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This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for
isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure
to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the
separation of the thermal relaxation rate and frequency of vibration. This approach is validated using
silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement
in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work
proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate
TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on
microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-
grade MEMS gyroscope, which remains a great challenge and is very appealing.
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I. INTRODUCTION

Micro- and nanomechanical resonators have been
widely used as front ends for ultrasensitive sensing, and
precision measurements, such as chemical or biological
sensing [1–6], wireless filters [7,8], frequency referen-
ces [9], microscopy [10–12], inertial sensing [13–15],
and many other applications [16–22]. The mechanical
design of these small devices could greatly influence the
overall performance of the instruments. A key figure of
merit for a sensitive mechanical resonator is the quality
factor (Q), which is defined as the ratio of the maximum
strain energy to the dissipated energy per vibration cycle.
The relevant mechanical damping mechanisms of micro-

and nanomechanical resonators have been extensively
investigated. Some known damping mechanisms include
air damping involving drag-force damping and squeeze-
film air damping [23,24], material losses caused by defects
in the bulk or on the surface of the resonator [25–28],
clamping loss induced by energy transfer from the reso-
nator to the substrate [29–31], and intrinsic damping in the
resonator caused by phonon scattering (Akhiezer effect)
[32–35] and phonon transport (i.e., thermoelastic dissipa-
tion, TED) [36–39]. These dissipation mechanisms are
treated as dampers in parallel, such that the reciprocal of
the overall Q value satisfies Q−1 ¼ P

jQ
−1
j , where j labels

the different mechanisms. Most damping mechanisms can
be reduced by existing methods such as high-vacuum
packaging, post-treatments, and anchoring resonators on
nodes of vibration modes. Fundamental anharmonic effects

caused by phonon interactions present fundamental upper
limits of the Q value. Among them, TED is the dominating
mechanism, especially in most flexural-mode resonators.
Thus, the Q of many well-designed and well-fabricated
micromechanical resonators is restricted by TED. TED
is also an important damping factor in nanomechanical
resonators at room temperature.
The intuitive picture of the TED process can be modeled

based on classical heat transfer and the resulting entropy
generation. TED has been known for a long time to be an
important source of internal friction [40]. In recent years,
TED has been revisited primarily because it is commonly
encountered in micro- and nanomechanical devices. TED
can be separated into two parts. The first part is material
dependent, which determines the strength of the damping.
The other part is both geometry and material dependent,
which determines the frequency of peak damping. To reduce
TED, materials should be selected that have a low thermal-
expansion coefficient, and high thermal conductivity for
isothermal-mode resonators or low thermal conductivity for
adiabatic-mode resonators [41–43]. Moreover, structures
with thin bending beams and low resonant frequencies
for isothermal-mode resonators or thick bulk and high
resonant frequencies for adiabatic-mode resonators should
be designed. In particular, the mechanical design for a high
thermoelastic quality factor (QTED) is a very tricky issue. The
mechanical properties of micro- and nanoscale devices
can impose ultimate limits on their performance, thus, the
structural design can be of great significance. There are
many examples of enhancing performance via innovative
structural design or structural optimization of the micro-
and nanomechanical devices [4,16,44–46]. For resonators*dingbangxiao@nudt.edu.cn
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working in the flexural mode, the key to designing a high-
QTED structure is having a small beamwidth and low
resonant frequency. Recently, great effort has been made
to mitigate the TED of micromechanical resonators working
in the flexural mode via structural refinement [47–49]. In
most studies, the upper bound of QTED is confined by the
coupling nature of the resonant frequency and the width of
the bending beam (or the thermal relaxation rate). Thus, the
resonant frequency cannot be further reduced once the
beamwidth reaches its lower limit. Here, we introduce an
alternative method to mitigate TED in the flexural mode by
decoupling the resonant frequency and beamwidth. We
demonstrate the efficacy of this approach by comparing
QTED-enhanced microfabricated devices with conventional
devices with similar structural parameters. The devices
are engineered to isolate TED by greatly reducing other
damping mechanisms.

II. RESULTS

A. TED mitigating design strategy

SophisticatedTED theoreticalmodels that account for two-
dimensional [38] or three-dimensional heat transfer [39] have
been developed.Commercial finite-element-method software
is able to estimate TED for complex structures. We use the
classical one-dimensional TED model to reveal our TED-
mitigating approach because of its explicitness. Moreover,
the one-dimensional TED model has adequate precision for
characterizing flexural-modemicro- andnanoresonators [50].
Because the majority of the heat transfer occurs in the
thickness dimension in most flexural-mode cases.
The Lifshitz-Roukes model is a widely used exact

one-dimensional TED theoretical model [36], based on
which, QTED can be expressed by

Q−1
TED ¼ Eα2T0

C

�
6

ξ2
−

6

ξ3
sinh ξþ sin ξ
cosh ξþ cos ξ

�
; ð1Þ

ξ ¼ b

ffiffiffiffiffiffiffiffiffiffiffi
Cπf0
κ

r
; ð2Þ

where E is the Young’s modulus, α is the linear coefficient
of thermal expansion, T0 is the equilibrium temperature, C
is the specific heat per unit volume, b is the width of the
bending beam, f0 is the resonant frequency, and κ is the
thermal conductivity of the material. Figure 1(a) shows that
QTED of the single-crystal-silicon structures is a function of
resonant frequency and beamwidth. For flexural-mode
micro- and nanoresonators that demand a high QTED, it
is much more preferable to work in the left side of the
“valley,” because it is more convenient for obtaining thinner
beams and lower resonant frequency.
The conventional method of mitigating TED is to reduce

the width of the bending beam. Because the beamwidth is
directly coupled with the resonant frequency, the resonant
frequency also decreases when reducing the beamwidth.
However, this approach is limited, because the beamwidth
cannot be infinitely small.
Here, we introduce an alternative approach to break

this limitation. Our method is to hang lumped masses on
frame structures by single beams to decouple the beam-
width and resonant frequency, as illustrated in Fig. 1(b).
The resonant frequency f0 is determined by the effective
stiffness keff and effective mass meff of the resonator:
2πf0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff=meff

p
. Hanging lumped masses can greatly

change meff , whereas it hardly affects keff [51]. This
approach could provide a much lower resonant frequency
and thus much lower ξ than conventional pure-frame
structures. Moreover, this approach provides the capability
of freely adjusting and controlling the resonant frequency
or QTED independently from the width of the bending
beam. Hanging lumped masses is feasible on the micro-
and nanoscale because structures have much higher bend-
ing strength on these scales [52] and elastic deformation
caused by gravity is negligible owing to the size effect.
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FIG. 1. (a) Thermoelastic quality-factor QTED as a function of resonant frequency and beamwidth. (b) Hanging lumped masses on
frame structures by single beams to manipulate the resonant frequency independently of beamwidth, which can greatly enhance QTED.
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The presented TED-mitigation approach can be explained
based on the intuitionistic notion of thermal relaxation
[36,40]. When the thermal relaxation rate ftherm is close
to the frequency of vibration, the damping reaches a
maximum value, where ftherm ¼ κπ2=ðCb2Þ. Thus, the heart
of mitigating TED is the separation of ftherm and the
frequency of vibration. Our approach is to decouple ftherm
from the resonant frequency f0 of the resonators working
under isothermal conditions, for which f0 ≪ ftherm. Thus,
this method can provide an extra degree of freedom to
manipulate TED beyond altering the beamwidth.

B. TED isolating design

To experimentally verify our approach, we have devel-
oped single-crystal-silicon-based disklike micromechanical
resonators consisting of a symmetrical frame structure of
8-mm diameter and 150-μm height suspended by a central
anchor with 4-mm diameter as depicted in Fig. 2. The
flexible frame structure is made of nine concentrically
nested, equally spaced rings connected with alternately
spaced spokes. The rings and spokes have identical width,
as shown in Fig. 2(a). The b − f0 decoupling approach can
be implemented by hanging lumped masses on the illus-
trated frame structures by single beams. In this study, the

lumped masses are hung on the outer 2, 4, 6, and 8 layers of
rings and spokes to vary the resonant frequency, as shown
in Fig. 2(b). The structural parameters of the resonators are
similar, as shown in Fig. 2(a). The resonators are actuated
and transduced by capacitive electrodes. The capacitance
gap is designed to be 15 μm. The devices are fabricated
with an aligned Si-Si direct bonding and deep-reactive-ion-
etching process. Photographs of the fabricated resonators
are shown in Fig. 2(c).
The disklike design provides an ideal platform to isolate

and study TED. First, the balanced wineglass operation
modes greatly mitigate the clamping loss, as shown in
Fig. 2(e). Second, appropriate dimensions of the micro-
resonators provide very low effective surface-to-volume
ratios, which results in a very small surface loss. In
addition, these resonators are characterized in high-vacuum
environments, in which air damping is also negligible, as
shown in Fig. 2(f). To summarize, the disklike resonators
can rule out the effect of additional critical damping
mechanisms and hence isolate TED in the measured
devices. In this study, we characterize the n ¼ 2 wineglass
modes of such resonators [see Fig. 2(d)]. We note that
the n ¼ 2 wineglass mode is the lowest balanced mode,
which is more suitable for the one-dimension TED theory
model than higher-order balanced modes. Moreover, the
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FIG. 2. (a) Dimensions of the frame structure of the disklike resonators. (b) Schematic of hanging lumped masses on the frame
structure of the disklike resonators. Type i: frame-structure resonator. Types ii, iii, iv, and v: resonators with 2, 4, 6, and 8 outer layers of
rings and spokes, respectively, hung with lumped masses. (c) Top-view photograph and a enlarged view of the fabricated resonators.
(d) The n ¼ 2 wineglass modes of the designed resonators. (e) Spectrum of a typical TED-isolating resonator (resonator iii) at room
temperature and 2 Pa pressure. The n ¼ 2 wineglass mode has the highest Q, which is used to study the TED. (f) Quality factors for
resonators i, ii, iii, iv, and v when operated at various pressures. Q almost stops increasing when the pressure is below 0.01 Pa.

MITIGATING THERMOELASTIC DISSIPATION OF … PHYS. REV. APPLIED 8, 064033 (2017)

064033-3



n ¼ 2 wineglass mode is one of the most widely used
balanced modes.

C. Verification

Dissipations of the TED-isolating disklike resonators are
measured. The sample numbers of the different types of
resonators are as follows: three type-i resonators, four
type-ii resonators, three type-iii resonators, three type-iv
resonators, and two type-v resonators. First, the spectrum
method is used to find the n ¼ 2 wineglass modes. Then,
the ringdown method is used to precisely obtain Q. All
dissipation measurements are performed at high vacuum
(10−3 Pa) and at room temperature (300 K). Air damping is
suppressed under these conditions. Based on the pressure–
quality-factor curve, Qair of each kind of resonator under
0.001 Pa can be calculated [53]. The recorded decaying
signal is filtered, normalized, and enveloped. The decay-
time constant τ is calculated by fitting the envelope with an
inverse exponential function, A0 expð−t=τÞ, where t is
the time. Q is then calculated based on Q ¼ πf0τ. The
tested results are illustrated in Fig. 3(a) and summarized
in Table I. Figure 3(b) shows the highest-tested Q of
resonators i–v. The maximum and minimum Q of the
pure-frame resonator (type i) are 88 291 and 78 132,
respectively. The Q of the b − f0 decoupled resonators
(types ii–v) ranges from 195 274 to 277 924, with the
minimumQ being observed from resonator ii (i.e., with two
outer layers of rings and spokes hung with lumped masses)
and the maximum Q is observed from resonator iv (i.e.,
with six outer layers of rings and spokes hung with lumped
masses). To further enhance the effectiveness of the design
strategy, data from one more disklike resonator reported in
Ref. [51] is also included in Fig. 3. The basic structural

parameters of this resonator are similar to those of
resonators i–v, whereas the five outer layers of rings are
interconnected with 16 rather than eight spokes, and the
outer four layers of rings and spokes are hung with lumped
masses. It provides higher stiffness and thus higher reso-
nant frequency than resonators i–v. The tested resonant
frequency and Q of the n ¼ 2 wineglass mode are 5770
and 157 508 Hz, respectively. The results coincide well
with the theoretical expectation, as shown in Fig. 3(a).
We estimate QTED’s of the resonators using the one-
dimensional Lifshitz-Roukes model by substituting the
measured beamwidth (20.6 μm) and the tested resonant
frequencies of each resonator into Eqs. (1) and (2). The
simulated values based on the three-dimensional TED
theory are generated using the geometric parameters
determined via a careful measurement of the fabricated
resonators. The calculated and simulated QTED of each
resonator are also shown in Fig. 3(a).
Figure 3 reveals some interesting features. First, the

b − f0 decoupled resonators provide much higher Q and
lower f0 than the pure-frame resonators. Because the
TED-isolating resonators are dominated by TED, it can
be inferred that the b − f0 decoupling approach greatly
mitigates the TED in these resonators. This is also reflected
in the TED simulation results. Second, there is a disparity in
the trends of the one-dimensional and three-dimensional
models. The reason for this is that the one-dimensional
TED model only considers the irreversible heat flow across
the beam thickness, whereas the three-dimensional model
also accounts for the heat flows along the longitudinal and
height axes. Moreover, the one-dimensional TED model
leaves out the structural boundary conditions and mode
shapes of the resonator, whereas the three-dimensional

Calculated QTED

Simulated QTED
 

i ii iii iv v

i

ii iii

iv v

Time (s)

τ = 2.66 s
Q = 88,291

τ = 17.31 s
Q = 226,451

τ = 22.32 s
Q = 249,302

τ = 25.97 s
Q = 277,924

τ = 23.71 s
Q = 252,093

Resonator type

N
or

m
al

iz
ed

 s
ig

na
l

Resonant frequency (kHz)

Q
ua

lit
y 

fa
ct

or
 (

×
10

5 )

3 4 5 1087 1196 12
0

1

2

3

4

5(a) (b)

−1
4 8 12

1

0 16

−1
4 8 12

1

0 16

−1
4 8 12

1

0 16

4 8 120 16

4 8 120 16
−1

1

−1

1

Tested Q

[51]

−1
4 8 12

1

0 16

τ = 8.70 s
Q = 157,508

[51]

00

0 0

0 0

FIG. 3. Quality-factor comparison between the b − f0 decoupled disklike resonators and the pure-frame resonators. (a) Calculated
QTED’s based on the one-dimensional Lifshitz-Roukes TED model, simulated QTED’s using COSMOL Multiphysics (which is based on a
three-dimensional TED model), and experimentally tested Qs of resonators i–v. The Qs are tested based on the ringdown method. An
additional disklike resonator reported in Ref. [51] is also included. (b) The best experimental results of each kind of resonator. The red
line is the fitted envelope of the decaying signal.
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model takes into account the mode shapes and the majority
of boundary conditions. The structures and the n ¼ 2
wineglass mode shapes of the TED-isolating resonators
are complex. Therefore, the TED calculation based on the
one-dimensional TED model may not be as precise as that
based on the three-dimensional one. Third, both simula-
tions and experiments demonstrate that although the
resonator with eight layers of masses (i.e., resonator v)
has the lowest f0, it provides a lower QTED and Q than the
resonator with six layers (i.e., resonator iv). This is a
representative example of the divergence of the one-
dimensional and three-dimensional TED models. Our
explanation is as follows. It is mostly the change of the
effective mass meff that modifies f0 when adding lumped
masses. The effective mass is defined as meff ¼ λM, where
M is the real mass, and λ is a coefficient smaller than 1,
which is determined by

λ ¼
RRR

V x
2=q2dVRRR
V 1dV

: ð3Þ

Here, x is the displacement of each mass point, and q is
the amplitude (maximum jxj). The displacements of the
resonator’s inner rings and spokes are relatively small
compared with the outer ones. Thus, when adding a lumped
mass in the inner rings and spokes, meff of the overall
resonator changes only slightly. Accordingly, there is only
a small change inmeff and f0 of resonator v compared with
resonator iv. However, hanging lumped masses on the
rings and spokes may to some degree increase the equiv-
alent thickness of the beams across which heat conduction
occurs. If lumped masses are added on the inner rings and
spokes, the increase of equivalent thickness prevails over
the reduction of f0, which leads to an exacerbation of
TED. Last, if the measured data are fitted with the model of
Q−1¼Q−1

TEDþQ−1
air þQ−1

other, we will find that the unknown
Qother is frequency dependent, and Qother increases
when f0 reduces, which is very like the characteristic
of the TED. The rational hypothesis is that the simulated
QTED is higher than the actual QTED of the fabricated
resonators. Thus, some residual TED is still included in the
calculated Q−1

other.

III. DISCUSSION

Although the b − f0 decoupling design strategy is
verified using micromechanical resonators to exclude the
surface dissipation, it may also be instructive for designing
nanomechanical resonators, because TED is a very impor-
tant damping mechanism on the nanoscale as well. This
method can also be widely applied to other types of flexural
resonators, such as doubly clamped beams [54,55], canti-
levers [56], free-free beams [29], rings [57–59], tuning
forks [60,61], etc. It is also feasible for enhancing theQTED
of resonators made from other high-thermal-conductivity
materials other than single-crystal silicon (such as dia-
mond, GaN, and SiC). In addition, this method may lead to
a change in the overall design strategy for isothermal-mode
micromechanical resonators, and it may also provide an
alternative perspective for the design of some nanome-
chanical resonators.
More importantly, this TED-mitigation method may

pave the way for making an inertial-grade [62] micro-
electromechanical systems (MEMS) Coriolis vibratory
gyroscope (CVG), which remains a great challenge and
is very appealing. The bias and bias drift of the common
force-to-rebalance mode MEMS CVG is scaled by a figure
of merit (FOM) defined by FOM ¼ 1=ð2AgτÞ [63], where
Ag is the angular gain factor determined by the mode shape
of the resonator. Our method can be used to engineer very
long τ to depress the bias and drift to the inertial grade.
Moreover, if the transducers are appropriately designed,
the greatly improved mechanical sensitivity [46] of the
MEMS CVG, owing to the increase of τ, may result in an
impressive enhancement for the signal-to-noise ratio. Last
but not least, the mechanical resolution of the resonator
can also be improved using this strategy. Brownian
noise provides a theoretical lower limit for gyroscope reso-
lution, which is given by ΩBrown¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ð2keffτÞ

p
=ðAgx0Þ

[57,64], where kB, T, and x0 are the Boltzmann’s constant,
temperature, and mechanical amplitude of the driving
mode, respectively. τ is greatly improved and the other
parameters are almost unaffected in our method. Thus, the
Brownian noise can be greatly depressed. Overall, this
TED-mitigation method may have a notable impact on the

TABLE I. Basic properties of the TED isolating disklike resonators.

f0 (Hz) τ (s) Tested Q

Resonator type Max Min Max Min Max Min Calculated QTED
a Simulated QTED

b Qair

i 11 030 10 561 2.66 2.26 88 291 78 132 136 100 131 300 67 × 106

ii 4446 4164 17.31 14.29 226 451 195 274 340 900 303 600 307 × 106

iii 3805 3556 22.32 17.35 249 302 207 391 398 700 339 900 408 × 106

iv 3599 3406 25.97 20.90 277 924 236 244 418 900 346 300 564 × 106

v 3576 3383 23.71 19.29 252 093 216 783 421 600 344 600 630 × 106

aCalculated based on the one-dimensional Lifshitz-Roukes TED model.
bSimulated using COMSOL Multiphysics, which is based on the three-dimensional TED model.
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MEMSCVG resonator design. In particular, the τ enhance-
ment demonstrated in this paper may produce an order-
of-magnitude promotion in bias stability and severalfold
enhancement in mechanical resolution, which could
strike some of the most sophisticated tactical-grade MEMS
CVGs [13,14,63] into inertial grade.
The highest Q and τ of the b − f0 decoupled resonator

with a beamwidth of 20.6 μm is demonstrated to be
277 924 and 25.97 s, respectively. These are record values
for silicon resonators with a similar beamwidth. A higherQ
could be obtained if the lumped masses were further
increased or if this approach were applied to resonators
with thinner beams.
As concise theory, the one-dimensional TED model may

have some degree of error in calculating QTED of complex
structures and high-order modes. However, it is still quite
rational for estimating and qualitatively comparingQTED of
conventional resonators. When utilizing the b − f0 decou-
pling design method, it is advisable to add lumped masses
in positions that have relatively large displacement.

IV. CONCLUSION

In conclusion, we have presented an alternative design
strategy of hanging lumped masses on a frame structure to
mitigate TED of micromechanical flexural resonators made
from high-thermal-conductivity materials. The heart of this
design method is decoupling the resonant frequency from
the effective beamwidth (or the thermal relaxation rate).
Our approach has been validated using TED-isolating
MEMS resonators. The b − f0 decoupling method pro-
vides a universal way to engineer high QTED. It could be
very constructive for enhancing the sensitivity, resolution,
and stability of micromechanical resonating sensor sys-
tems. The application of this method to the next-generation
MEMS gyroscope has been elaborated.
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