the linear localized modes of the
nanoconstriction, similarly to the nanowire SHNOs.
Although our system should also support regular SW
bullets, they are not observed in the simulations since
the FMR amplitude is negligible inside the nanoconstric-
tion, where most of the spin-current injection happens.
To investigate the fundamental origin of the localization,

we calculate the spatial profiles of the linear modes
simulated at five different applied fields and using four
different combinations having the Oe field and the STT
terms on or off during the simulation: Fig. 4(a) includes
neither the Oe field nor STT, Fig. 4(b) includes only STT,
Fig. 4(c) includes only the Oe field, and Fig. 4(d) includes
both. Comparing Fig. 4(a) to Figs. 4(b)–4(d), it is clear, first

FIG. 3. Auto-oscillation spectral density vs applied field
strength and three different field angles. The green lines and
the white dots show frequencies of the FMR and linear localized
modes, respectively.
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of all, that neither the Oe field nor STT are required for
confinement. The confinement can hence be explained by
the demagnetization field alone, and the observed dynamics
is essentially an edge mode typically observed in patterned
magnetic structures [24] where the demagnetizing field in
the vicinity of the edges creates local minima in the
effective magnetic field, i.e., so-called SW wells. This
field is produced by the edge magnetic charges that emerge
due to the divergence of the normal-to-edge component of
the equilibrium magnetization [44,45]. In our geometry, the
magnetic charges on the opposite edges of the constriction
arise from the divergence of the in-plane component of the
equilibrium magnetization.
When we include STT, a slight reduction of the mode

area is observed in strong fields [Fig. 4(b)], which is
consistent with how the spin current affects the internal
field. In our simulations, STT always counteracts the
applied field and has its strongest contributions at the

edges, where the current density is the highest [Fig. 1(b)].
STT hence increases the depth of the SW wells and,
therefore, enhances the localization of the edge modes.
The inclusion of the Oe field leads to a significant

asymmetry [Fig. 4(c)] of the (otherwise symmetric) edge
modes, again primarily in strong out-of-plane fields. This is
a direct consequence of the antisymmetric nature of the out-
of-plane component of the Oe field, with respect to the
constriction center [see Fig. 1(c)]. The Oe field hence
suppresses the SW well on one side of the constriction,
while it strongly enhances the mode localization on the
other. As both the Oe and STT contributions are propor-
tional to the applied current, which is varied in our
simulations to stay at the onset of the auto-oscillations,
they are stronger in oblique fields where the threshold
current is larger.
To quantify both effects, we first estimate the contribu-

tions of the demagnetizing and Oe fields to the internal field
using the magnetostatic boundary conditions. Specifically,
we calculate their projections on the equilibrium magneti-
zation. If the corresponding projection is positive (neg-
ative), then it adds up to (subtracts from) the internal
field; i.e., it suppresses (enhances) the SW wells. Finally,
we calculate the contribution of both fields to the depth of
the SW wells on the opposite edges of the constriction
(i.e., x > 0 and x < 0) asΔBi ¼ BiðminÞ − Bið0Þ, where 0
is the coordinate of the constriction center, i denotes the
corresponding field contribution, andmin is the coordinate
of the minimum in the projection of the demagnetizing
field. The result is shown in Fig. 4(e).
We note that, for weak and moderate applied fields,

the contribution of the Oe field is negligible compared to
the demagnetization. However, at higher fields, the com-
bined effect of (i) a weakening demagnetization due to a
decreasing in-plane component of the equilibrium mag-
netization as it tilts out of plane, and (ii) an increasing
threshold current rapidly increases the role of the Oe field.
In Fig. 4(f), we finally plot how much the Oe field and STT
shift the frequency of the edge mode, and we conclude that
their contributions are comparable.
We now turn to the spatial profiles of the linear modes

across a more complete range of field angles and strengths
[Fig. 5(a)]. In most conditions, the edge mode clearly
dominates and, as discussed above, remains mostly sym-
metric at low to moderate field strengths. At high fields and
intermediate field angles, the antisymmetric influence of
the Oe field is clearly visible. However, as the strength and
the out-of-plane angle of the applied field increase further
(i.e., towards the top-right corner of the figure), we observe
a fundamental change of the spatial profile: the edge mode
first localizes further, then delocalizes again, expands into
the constriction, and eventually detaches from the edges to
transform into a bulk mode.
This transformation is consistent with the changes in

the internal field landscape shown in Fig. 6(a) and the

(a)

(b)

(c)

(d)

(e) (f)

FIG. 4. Spatial profiles of the auto-oscillations calculated for a
field applied at θ0 ¼ 70° and (a) without any Oe field or STT,
(b) with STT, (c) with an Oe field, and (d) with both an Oe field
and STT. (e) Contribution of the demagnetizing field and the Oe
field to the depth of the spin-wave wells vs the applied field
strength. (f) Contribution of the STTand Oe field to the frequency
of the edge mode vs the applied field strength.
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reduction of the frequency gap between the FMR and the
localized mode shown in Fig. 3(c). The observed behavior
follows from the interplay of the magnetic charges local-
ized on the opposite edges and (top and bottom) surfaces of
the constriction, that are proportional to the magnitudes of
the in-plane and out-of-plane components of the magneti-
zation, respectively. Both components, estimated using
the mean-field approach given by Eq. (6), are shown in
Fig. 6(b), where we can identify three different regimes:
(i) edge localization, (ii) localization in close vicinity to the
edges, and (iii) bulk localization. The weakest magnetic
field (B0 ¼ 0.1 T) does not saturate the sample neither out
of plane nor in plane. The primarily in-plane magnetization
instead bends around the constriction edges to mitigate the
edge magnetic charges. The SWwells are located exactly at
the edges but are not yet particularly deep, which is
consistent with the relatively weak mode localization seen
in the top-left corner of Fig. 5(a). When the field increases
(B0 ¼ 0.2 T), the magnetization aligns more strongly with
the in-plane component of the field, which increases the
magnetic charge density at the edges, deepens the SW
wells, and strengthen the mode localization, as seen at the
bottom of Fig. 6(a).
This stronger localization is also evident from the

increase of the STT efficiency shown in Fig. 2(d) for
moderate fields applied over (roughly) θ ¼ 60° out of
plane, as the overlap between the edge mode and the
current density increases. When the field increases further
(B0¼0.2–0.5T), the magnetization tilts more out of plane,
particularly at the edges, which gradually redistributes
the magnetic charges from the constriction edges to its

surfaces. As a consequence, the SW wells detach from the
edges and move gradually inward. At still higher fields
(B0 > 0.5 T), the surface charges dominate, the detached
SW wells merge into a single shallow well closer to the
constriction center, and mode localization transforms from
edge to bulk.
It is now interesting to compare these linear modes

with the spatial profiles of the auto-oscillations shown in
Fig. 5(b). In essentially all but a few in-plane cases, the
auto-oscillations are indistinguishable from the correspond-
ing linear localized modes. In stark contrast to the extended
geometries, where auto-oscillations emerge as either self-
localized dissipative solitons or propagating SWs [16,18],
field-localized eigenmodes can be excited for virtually any
field geometry, as their existence is not dependent on the
interplay of the nonlinearity and dispersion of the system.

(a) (b)

FIG. 5. Spatial profiles of the (a) linear and (b) auto-oscillating modes, simulated at unit supercriticality for applied fields with
different strengths and out-of-plane angles.

(a) (b)

FIG. 6. (a) An effective magnetic field sampled along the
constriction width vs fields applied at θ0 ¼ 85°, ranging from 0.2
to 1 T in steps of 0.1 T. (b) Mean-field values of the in-plane and
out-of-plane components of the equilibrium magnetization.

DVORNIK, AWAD, and ÅKERMAN PHYS. REV. APPLIED 9, 014017 (2018)

014017-6



Only for strong in-plane—or very close to in-plane—fields
do we observe any significant differences between the
linear mode and the auto-oscillation [the violet box in
Fig. 5(b)]. This deviation is also accompanied by a drop
in the auto-oscillation frequency, an increase in its total
power, and a much larger linewidth [see Fig. 3(a)].
However, the transient behavior of the magnetization
dynamics still reveals that the auto-oscillations initially
nucleate from the linear localized mode. The detailed
investigation of these likely solitonic modes is, however,
beyond the scope of this paper.
We finally wish to point out that, as the modes detach

from the edges and move inward towards the center of the
constriction, the shallow SW well allows the mode to
expand quite dramatically. We can estimate the correspond-
ing mode volume, V, using

V ¼ ΔV
maxðm2

ijÞ
X
i

X
j

m2
ij;

where ΔV ¼ ΔxΔyΔz is the unit-cell volume. The relative
auto-oscillation volume, V=V0, is shown in Fig. 7, where
V0 is obtained in the weakest in-plane field of 0.05 T. We
note that V increases with the out-of-plane angle of the
applied field, eventually exceeding 2V0 at the strongest,
out-of-plane fields. This is the underlying reason that
explains how robust mutual synchronization of neighboring
auto-oscillating constrictions can occur [32]. We also
observe that, for small-to-moderate applied field angles
(i.e., below roughly θ0 ¼ 40°), the edge mode localizes
further with the applied field strength, i.e., shrinks in
volume. Therefore, direct coupling of the neighboring
SHNOs should be vanishing in this case.

IV. CONCLUSIONS

In this paper, we demonstrate, using systematic micro-
magnetic simulations, that auto-oscillations in constriction
SHNOs originate from the linear localized eigenmodes,
which appear due to the strongly nonuniform static
demagnetizing field. For fields applied mostly in plane,
these modes are localized to the vicinity of the constriction
edges. As the field strength and out-of-plane angle increase,
the magnetic charges redistribute from the constriction
edges to the surfaces, and, as a consequence, the modes
change their localization character, detach from the edges,
and move into the bulk of the constriction. This trans-
formation is accompanied by a significant increase of the
precession volume.
Based on a macrospin model which neglects spin-wave

radiation losses, we provide a qualitative description of the
auto-oscillation threshold current behavior vs the applied
field. By taking into account the nonuniform character of
the internal field and magnetization dynamics via a mean-
field approximation, we achieve an excellent qualitative
agreement with our full-scale micromagnetic simulations.
In general, we observe that the stronger the localization of
the edge modes, the smaller their threshold current, as
(i) they experience a weaker internal magnetic field and
(ii) benefit from a higher spin current density. We find that
both STT and the Oe field increase the localization of the
observed modes and, correspondingly, decrease their
frequencies. Furthermore, the Oe field breaks the lateral
symmetry of the localized modes. We believe that our
results can guide the design and implementation of inter-
acting and mutually synchronized constriction-based
SHNOs, emphasizing the importance of spin-wave confine-
ment for their operation.
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work by Divinskiy et al. [46], who identified the solitons
shown in a violet box of Fig. 5(b) to be of the magnetic
droplet type.
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Manchon, and M. D. Stiles, Current induced torques and
interfacial spin-orbit coupling: Semiclassical modeling,
Phys. Rev. B 87, 174411 (2013).

[36] Tianxiang Nan, Satoru Emori, Carl T. Boone, Xinjun Wang,
Trevor M. Oxholm, John G. Jones, Brandon M. Howe,
Gail J. Brown, and Nian X. Sun, Comparison of spin-orbit
torques and spin pumping across NiFe=Pt and NiFe=Cu=Pt
interfaces, Phys. Rev. B 91, 214416 (2015).

[37] Luqiao Liu, Takahiro Moriyama, D. C. Ralph, and R. A.
Buhrman, Spin-Torque Ferromagnetic Resonance Induced
by the Spin Hall Effect, Phys. Rev. Lett. 106, 036601
(2011).

[38] Kevin Garello, Ioan Mihai Miron, Can Onur Avci, Frank
Freimuth, YuriyMokrousov, Stefan Blügel, Stphane Auffret,

Olivier Boulle, Gilles Gaudin, and Pietro Gambardella,
Symmetry and magnitude of spin-orbit torques in ferromag-
netic heterostructures, Nat. Nanotechnol. 8, 587 (2013).

[39] Ki-Seung Lee, Dongwook Go, Aurélien Manchon, Paul M.
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