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We investigate the occurrence of acoustic topological edge states in a 2D phononic elastic waveguide
due to a phenomenon that is the acoustic analog of the quantum valley Hall effect. We show that a
topological transition takes place between two lattices having broken space-inversion symmetry due to the
application of a tunable strain field. This condition leads to the formation of gapless edge states at the
domain walls, as further illustrated by the analysis of the bulk-edge correspondence and of the associated
topological invariants. Interestingly, topological edge states can also be triggered at the boundary of a single
domain, when boundary conditions are properly selected. We also show that the static modulation of the
strain field allows us to tune the response of the material between the different supported edge states.
Although time-reversal symmetry is still intact in this material system, the edge states are topologically
protected when intervalley mixing is either weak or negligible. This characteristic enables selective valley
injection, which is achieved via synchronized source strategy.
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I. INTRODUCTION

Topological acoustics has rapidly emerged as a recent
and fascinating branch of physical acoustics. Following the
groundbreaking research in solid-state physics, which
showed the existence of topological states of matter
[1,2], researchers have been able to formulate the acoustic
analog of selected mechanisms [3–12,12]. During the last
decade, several studies have investigated topological mate-
rials based on broken space-inversion symmetry (SIS). In
electronic materials, SIS was broken using different meth-
odologies including graphenelike lattices with staggered
sublattice potentials [13–17], strained graphene [18], and
multilayered graphene under externally applied electric
fields [19–25]. The effect of the asymmetry is that of
opening a gap at the original Dirac cone, associated with
the hexagonal lattice structure, in which edge states are
supported. These edge states cannot be explained by the
quantum Hall effect (QHE) mechanism. In fact, as time-
reversal symmetry (TRS) is intact, the lattice still possesses
a trivial topology within the context of QHE [1,26,27].
However, owing to the large separationof the twovalleys ink
space, valley-dependent topological invariants can be
defined and used to classify the topological states of the
different lattices. This approach, usually referred to as
quantum valley Hall effect (QVHE), was recently inves-
tigated for application to fluidic acoustic waveguides [9,12],
as well as for elastic plates with local resonators [28,29].
In this paper, we consider the dispersion and propaga-

tion behavior of a topological elastic phononic waveguide

assembled from a trusslike unit cell [Fig. 1(a)]. Compared
to previous studies [28,29], we take a fully continuum
modeling approach which provides a general methodology
of analysis and allows us to map the topological behavior
all the way back to the massless (or massive, when SIS is
broken) Dirac equation. An in-depth study of the occur-
rence of edge states, either at domain walls or at the lattice
boundaries, is also presented. The analysis addresses both
the topological significance of the different edge states and
their lossless behavior. Despite the weak topological nature
of the QVHE, we show that selective valley injection can be
obtained by a synchronized source approach which is able
to target specific eigenstates. In addition, we show tunable
and reconfigurable capabilities of the topological medium.
Starting from an initial hexagonalD6h lattice symmetry, the
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FIG. 1. Schematic illustration of the lattice geometry. (a) The
reference crystal (unstrained) consisting of an aluminum trusslike
hexagonal lattice having SIS. The dashed black line indicates the
primitive Wigner-Seitz cell. (b),(c) The deformed α and β lattices
obtained upon application of internal pressure. In both configu-
rations, SIS is broken. (d) The red and blue arrows show the
equivalent forces produced by δp. To improve the visualization,
the deformation shown in (b),(c) is magnified by a factor of 5 with
respect to the actual deformation produced by δp ¼ 20 MPa.*fsemperl@purdue.edu
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symmetry level can be tuned using an external static
actuation which allows real-time tuning of the edge states
(i.e., of the corresponding topological band gaps), as well
as a complete reconfiguration of the lattice from a regular
phononic material to a tunable topological medium, and
vice versa. Note that, in this paper, we are mostly concerned
with the analysis of the physical behavior of the medium
and of its tuning capability, and we do not concentrate on
the practical details of the implementation of the tuning
mechanism. Nevertheless, we note that the local perturba-
tion could be practically implemented by using, as an
example, mechanical or thermal loads. In the following,
we assume that an isostatic pressure could be applied on the
sidewalls to produce the deformation necessary for the
topological phase transition.
The individual trusses forming the lattice are assumed

made out of aluminum, having the width w ¼ 0.1a and the
thickness t ¼ 0.05a, where a is the lattice constant. The
fundamental lattice structure clearly exhibits SIS with
inversion axes located at the nodal points. The lattice is
then deformed by applying an internal pressure δp that
lowers the symmetry to D3h. The equivalent force produced
by δp is locally normal to the individual truss element, as
shown in Fig. 1(d). The application of either a positive or a
negative pressure δp results in two different deformed states
of the lattice that, for simplicity, we label as α and β states
[Figs. 1(b) and 1(c)], respectively. In these states, the SIS is
broken and the states α and β are inverted images of each
other; that is, they turn into each other as δp switches sign.
We will use a combination of theoretical and numerical

tools to show in the following (1) that the evolution from α
to β state (and vice versa) is accompanied by a topological
phase transition, and (2) that when a phononic system is
obtained by assembling the two phases, an edge state is
supported along the domain wall [(DW), i.e., the interface
between the α and β states]. We note that these edge states
can be created and modulated at the boundary of a single
lattice by selecting proper boundary conditions and by
tuning the internal pressure.

II. TOPOLOGICAL BAND-STRUCTURE
ANALYSIS

A. Phononic band structure

For a unit cell in prestrained conditions, the numerical
analysis can be divided into two parts: (1) a nonlinear static
analysis to calculate the state of displacement u0, stress s0,
and strain ϵ0 induced by the applied pressure load, and (2) a
linear wave-propagation analysis around the prestressed
equilibrium state.
In our analysis, the prestressed state is calculated using

finite-element analysis and used as input for the linear wave
analysis. The wave propagation in the prestressed medium
can be studied as a linear small-oscillation problem u0eiωt
around the new static equilibrium u0. The total displacement

can then be expressed as uðtÞ ¼ u0 þ u0eiωt. Under these
conditions the linearized wave equation is given by

ρ
∂2u
∂t2 ¼ −∇ · P; ð1Þ

which is readily rewritten as

−ρω2u0 ¼ −∇ · P; ð2Þ

where ρ is the mass density, P ¼ ð∇uþ IÞs is the first
Piola-Kirchhoff stress tensor, s is the second Piola-Kirchhoff
stress tensor with s ¼ s0 þC∶ðϵ − ϵ0Þ, where C is a
fourth-order elasticity tensor, s0 and ϵ0 are the initial stress
and strain, respectively, and the differential operator ∇ is
taken with respect to the material frame. Solving the
k-dependent Bloch eigenvalue problem yields the phononic
band structure and the eigenstates. The above described
model is assembled and solved using the commercial finite
element software COMSOL MULTIPHYSICS.
The frequency dispersion is normalized by the bulk shear

wave speed in aluminum c over the lattice constant a. Note
that the current system is effectively a flat waveguide that
admits Lamb guided modes [symmetric (S) and antisym-
metric (A)], as well as shear horizontal modes. In this paper,
we concentrate only on Amodes (flexural modes), which are
those that are more naturally excited in platelike structures
under external excitation. Other modes are filtered out based
on the particle-motion polarization of the mode shapes. The
value of the pressure perturbation δp ¼ 20 MPa is chosen in
order to achieve large deflection without inducing plastic
deformation. Note that, because the lattice is designed based
on slender members, it can easily accumulate large deflec-
tions while maintaining small strain levels.
Figures 2(a) and 2(b) show the band structure of the

flexural modes of the lattice with δp ¼ 0 (intact SIS) and
δp ¼ 20 MPa (broken SIS), respectively. Note that the two
lattices in states α and β have identical band structures
[Fig. 2(b)] since they are simply spatially inverted versions
of each other and with intact TRS.

(a) (b)

FIG. 2. Phononic band structure of (a) the undeformed lattice
[shown in Fig. 1(a)], and of (b) the α (or β) lattice [shown in
Figs. 1(b) and 1(c)]. An incomplete band gap opens up at the
original Dirac point as SIS is broken. The inset in (a) shows a
comparison between the numerical dispersion data (the black
dots) and the dispersion predicted by the k · p method (the red
lines) near the Dirac point.
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The analysis of the dispersion properties in Fig. 2(a)
reveals the existence of a degeneracy at the K point from
which locally linear dispersion curves emanate. This
dispersion structure, known as the Dirac cone [30], is
protected by the lattice configuration. However, when SIS
is broken [Fig. 2(b)], the degeneracy is lifted and the
initially degenerate modes can separate and give rise to a
local band gap. It is the adiabatic evolution of this specific
dispersion structure under small perturbations that enables
the generation of topological edge modes. We show in this
paper that the dispersion near the valleys in either the
reference or the perturbed configuration can be mapped to a
massless or a massive Dirac equation, respectively. Before
proceeding, we should also note that the current configu-
ration produces an incomplete band gap [Fig. 2(b)]. In
principle, a complete band gap could be obtained by
optimizing the lattice geometric parameters [7]; however,
we show later that the valley-dependent design is fairly
robust and does not strictly require a full band gap.
As established above, the process of lifting the degen-

eracy and opening the band gap is connected to the applied
pressure perturbation within the cell. Figures 3(a) and 3(b)
show the evolution of the gap bounds, as well as of the
width of the gap, as a function of the applied pressure δp.
An average upward shift of the frequency is observable in
the gap bounds as jδpj increases. This behavior is directly
related to the stress-stiffening effect produced by the
geometric nonlinear deformation of the cell. The analysis
of the gap width indicates that the gap vanishes and reopens
as δp crosses zero, therefore suggesting a topological phase
transition in the δp space.

B. Berry curvature and valley Chern number

The evolution of the band gap as a function of δp
suggests that a lattice obtained by connecting α and β
domains should experience a topological phase transition
associated with a vanishing gap occurring exactly at the
DW. The topological nature of this transition can be
characterized using a topological invariant—that is, the
Chern number Cn (module 2π). The parameter Cn is
obtained by integrating the Berry curvature ΩnðkÞ ¼ ∇k ×
hunðkÞji∇kjunðkÞ · ẑ of the nth mode throughout the first
Brillouin zone. For our system, Cn is expected to be zero
due to an odd distribution of the Berry curvature in k space,

which should be expected given that TRS is preserved
[1,26,27]. It follows that these lattices are classified as
trivially gapped materials in the context of QHE systems.
Nevertheless, for small SIS breaking, the Berry curvature is
highly localized at the valleys, and the local integral of the
Berry curvature converges quickly to a nonzero quantized
value [13,23]. This local integral is often referred to as the
valley Chern numberCv of the nth band, and it is defined as
2πCv ¼

R
ΩnðkÞd2k, where the integral bounds extend to

a local area around the valley. The right-hand side of this
equation is also referred to as the topological charge.
Previous studies in electronic systems [15] have shown
that this quantized value has important implications
because it characterizes the bulk-edge correspondence. In
fact, the difference between the valley Chern numbers of
the upper (or lower) bands of two adjacent lattices indicates
the number of gapless edge states expected at the DW.
Numerical integration of the Berry curvature shows that

each valley of either the α or the β lattice carries a
topological charge of magnitude π. The two lattices clearly
exhibit Berry curvatures of opposite signs. It follows that,
for the upper mode of the valley K, the valley Chern
numbers are − 1

2
for the α lattice and þ 1

2
for the β lattice.

The difference jCðαÞ
v − CðβÞ

v j ¼ 1 indicates the existence of a
single gapless edge state at the DW between the α and β
lattices. Figure 4(a) shows the calculated dispersion surfa-
ces of the flexural modes of the α lattice near the valley K.
Figure 4(b) shows the Berry curvature corresponding to the
upper mode. Equivalently, the lower band carries a Berry
curvature of opposite sign.

III. DOMAIN-WALL EDGE STATE

There are two possible configurations of the DWs
between the α and β lattices, that is, α above β (þy) or
vice versa [see Figs. 5(a) and 5(b)]. These two configura-
tions are not equivalent and are dominated by a mirror

(b)(a)

FIG. 3. Effect of the applied perturbation δp on (a) the
evolution of the upper and lower bounds of the band gap, and
(b) the gap width.

FIG. 4. (a) The dispersion of the flexural A modes of the α
lattice near the K valley. (b) The corresponding Berry curvature
of the upper mode.
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symmetry with respect to either DW1 or DW2. As a direct
consequence of the mirror symmetry, the edge states
propagating along the DWs can be either symmetric or
antisymmetric (with respect to the DW interface).
This symmetry is exploited in order to reduce the size of

the finite-element model. Specifically, we build an α-state
superlattice ribbon made of 37 triangular subcells stacked
along the y direction [see the red part of Fig. 5(a)] and
having a length of about 64a. Then, either symmetric or
antisymmetric boundary conditions along DW1 or DW2
are applied to simulate the presence of the β-state ribbon.
The model is solved to get the Bloch eigenvalues and
eigenvectors. Results show that the edge state at DW1 is
antisymmetric, while at DW2 it is symmetric. Figure 5(c)
shows the dispersion relation of such a ribbon structure.
The color bar denotes the y position of the centroid of the

superlattice weighted by the strain energy density. Blue
indicates edge states at DW1, while red indicates edge states
at DW2. The two modes have equal and opposite group
velocities but, since they are supported by the two different
edges of the lattice, they cannot couple. In addition, if
intervalley mixing is neglected (due to the large separation in
k space between theK andK0 points), these edge states are
immune to backscattering. Note that this assumption is well
verified in the absence of short-range disorder. We highlight
that this dynamic behavior is effectively equivalent to the
quantum spin Hall effect in topological insulators [1] if the
spin index is replaced by the valley index.

In order to further characterize the edge modes, we
perform full-field numerical simulations. Specifically, we
simulate the steady-state response of two different DW
shapes (i.e., straight and arbitrary) under a point excitation.
Low-reflecting boundaries are used all around the model to
suppress reflections. In both cases, results show that the
edge states are well concentrated near the DWs and are
guided along the wall itself [Figs. 5(d) and 5(e)].

IV. SEMIANALYTICAL APPROACH

Although the band structure and the valley Chern
number are accurately calculated via a numerical approach,
it is still useful to introduce a semianalytical model to
further analyze the effects of SIS breaking on the phononic
waveguide. Starting from the (undeformed) reference
lattice configuration which still preserves SIS, the k · p
perturbation approach [31] can be used to show that the
linear dispersions at the valleys can be mapped to a
massless Dirac equation. The method allows us to obtain
approximate solutions to the governing equations by using
the degenerate modes as the fundamental basis of an
expansion process. In this method, the origin of the k
axes is shifted to the degeneracy by letting q≡ k −K (or
k −K0) and ν≡ ω − ω0. Hence, the problem of determin-
ing the dispersion relations ν–q is cast in the form of
a 2 × 2 eigenvalue problem associated with the following
Hamiltonian:

HðqÞ ¼ vgq · σ⃗; ð3Þ

where vg is the group velocity and σ⃗ ≡ ðσ1; σ2; σ3Þ are Pauli
matrices. The Hamiltonian maps to the massless Dirac
equation associated with locally linear dispersion. By
extracting the eigenstates from the previous simulations,
we can numerically confirm that the group velocity vg ¼
�0.138c obtained from the k · pmethod matches well with
the tangent slopes of the exact dispersion data obtained
from numerical calculations [inset Fig. 2(a)].
When SIS is broken by the application of a pressure

perturbation δp, the degeneracy at K (or K0) is lifted, the
modes become nondegenerate, and a gap opens up. It is
well known that breaking SIS introduces a σ3 component
into the Hamiltonian that can be expressed as [1,26]

HðqÞ ¼ vgq · σ⃗ þmσ3: ð4Þ

It represents the Hamiltonian of a massive Dirac equation,
which we show applies also to our specific lattice structure.
Since the SIS-breaking perturbation is small, it can be

expressed as a perturbation of the massless Hamiltonian,

HðqÞ ¼ vgq · σ⃗ þ m⃗ · σ⃗; ð5Þ

where we assume a general perturbation that potentially
contains all four of the Pauli-matrix components

x
y

(DW1)

(DW2)

DW1

DW2

K’
K

K’
K

β

β

α

(a) (c)

(d)

(b)

(e)

x
z

y src
β β

α src
α

FIG. 5. (a) Lattice structure and (b) schematic illustration of the
two possible DW configurations based on the α and β lattices.
Each DW allows propagation of an edge state for each valley
index. (c) Dispersion curves in a superlattice ribbon containing 37
triangular subcells of α lattices stacked along the y direction, with
symmetric boundary conditions. The color bar denotes the y
position of the centroid of the superlattice weighted by the strain
energy density: modes in blue are edge states at DW1, while
modes in red indicate edge states at DW2. (d),(e) Full-field
simulations of the edge states along a straight and an arbitrarily
shaped DW. The red stars labeled “src” in the insets indicate the
positions of the sources.
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(σ⃗ ¼ ½σ1; σ2; σ3�) as well as the identity matrix σ0. At theK
(or K0) point (q ¼ 0), the Hamiltonian reduces to

Hð0Þ ¼ m⃗ · σ⃗: ð6Þ

Let ud
1;2 be the two degenerate modes of the undeformed

lattice and un
1;2 be the two nondegenerate modes of the

deformed lattice at q ¼ 0. These modes are available from
the numerical calculation of the band structure. By per-
forming the inner product

Iij ≡
Z

unit cell

ud
i · u

n
j d

3r; ð7Þ

it is seen that matrix I is diagonal (or antidiagonal,
depending on the numbering of the modes), which implies
that Hð0Þ ¼ m⃗ · σ⃗ is also diagonal. This means that the
perturbation term can contain only σ0 and σ3 components,
at most. Specifically, the splitting of the eigenfrequencies is
connected to the σ3 component, while the average upward
shift of the bands (as a function of δp) is connected to
the σ0 component. Note that the σ0 term does not affect
either the eigenvectors or the topological properties;
hence, it can be omitted in the Hamiltonian. The above
arguments confirm that the Bloch eigenvalue problem of
the SIS-broken lattice can be mapped to the massive Dirac
equation [Eq. (4)].
The bulk dispersion is then given by νðqÞ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvgqj2 þm2

q
, with a gap equal to 2jmj. From the

numerical results in Fig. 3(b), we find that jmj ¼
0.000795 MPa−1δp, where δp is expressed in megapascals.
The corresponding Berry curvature, associated with the

evolution of the eigenvectors in k space, has a distribution
sharply peaked at the two Dirac points,

ΩðqÞ ¼ 1

2
τmv2gðjqj2v2g þm2Þ−ð3=2Þ; ð8Þ

where τ ¼ � allows simple labeling of the two valleys K
and K0. Integrating Eq. (8) gives the valley Chern number
Cv ¼ 1

2
τsgnðmÞ. Under TRS, mK ¼ mK0 for either a

lattice α or β, and mðαÞ ¼ mðβÞ at the same valley. Thus,

jCðαÞ
v − CðβÞ

v j ¼ 1 is always true. Hence, we can conclude
that there is one gapless edge state living on the DW
connecting the two lattices α and β.

V. EDGE STATES AT EXTERNAL BOUNDARIES

The topological phase transition illustrated above can be
obtained also at the boundary of an individual lattice when
proper boundary conditions are selected. The two specific
boundary conditions considered in this paper are traction-
free and fixed. Each boundary condition can be applied on
the top ðþyÞ and bottom ð−yÞ boundaries of the ribbon (in
either the α or the β state), hence resulting in a total of eight

possible configurations [Figs. 6(a)–6(d)). However, since
the α and β lattices are inverted images of each other, a
given boundary condition on the edge of an α ribbon
corresponds to the inverted image of the same boundary
condition on the opposite edge of a β ribbon, therefore
yielding only four different edge dispersions [see, for
example, the pairs displayed in Figs. 6(a) and 6(c) and
Figs. 6(b) and 6(d)]. Note that, although they have the same
edge dispersion, the valley indexes interchange.
Not all four groups of the boundary conditions yield

edge modes. Only the two edges of the ribbon β in Fig. 6(a)
[or the edges of ribbon α in Fig. 6(c)] have propagating
edge states, as shown in Fig. 6(e). The other two groups
[Figs. 6(b) and 6(d)] do not support edge states [Fig. 6(f)].
Note that, in both cases [Figs. 6(e) and 6(f)], there are
localized modes near the free edge whose dispersion
curves run along the bulk bands corresponding to the
faster flexural branch. These modes have no topological
significance and they are effectively surfacelike waves
with depth of the same order of the wavelength, which
will be discussed in detail in a later section. These results
can be explained by identifying the similarity between the
dynamic behavior imposed by the boundary conditions and
the DWs, respectively.
Recall that DW1 supports an antisymmetric edge state.

Antisymmetry requires u · t ¼ 0 on the interface, where t
is any tangent vector to the interface, therefore having the
direction of either x̂ or ẑ. To satisfy the antisymmetry
condition, ux and uz must be zero, while the uy component
is nonzero. The A modes under consideration in this paper
exhibit particle displacement mostly dominated by the uz
component. When a fixed boundary condition is imposed
along the edge, the particle displacement u is set to zero,
therefore resembling the behavior of the antisymmetric

π π π

ω

π π π

ω

(f)

(e)
fixed

free

(d)(c)

(b)(a)

x̂, t̂1ẑ, t̂ 2

ŷ, n̂

FIG. 6. (a)–(d) Schematic of the four different boundary
configurations involving fixed and traction-free conditions on
the top ðþyÞ or bottom ð−yÞ boundaries of the α or β ribbons. The
configurations (a) and (c) yield two edge states associated with
the dispersion shown in (e). The two boundary conditions in (b)
and (d) do not yield topological edge states, as shown in (f).
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interface. On the other hand, DW2 supports symmetric
edge states. At the interface, we have u · ŷ ¼ 0, with no
restrictions on uz. Similarly to the discussion above, the
traction-free boundary condition will allow uz, therefore
behaving more closely to a symmetric interface.
As a result, each of the fixed boundaries in Figs. 6(a)

and 6(c) (note that this figure is equivalent to Fig. 5,
reported here for convenience) is dynamically equivalent to
half of DW1. This boundary configuration supports edge
states similar to those observed along DW1, but without
connecting the two continuous bulk bands [i.e., the red
modes in Fig. 6(e)]. Similarly, each of the free boundaries
in Figs. 6(a) and 6(c) supports an edge state that does not
cross the band gap. On the contrary, the other two groups
of boundary conditions [Figs. 6(b) and 6(d)] break the
similarity with the DWs; therefore, the edge states are
strongly suppressed.
Full-field numerical simulations confirm this behavior

and show that edge states can be excited on the fixed edge
on the top of an α ribbon, but they cannot be excited under
equivalent conditions in a β ribbon [see Figs. 7(a) and 7(b)].
These two conditions correspond to the fixed edges in
Figs. 6(c) and 6(b), respectively.

VI. LOSSLESS EDGE STATES

The results above deserve some further discussion to
clarify why the edge states can be excited independently
from the bulk states existing at the same frequency.
Because of the lack of a full band gap, when a point
excitation is placed at the domain wall, both bulk and edge
states can potentially be excited. However, two factors
contribute to make the edge states predominant compared
to the bulk states. First, the bulk states amplitude decays as
1=r from the source, while the edge-state amplitude
remains constant. Second, since the lattice is inhomo-
geneous, the mode shapes of either the bulk or the edge
states have nonuniform distribution over the unit cell. If a
point source is located at the point where the edge state has
the largest displacement amplitude, most of the input
energy is injected into the edge rather than the bulk state.
In Fig. 7(b), if the edge state is suppressed, the long-
wavelength ripples of the bulk state is visible. In summary,
both states exist, but their large separation in k space allows

selective excitation of the edge states. In a similar way, if a
distributed source other than a point source is used, the
valley injection can still be achieved by targeting a selected
wave number that supports strong edge modes. This result
can be achieved by using excitation methods such as comb
transducers.
In addition, it can be shown that the edge state prop-

agates without loss. At the frequency of the edge state, we
calculate the equifrequency contour (where the x axis is
aligned with the edge, the DW, or the boundary) of the
faster bulk state which is indicated by the solid curve in
Fig. 8. The curve shows an almost circular profile for the
propagating bulk state, while the dashed line indicates the
imaginary kbulk;ya component corresponding to an arbitrary
large kxa beyond the circle. This is equivalent to a
conventional slowness diagram, but different by a constant
factor a=ω. When the edge state propagates and induces
bulk-wave scattering, the kxa component must be con-
served, that is, ∥kedge∥ ¼ kbulk;x. Clearly, since the bulk
state is faster, there exists no kbulk on the solid curve
satisfying this condition. The scattered bulk state then has a
complex wave vector with a purely imaginary ky compo-
nent, as illustrated graphically in Fig. 8. This means that the
scattered bulk wave is evanescent along the y direction and
travels with the same speed as the edge state along the x
direction. As a result, the edge state is lossless and does not
necessarily require a bulk band gap, as long as the bulk
state is faster (in terms of phase velocity) than the edge state
at the same frequency.

VII. TUNING THE BOUNDARY EDGE STATES

In addition to the effect of the boundary conditions,
adjusting the pressure of the outermost cells (those close to
the boundary) can significantly tune the edge-state
dispersion. Yao et al. [15] showed that, on a graphene
system with staggered sublattice potential, the edge-state

Source

Fixed

Source

Fixed

β  latticeα lattice

(a) (b)

x
z

y x
z

y

FIG. 7. Full-field numerical simulations showing that (a) edge
states can be excited on the fixed edge on the top of an α ribbon,
while (b) they cannot be excited at the same position in a β
ribbon.

k
y
a

k
x
a

k
edge

a

Im(k
bulk,y

a)

FIG. 8. The equifrequency contour of the bulk state having the
x axis aligned with the edge (DWor boundary) at the edge state’s
frequency. Imposing the conservation of the wave-vector com-
ponent parallel (kx) to the interface and providing a bulk state that
is faster than the edge state results in scattered waves towards the
bulk that are evanescent in the normal (ky) direction, and the edge
state is therefore nonleaky.
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dispersion can be controlled by the on-site energy on the
boundary cells. Similarly, in our system, the phononic
edge-state dispersion can be manipulated by tuning the
pressure of the outermost row of lattice. From the
dispersion curve [Fig. 6(e)], we observe that the edge state
develops from the bulk band near the valley and, as kx
increases, the edge state localizes more sharply on the edge.
At kxa ¼ π, the energy is mostly confined to the outermost
row of the lattice; therefore, controlling the edge state
requires tuning the outermost cell properties. For our
phononic waveguide, a general trend can be established
by observing that a positive pressure on the outer cells tends
to increase the edge-state frequency at kxa ¼ π, while a
negative pressure tends to decrease it. This result suggests
that the edge-state dispersion can be tailored by controlling
the local pressure in the edge cells.
Numerical results in Fig. 9 show that a combination of

boundary conditions and local pressure allows us to tune
the edge states to a partially gapped band, a gapless band,
or a flat mode. As an example, by setting the outer
cell pressure to δpo ¼ þ2.5jδpj near the fixed edge [see
Fig. 6(c)], the dispersion curve of the edge state bends up
towards the top bulk band [Fig. 9(a)]. Similarly, by setting
the outer cell pressure to δpo ¼ −2.5jδpj near the free edge
[see Fig. 6(a)], the dispersion curve bends down towards
the bottom bulk band [Fig. 9(b)]. Flatbands can also be
obtained [Figs. 9(c) and 9(d)] by applying δpo ¼ 2jδpj and
−2jδpj, respectively, in the previous two cases. For the two
cases supporting the gapless edge states crossing the gap,
the pressure applied on the outer cells has a different sign
than the bulk lattice. This situation is somewhat equivalent
to introducing a DWon the boundary, and it results again in
the occurrence of gapless edge states due to the contrast
between bulk topological charges.

A. Discussion of the nontopological edge state

These results deserve some additional discussion
concerning the dispersion of the traction-free edge
[Figs. 6(e), 6(f), 9(b), and 9(d)]. Note that the dispersion
curves highlight the existence of a localized mode near the
free edge, which develops along the bulk band correspond-
ing to the faster flexural branch. These parts have no
topological significance, and they are effectively surface-
like waves with a depth of the same order of wavelength. To
clarify this aspect further, consider a finlike elastic wave-
guide with thickness t and width b. The fin can be thought
as a continuum version of our phononic ribbon without the
lattice structure. It is well known that, as kb ≫ 1, the
fundamental flexural mode develops into a surface wave
(Fig. 10). This evolution is similar to the S0 and A0 Lamb
modes evolving into Rayleigh surface modes as kt → ∞.
Therefore, this edge mode has no topological significance,
as confirmed also by the zero Berry curvature associated
with the bulk bands. Nevertheless, there is strong coupling
between this mode and the topological edge states propa-
gating along the same traction-free edge. To clarify the
interaction between these two edge modes, we can plot
again the results of Fig. 9(b) with an emphasized nonlinear
color scheme in Fig. 11. The gapless topological edge state
and the nontopological edge state meet at the upper left of
the cone, and there is a strong level repulsion indicating
hybridization. When they enter the continuous bulk band of
the other, they become strongly leaky due to the coupling
with bulk modes.

(a) (b)

(c) (d)

edge: fixed
po 2.5 p

edge: fixed
po 2 p

edge: free
po 2 p

edge: free
po 2.5 p

FIG. 9. (a),(b) Edge states at the fixed and free edges when the
outer cell pressure is set to δpo ¼ þ2.5jδpj and −2.5jδpj,
respectively. The edge states can be tuned to bend towards either
the top or the bottom bulk bands. (c),(d) Edge states at the fixed
and free edges when the outer cell pressure is set to δpo ¼ −2jδpj
and þ2jδpj, respectively. The edge states become flatbands.

z

y

b

kb = 0

kb = 157

FIG. 10. Cross-section view of the mode shapes of a finlike
elastic waveguide with thickness t and width b, at kb ¼ 0 and
kb ¼ 157. The fundamental flexural mode develops into a
surface wave as kb ≫ 1.

kxa

a
c

/ /

/

FIG. 11. Results of Fig. 9(b) plotted using a nonlinear color
scheme based on the particle displacement. This plot clarifies the
interaction between the two edge modes. The gapless topological
edge state and the nontopological edge state meet at the upper left
of theK point and experience a strong repulsion, which indicates
mode hybridization. When both modes enter the continuous bulk
band, they become leaky waves due to the coupling with the bulk
modes.
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VIII. SELECTIVE VALLEY INJECTION
AND EXCITATION OF ONE-WAY
PROPAGATING EDGE STATES

Finally, we show that, despite the TRS remaining intact,
the two valley-dependent edge states can be excited indi-
vidually, thereby giving rise to one-way propagation. Since
the two valley edge modes are largely separated in momen-
tum space, the coupling between them is vanishingly small.
This means that accurate valley injection can be achieved by
using a source having a stronger couplingwith one of the two
valleys. This selective coupling can be obtained using a set of
two point sources having a carefully controlled phase
difference. The procedure is explained below.
As discussed and shown in Figs. 5(c) and 9, edge states

can have a positive or a negative group velocity near a
valley, depending on the DW configuration (or, equiva-
lently, on the boundary conditions). Each of those modes
has its time-reversed counterpart defined around the oppo-
site valley (Fig. 12). The edge state associated with the
valley K ¼ ½ð4π=3aÞ; 0� (in reciprocal space) maps to
kxa ¼ −2π=3 in the first Brillouin zone of the superlattice.
For simplicity, we denote this state as theK-polarized edge
mode. Similarly, we designate its TR counterpart at kxa ¼
2π=3 as the K0-polarized edge mode, as shown in Fig. 12.
Note that the term polarization is used here not to classify
the particle velocity but instead to indicate the coupling
with a specific valley. This situation suggests that, although
both the polarized modes exist at the same frequency, they
can still be selectively excited by a source that is polarized
in favor of a specific valley.
Consider a K-polarized edge mode (kxa ¼ −2π=3). The

associated displacement field is a Bloch wave function
uKðxÞ ¼ ûKðxÞe−2iπx=3a, where ûK a periodic function of

period a. When selecting two points in physical space on
the DW (or on the boundary) such that their positions differ
by a distance a [for example, x and xþ a; see Fig. 13(a)], the
Bloch function must satisfy uKðxþ aÞ ¼ uKðxÞe−2iπ=3. In
other words, the phase of the particle displacement at xþ a
differs from that at x by− 2

3
π. Similarly, a phase difference of

þ 2
3
π is obtained for the K0-polarized edge mode.
Figure 13 shows a schematic view of both the point

forces and the displacement vectors in a complex plane,
where the single arrows represent the forces and the double
arrows represent the particle displacements.
Assume a harmonic point force applied at position x.

Without loss of generality, we can use this point as
reference for the phase calculation; that is, we assume that
the force fðxÞ is in phase with the displacement uðxÞ at
position x [the red arrows in Fig. 13(a)]. In this case, the
force fðxÞ contributes an equal amount of energy per periodR
T fðxÞ · uKðxÞdt [or, equivalently,

R
T fðxÞ · uK0 ðxÞdt] to

both the K- and K0-polarized modes. Next, we apply
another harmonic point force at position xþ a with a phase
difference designed to target a specific valley injection. As
an example, if the phase difference is selected as −π=3 [the
single blue arrow fKðxþ aÞ in Fig. 13(c)], theK-polarized
mode is excited because the force produces an additional
0.5 units of energy on the K-polarized mode. However,
this same force produces a negative unit of energy on
the K0-polarized mode, which, ultimately, eliminates the

(a)

(b)

FIG. 12. Edge states can have a positive or a negative group
velocity near a valley depending on either the DW configuration
or the external boundary conditions, as the red and the blue
curves shown in (a) and (b). Each state has its own time-reversed
counterpart defined around the opposite valley. The edge state
around kxa ¼ −2π=3 is associated with valley K and is denoted
as the K-polarized edge mode. Its TR counterpart around kxa ¼
2π=3 is denoted as the K0-polarized edge mode.

(a)

(b) (c)

FIG. 13. Schematic illustration showing the selective valley-
injection procedure. (a) Two point forces are applied on the DW
edge at two locations separated by a distance a (equal to the
lattice constant). The phase between the force and the displace-
ment at the two points can be schematically visualized in a
complex plane. (b) Choosing location x as the reference, we can
assume that the force fðxÞ (the single red arrow) and the
corresponding particle displacements uKðxÞ and uK0 ðxÞ (the
double red arrows) are initially in phase. In this case, the force
contributes one unit of energy to each mode. (c) The phase of the
K- and K0-polarized modes (the blue and yellow double arrows,
respectively) and of the harmonic forces at xþ a necessary to
create pure K- and K0-polarized modes (the blue and yellow
single arrows, respectively). The forces produce negative work on
the modes with different subscripts, therefore canceling the work
done by the force at x and realizing single-mode excitation.
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energy produced at x by the first point source. Similarly,
a phase difference of þπ=3 [the single yellow arrow
fK0 ðxþ aÞ in Fig. 13(c)] creates a pureK0-polarized mode.
In general, we observe that a phase difference of −2π=3
(2π=3) is the most efficient for generating a K-polarized
(K0-polarized) mode since the source is perfectly aligned
with the mode polarization, therefore applying two units of
energy to the target mode. However, in this case, 0.5 units
of energy would be done on theK0-polarized (K-polarized)
mode as well, hence resulting in a polarization ratio of 0.8.
In general, either of the two approaches described above
would be effective in triggering a specific edge state;
therefore, the preferred excitation strategy could be selected
based on the capability of driving a specific mode in a given
material configuration.
Full-field numerical results are shown in Figs. 14(a)

and 14(b) for the propagation along the DW and in
Figs. 14(c) and 14(d) for the fixed boundary. Both cases
are obtained using a phase difference of �2π=3. The
point-force sources are applied in the direction normal to
the plate and low reflecting boundaries are used all around
the model to suppress reflection.

IX. CONCLUSIONS

In this paper, we present the design of a tunable
topological elastic phononic waveguide based on the
acoustic analog of the QVHE. The lattice structure exploits
SIS breaking while preserving TRS, hence resulting in a
weak topological acoustic material. SIS breaking is induced
by producing elastic deformations of the original lattice
structure, while the topological phase transition is achieved
by contrasting ribbons having different topological charges.
This configuration could produce clear edge states at the
domain-wall interface. In a similar way, the proposed
design is capable of achieving topological edge states even

in a single lattice configuration where boundary conditions
are properly selected to mimic the second topological
phase. We show that, in both configurations, the edge
states can be tailored efficiently by simply tuning the
pressure within the cells. Despite TRS being preserved
in the proposed design, selective valley injection can be
effectively achieved by using a two-point source excitation
strategy, thereby giving rise to well-defined unidirectional
edge states. We note that, in the presence of smooth
disorder, the intervalley mixing proves to be sufficiently
weak to result (almost completely) in the backscattering of
immune edge states.
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