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We report on the theoretical and experimental realization of a double-zero-index elastic waveguide and
the corresponding acoustic cloaking and supercoupling effects. The proposed waveguide uses geometric
tapers in order to induce Dirac-like cones at k⃗ ¼ 0 due to accidental degeneracy. The nature of the
degeneracy is explored by a k · p perturbation method adapted to thin structural waveguides. The results
confirm the linear nature of the dispersion around the degeneracy and the possibility to map the material to
effective-medium properties. Effective parameters numerically extracted using boundary medium theory
confirm that the phononic waveguide maps into a double-zero-index material. Numerical and experimental
results confirm the expected cloaking and supercoupling effects.

DOI: 10.1103/PhysRevApplied.8.064031

I. INTRODUCTION

The concept of acoustic metamaterials [1,2] has rapidly
emerged as a powerful alternative to design materials and
structures exhibiting unexpected dynamic properties typi-
cally not achievable in natural materials. The early develop-
ment of the concept of metamaterials dates back to 1968
when Veselago [3] predicted materials exhibiting simulta-
neously negative permeability and permittivity. Such neg-
ative index media remained substantially unexploited until,
almost 30 yr later, Pendry [4] suggested the possibility to
achieve the amplification of evanescent waves, which would
have profound effects on lens design and imaging applica-
tions. Experimental observation of negative index materials
was provided shortly afterward bySmith [5,6], whodesigned
a periodic array of interspaced conducting and nonmagnetic
split-ring resonators. Following these studies, the scientific
community has rapidly extended the underlying physical
concepts to other fields of classical mechanics such as
acoustics and elastodynamics. In less than two decades, this
concept has allowed a drastic expansion of the material
design space enabling applications involving acoustic wave
management and control. Properties such as acoustic band
gaps [7–12], focusing [13–17], collimation [18–20], sub-
wavelength resolution [21–26], and negative refraction
[27–30] have been discovered and studied in depth. More
recently, researchers have shown a rather exciting property of
thesematerials consisting of their ability to achieve near-zero
effective parameters. This class of materials was formulated
for electromagnetic waves where epsilon-near-zero (ENZ),

mu-near-zero, and epsilon-and-mu-near-zero (EMNZ) prop-
erties were obtained. Applications included antenna designs
with high directivity [31,32] and enhanced radiation effi-
ciency [33,34], as well as the realization of unconventional
tunneling of electromagnetic energy within ultrathin sub-
wavelength channels or bends [35–37]. Among the most
peculiar characteristics of these materials, we mention the
independence of the phase from the propagation distance.
Thismeans that awave entering a double-zero-indexmaterial
emerges on the other side having the exact same phase as the
input. In addition, double-zero materials are also character-
ized by a high level of transmissibility, ideally acting as a
nonreflective waveguide even in the presence of sharp
impedance discontinuities.
In analogy with an EMNZ, an acoustic double-zero-index

material (DZIM) corresponds to a medium with simulta-
neous zero effective mass density and elastic compliance.
While materials with near-zero permittivity are available in
nature (e.g., some noble metals, doped semiconductors [38],
polar dielectrics [39], and transparent conducting oxide
[40]), in acoustics, near-zero density and elastic compliance
must be achieved via effective quantities by leveraging the
local dynamic response of themedium. In the past few years,
some acoustic metamaterials were reported to exhibit single
zero effective parameters, such as near-zero density [41–43].
We note that this behavior is the exact counterpart of single
zero electromagnetic materials, such as the ENZ. Although
these materials offered good control on the phase, they
suffered from low transmissibility due to an intrinsic imped-
ance mismatch between the host and the zero effective
density medium. Double-zero materials target specifically
this limitation of the transmission properties. However,
designing acoustic media with double-zero effective proper-
ties is not a trivial task given that they are not readily available
in nature.
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Recent studies of photonic and phononic crystals [44–50]
revealed that when a Dirac-like cone (DC) can be obtained
at the center of the Brillouin zone, such a lattice can be
mapped into a double-zero refractive-index material. This
observation has drastically extended the possibility to
design materials having near-zero effective properties.
Nevertheless, while different applications of this basic
concept were explored in photonics and phononics, there
has been very little research targeting the implementation of
these effective material properties in solids [44,51]. The
research on elastic phononic waveguides has been lagging
behind even more, and it currently counts no attempt of
designing zero-index properties. In addition, the experimen-
tal implementation and validation of zero-index elasticmedia
has not been reported in the scientific literature,mostly due to
the complexities associatedwith their design and fabrication.
In the present study, we report on the theoretical, numeri-

cal, and experimental realization of a structural phononic
waveguide exhibiting double-zero-index behavior and
capable of achieving acoustic cloaking and supercoupling.
The proposed design builds upon a class of metamaterials
recently introduced by the authors [52–54] and based on
geometric tapers realized in a single-material system. The
specific design employed in this study can be thought of as an
equivalent locally resonant unit where an internal resonating
core is embedded within a more compliant medium (i.e., the
taper). Geometrically tapered metamaterials [52] exhibit
DCs at the center of the Brillouin zone (Γ point) that are
the result of accidental degeneracies [55]. In other terms, the
degeneracy is induced by the specific combination of the
geometric parameters of the tapers, and it is not protected by
the underlying lattice structure (like, for example, in gra-
phene). The bands emanating from the threefold degenerate
point (the Dirac-like point) exhibit isotropic linear
dispersion. We show that these properties are the foundation
that allows us to achieve double-zero effective properties in
this class of materials. In particular, we show that in the
neighborhood of this degenerate point, our waveguide
exhibits simultaneous zero mass density and zero reciprocal
shear modulus (or, equivalently, infinite shear modulus or
zero elastic compliance in shear).
Possible applications of such materials may include, but

are not limited to, efficient energy transmission across
discontinuities (e.g., joints in thin-walled structures) and
the consequent reduction of localization effects and
dynamic amplification, efficient energy extraction for
dissipation and/or harvesting, regardless of the location
or the spatial distribution of the acoustic source, and
vibration isolation of sensitive components. We anticipate
the proposed DZIM design to be virtually scalable to any
frequency range and geometric dimensions. In the case of
lightweight structural applications, such as those involved
in many transportation systems, the typical dimensions of
the unit cell will range between 2 and 6 mm in thickness
and 1 to 4 cm in terms of lattice constant. Such dimensions

will allow elastic wave control via DZIM properties in a
frequency range of approximately 20 to 100 kHz (consid-
ering aluminum alloys). Equivalently, the wavelength will
range between 6 and 1.5 cm. In more general terms, a
straightforward approach to rescale the proposed design in
order to operate at different frequencies consists of isotropi-
cally rescaling the dimensions and the dispersion properties
bykeeping λ=L ¼ const,whereL is the lattice constant, and λ
is the wavelength at a frequency f. As an example, dividing
all the geometric dimensions by a factor of 2 will double the
operating frequency. This approach will allow a simple
rescaling without requiring a complete redesign of the unit.
It is foreseeable that the DZIM design can be implemented
also at microscales. Many applications in the telecommuni-
cations area exploit analog filtering of surface acousticwaves
as an integral part of their modulation or demodulation
systems. DZIM-based filters can open possibilities to care-
fully tailor the transfer function of these systems. The
rescaling argument discussed above suggests that at sub-
millimiter scales, the design will experience a substantial
increase in the operating frequencies thatwill likely belong to
the low-megahertz range while transitioning to the high-
megahertz range for dimensions on the order of microns.
From a fabrication perspective, it is expected that the
currently available additive manufacturing techniques
already allow sufficient precision to build such materials.

II. RESULTS

A. Double-zero-index waveguide via geometric tailoring

The proposed phononic waveguide employs a tapered
unit cell in a square lattice configuration (C4v symmetry).
The unit cell consists of a square plate having an embedded
elliptic toruslike taper and a (resonating) center mass. The
unit is also symmetric with respect to the midplane of the
waveguide (Fig. 1). The x-z cross section of the unit is
shown in Fig. 1(b) and shows the main geometric param-
eters where t is the thickness of the element, L is the lattice
constant, a and b are the lengths of the minor and major
axes of the ellipse, r is the radius of the torus, and h is the
thickness of the center mass. The unit is made out of
aluminum with mass density ρ ¼ 2700 kg=m3, Young’s
modulus E ¼ 70 GPa, and Poisson’s ratio ν ¼ 0.33.

FIG. 1. Schematic of (a) the fundamental tapered unit cell and
(b) its x-z cross section showing the main geometric parameters.
The tapered geometry is symmetric with respect to the midplane
of the plate.
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The dispersion relations for the proposed system are
calculated using a commercial finite-element solver
(COMSOL MULTIPHYSICS). Given the finite dimension of
the unit cell in the thickness direction, the dispersion curves
are composed by symmetric (S), antisymmetric (A), and
shear horizontal (SH)guidedLambmodes.Byusing a proper
selection of the geometric parameters (specifically, L ¼
0.04 m, t ¼ 0.008 m, a ¼ 0.0039 m, b ¼ 0.007442 m,
r ¼ 0.012 m, and h ¼ 0.013 m), the band structure of the
waveguide is tuned to exhibit a threefold degenerate point
(the Dirac-like point, DP) at f ¼ 27.04 kHz and k⃗ ¼ 0
[Fig. 2(a)]. Note that the branches emanating from the
degenerate point are isotropic and linear and form two cones
touching their vertices at the DP [Fig. 2(b)]. The cones are
made of A0 modes having nonzero but constant group
velocity and are intersected by an A0 flatband at the DP.
The Dirac-like cone is the result of an accidental

degeneracy, which can be confirmed by slightly perturbing
the geometric parameters. By perturbing the toruslike taper
a (from 0.0039 to 0.0035) the cones separate [Fig. 2(c)] and
the triple-degenerate point splits into a nondegenerate and a
doubly degenerate band. The corresponding eigenstates of
the three degenerate modes are provided in Fig. 4(a), which
shows, from top to bottom, the lower cone, the flatband,
and the upper cone.

B. Analysis of the Dirac-like cones

To further understand the origin of the Dirac-like
dispersion, we extend the k⃗ · p⃗ method (well known in
electronic applications [56]) to analyze our phononic
system. This method was recently adopted by Mei et al.
[55] to analyze the Dirac and Dirac-like cones in two-
dimensional phononic (sonic) and photonic crystals.
Our system is described by Navier’s equations with

traction-free boundary conditions on the top and bottom
surfaces of the waveguide. Imposing such boundary

conditions when in the presence of tapers creates nontrivial
complexities due to the changing direction of the unit
vector normal to the tapered surface. To simplify the
modeling, we resort to an approach previously used to
extend the three-dimensional plane-wave expansion
method to 2D phononic waveguides [52,57]. According
to this method, we can view the two-dimensional wave-
guide as part of a three-dimensional, layered, periodic bulk
material constructed by alternating the waveguide with
vacuum layers [Fig. 3(a)] along the thickness direction. The
vacuum layers have negligible mass density and modulus to
allow for the traction-free boundary conditions on the
surface of the waveguide to be automatically satisfied.
The three-dimensional periodic medium so obtained,
whose unit cell is shown in Fig. 3(b), can be modeled
as a layered bulk material by Navier’s equations and solved
in order to extract the dispersion relations. Note that the use
of the vacuum layer ensures that the periodic images of the
waveguide along the thickness direction are dynamically
decoupled from each other, therefore, simply resulting in
repeated roots in the dispersion calculation. This approach
allows an efficient implementation of the adapted k⃗ · p⃗
method for bulk elastic systems as we present below.
We can then write the general form of Navier’s

equations for an inhomogeneous bulk medium in the
vector form as

−ρω2U⃗ ¼ ðλþ μÞ∇ð∇ · U⃗Þ þ μ∇2U⃗ þ ∇λ∇ · U⃗

þ ∇μ × ∇ × U⃗ þ 2ð∇μ · ∇ÞU⃗: ð1Þ

Here, U⃗ðr⃗Þ is the particle displacement vector, ρðr⃗Þ
is the local density, and λðr⃗Þ and μðr⃗Þ are the local
Lamé constants, which are all functions of the spatial
variables.
According to Mei et al. [55], we assume that all the

Bloch states at the Γ point (k⃗0 ¼ 0) are known and given by

U⃗n0ðr⃗Þ ¼ eik⃗0·r⃗ψ⃗n0ðr⃗Þ ¼ ψ⃗n0ðr⃗Þ, as well as the corre-
sponding eigenfrequency ωn0, where “n” denotes the band
index. The Bloch states at a generic wave vector k⃗ near
k⃗0 ¼ 0 can then be written as

FIG. 2. (a) The dispersion relations around f ¼ 27.02 kHz
showing the existence of a triple-degenerate point and a Dirac-
like cone (red box) for a given selection of the taper parameters.
(b) Equifrequency-surface plot corresponding to the frequency
range around the DP and showing the formation of the Dirac-like
cones. (c) When the geometric configuration is slightly perturbed
(taper coefficient a changes from 0.0039 to 0.0035) the Dirac-like
cone opens up, confirming that the formation of the linear
dispersions is due to an accidental degeneracy.

FIG. 3. Schematics of (a) the periodic waveguide and its
assembly in a 3D bulk layered medium used to calculate the
dispersion relations. (b) Detailed view of the unit cell of the 3D
bulk periodic medium showing the waveguide unit cell and the
vacuum layers.
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U⃗nk⃗ðr⃗Þ ¼ ψ⃗nk⃗ðr⃗Þeik⃗·r⃗ ¼ eik⃗·r⃗
X
j

Anjðk⃗Þψ⃗ j0ðr⃗Þ

¼
X
j

Anjðk⃗Þeiðk⃗−k⃗0Þ·r⃗U⃗j0ðr⃗Þ

¼
X
j

Anjðk⃗Þeik⃗·r⃗U⃗j0ðr⃗Þ; ð2Þ

where the unknown periodic functions ψ⃗nk⃗ðr⃗Þ are
expressed as a linear combination of the ψ⃗ j0ðr⃗Þ.
Substituting Eq. (2) into Eq. (1) and collecting terms linear
in k⃗, we obtain

X
j

Anjðk⃗Þeik⃗·r⃗ × fρðr⃗Þðω2

nk⃗
− ω2

j0ÞU⃗j0ðr⃗Þ

þ 2μðr⃗Þik⃗ · ½∇U⃗j0ðr⃗Þ� þ (λðr⃗Þ þ μðr⃗Þ)∇½ik⃗ · U⃗j0ðr⃗Þ�
þ (λðr⃗Þ þ μðr⃗Þ)ik⃗½∇ · U⃗j0ðr⃗Þ�
þ ∇λðr⃗Þ½ik⃗ · U⃗j0ðr⃗Þ� þ ∇μðr⃗Þ × ½ik⃗ × U⃗j0ðr⃗Þ�
þ 2½∇μ · ik⃗�U⃗j0ðr⃗Þ þ oðk2Þg ¼ 0: ð3Þ

Utilizing the orthonormality property of the basis functions
U⃗j0ðr⃗Þ, i.e., ½ð2πÞ3=V�

R
unit cell ρðr⃗ÞU⃗j0ðr⃗Þ · U⃗�

l0ðr⃗Þdr⃗ ¼ δjl,
where V is the volume of the unit cell, Eq. (3) can be
written as

X
j

½ðω2

nk⃗
− ω2

j0Þδlj þ Pjlðk⃗Þ�Anjðk⃗Þ ¼ 0; ð4Þ

where

Pjlðk⃗Þ ¼ ik⃗ · p⃗jlðk⃗Þ; ð5Þ

and up to the first order in k⃗, we can write

pjlðk⃗Þ ¼
ð2πÞ3
V

Z
unit cell

fðλþ μÞð∇U⃗j0ÞT · U⃗�
l0

þ ðλþ μÞ½∇ · U⃗j0ðr⃗Þ�U⃗�
l0 þ 2μ∇U⃗j0 · U⃗

�
l0

þ ½∇λ · U⃗�
l0�U⃗j0 þ 2ðU⃗j0 · U⃗

�
l0Þ∇μ

þ ½∇μ · U⃗j0�U⃗�
l0 − ½U⃗j0 · U⃗

�
l0�∇μg: ð6Þ

Equation (4) has nontrivial solutions only when the
following secular equation is satisfied,

det jðω2

nk⃗
− ω2

j0ÞI þ Pðk⃗Þj ¼ 0; ð7Þ

where I is the identity matrix. Since we are interested in the
linear dispersions of the Dirac-like cone, we consider only
the degenerate states at the Dirac-like point in the summa-
tion of Eq. (2). In fact, other bands contribute only to the
higher-order terms of k⃗. For small k⃗, the analytic solution
for Eq. (7) can be expressed as

−2ωj0Δω
Δk

¼ γβ þ oðΔkÞ; β ¼ 1; 2; 3; ð8Þ

where we approximate the term ω2
j0 − ω2

nk⃗
as −2ωj0ðΔωÞ.

After evaluating Eq. (6) numerically (detailed expres-
sions of its elements can be found in the Appendix), the
reduced Hamiltonian matrix for our system is given by

p⃗jl ¼ 108

0
B@

ð0; 0Þ ð0.002;−4.9983Þ ð−4.9902;−0.002Þ
ð−0.002; 4.9930Þ ð0; 0Þ ð0; 0Þ
ð4.9849; 0.002Þ ð0; 0Þ ð0; 0Þ

1
CA: ð9Þ

Note that p⃗12 ¼ −p⃗21, p⃗13 ¼ −p⃗31, jp12j ¼ jp13j, and
p⃗12⊥p⃗13; these properties are required to guarantee the
isotropy of the cones. By substituting Eq. (9) into Eq. (7),
we get the dispersion relations of the modes contributing to
the Dirac-like cone,

Δf
Δk

¼ 0;

Δf
Δk

¼ � jp⃗12j
8π2f0

¼ �233.48: ð10Þ

Obviously, the first result in Eq. (10) corresponds to the
flatband,while the remaining two signedvalues correspond to
the linear dispersion associatedwith the cones.Note that these
results do not depend on the wave-vector k⃗ direction, thus,

confirming the isotropyof the linear dispersion.Equation (10)
can be plotted together with the numerically obtained
dispersion relations [Fig. 4(b)] in order to illustrate the good

agreement between the k⃗ · p⃗methodand the full-field numeri-
cal results. It can be seen from Eq. (6) that the linear slopes γβ
are determined only by the nondiagonal element of the pjl

matrix. This term represents the strength of the coupling
between the degenerate states and indicates that the frequency
repulsion effect gives rise to the Dirac-like cones.

C. Effective-medium properties

Under certain conditions, the characteristics of the
medium around the Dirac-like point can be mapped to
effective-medium properties. This manipulation allows a
very clear characterization of the double-zero properties.
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Note that although the selected DP has a relatively high
frequency (the wavelength in an equivalent flat plate is
about 1.25L), we employ the boundary effective-medium
theory [58] to obtain the equivalent effective material
parameters. It has been argued [59,60] that for periodic
media, the effective-medium theory [61,62] is still valid at
k⃗ ¼ 0⃗ around the standing wave frequency even when,
strictly speaking, the frequency belongs to the short-
wavelength regime. From a more empirical perspective,
we also show that the use of the effective-medium
description matches well the finite-element-model predic-
tions, therefore, further confirming the validity of the
effective-medium approach.
The boundary effective-medium theory [58] treats the

unit cell as a black box that responds to an incoming wave.
According to this method, we calculate the eigenstates and
then evaluate the modal effective forces, displacements,
strains, and stresses from the response collected along the
boundaries of the unit cell. The effective density and
modulus are then extracted by using Newton’s second
law and the constitutive relations.
As an example, for the eigenstates along the ΓX

direction, the effective mass density can be obtained from
Newton’s second law as

ρeff ¼ meff

L2h
¼ Feff

z

üeffz L2h
¼ −Feff

z

ω2ueffz L2h
; ð11Þ

where ρeff is the effective mass density, Feff
z is the effective

net force exerted on the unit cell in the out-of-plane Z
direction, and ueffz is the effective displacement of the unit
cell in the z direction resulting from the three degenerate

states contributing to the Dirac-like cone. Feff
z and ueffz can

be obtained as

Feff
z ¼

Z
Txzdydz

����
x¼L

−
Z

Txzdydz

����
x¼0

þ
Z

Tyzdxdz

����
y¼L

−
Z

Tyzdxdz

����
y¼0

ð12Þ

and

ueffz ¼
R
uzdydzjx¼L þ R

uzdydzjx¼0

2Lh
: ð13Þ

Since all the contributing modes are antisymmetric
modes, we consider only the effective shear moduli.
They can be obtained from the constitutive relations as
follows:

Teff
xz ¼ GeffSxz;

Teff
yz ¼ GeffSyz; ð14Þ

where Geff is the effective shear modulus, and Teff and Seff

are the effective stress and strain tensors. Using the first
of Eq. (14) as an example, the stress and strain can be
obtained as

Teff
xz ¼

R
Txzdydzjx¼L þ R

Txzdydzjx¼0

2Lh
ð15Þ

and

Seffxz ¼
R
uzdydzjx¼L−

R
uzdydzjx¼0

L2h
: ð16Þ

Figures 5(a) and 5(c) show the effective shear modulus
and the effective mass density as functions of frequency in
the range around the Dirac-like point. The results clearly
indicate that below the DP, the proposed metamaterial
design behaves as a double-negative material, while above

FIG. 4. (a) The eigenstates corresponding to the three degenerate
states at theDP. From top to bottom,we find the state of the negative
slope band, the flatband, and the positive band. (b) Comparison of
the linear dispersion prediction at the DP obtained from the k⃗ · p⃗
method and the finite-element simulations.

FIG. 5. Frequency dependence of (a) the effective shear modu-
lus Geff , (b) the reciprocal effective shear modulus 1=Geff , and
(c) the effective mass density ρeff near the Dirac-like point.
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the DP, it behaves as a double-positive material. Similarly,
the calculation of the reciprocal effective shear modulus
[Fig. 5(b)] shows that both ρeff and 1=Geff vary linearly and
become zero simultaneously as the frequency crosses the
Dirac-like point. These results suggest that the proposed
metamaterial should exhibit propagation properties con-
sistent with a double-zero-index material. In particular, we
expect that acoustic waves traveling through the medium at
the DP frequency should not experience any spatial phase
change.

D. Full-field numerical analyses

In order to validate the theoretical predictions, we build a
numerical model of an elastic waveguide made out of the
proposed double-zero-index material. The basic test struc-
ture consists of a flat plate with an 11 × 12 lattice of
toruslike tapers embedded in the center [Figs. 6(a) and
6(b)]. Both the left and right boundaries are treated with
perfectly matched layers (not shown) to avoid reflections,
while the top and bottom boundaries are treated with
periodic boundary conditions in order to simulate an
infinite plate. The zero-index material slab is excited from
the left by a planar A0 wave at f ¼ 27.04 kHz and normal
incidence. The resulting wave field [Fig. 6(a)] indicates that
no phase change occurs inside the metamaterial slab and
nearly full transmission is achieved due to the zero
refractive index and the matched impedance with the flat
plate. These peculiar transmission properties are tested to

show the ability to achieve cloaking and supercoupling in
structural waveguides.
To illustrate the cloaking capability, we embed an object

(represented by a through-hole opening 3 × 4 units in size)
within the DZIM metamaterial. The opening has clamped
boundary conditions. The remaining conditions are
unchanged with respect to the case we discuss above.
The numerical results [Fig. 6(b)] show that the wave
emerges on the opposite side of the slab being completely
unaffected. Comparing these results with Fig. 6(a), we see
that the acoustic field downstream of the scatterer does not
carry any information about the scatterer itself, therefore,
confirming the cloaking capability of the medium.
In a similar way, we test the transmission performance of

a U-shaped waveguide channel. The change in cross
section is operated within the double-zero-index slab by
shrinking the middle section from 10 to 4 units. Similar to
the cloaking case, clamped boundary conditions are
imposed on all the walls of the U-shaped waveguide, while
the remaining boundaries are left free. In addition, perfectly
matched layers are used on the top and bottom surfaces to
absorb the outgoing waves and eliminate reflections. We
observe that the incident plane wave (A0 mode at
f ¼ 27.04 kHz) propagated through the U-shaped channel
is completely unaffected, while picking up only a minor
phase distortion. Considering the large extent of the
impedance discontinuity induced within the DZIM slab,
this distortion is almost negligible. Figure 10 in the
Appendix provides the contour plots in terms of amplitude
and phase corresponding to the results [Figs. 6(b) and 6(c)].
In conclusion, these results confirm the ability of the
proposed design to create supercoupling effects in struc-
tural waveguides.

E. Experimental results

We perform an experimental investigation in order to
validate the concept of a DZIM structural waveguide. We
select the supercoupling case for testing because it is the
most challenging condition to achieve and, therefore, the
most representative of the actual performance. To facilitate
fabrication and testing, we rescale the structure by reducing
the plate thickness to 0.004 m and the unit cell dimension to
half the original size. The rescaled design results in a Dirac-
like point at 54.08 kHz. The test sample is fabricated with
extended edges along the U-shaped waveguide channel in
order to be able to enforce the boundary conditions. For
simplicity, instead of creating a complex setup to impose
the clamped conditions used in the simulation results
[Fig. 6(c)], we decide to treat the edges of the U-section
with a viscoelastic damping material while clamping the
remaining edges.
The toruslike tapers are computer-numerical-control

machined from an initially flat aluminum plate, while
the center masses are cut from aluminum bars and
successively glued on the taper. The experimental sample

FIG. 6. (a) The out-of-plane displacement distribution of the
wave field when an incident A0 planar wave at f ¼ 27.04 kHz
impinges normally onto the 11 × 12 lattice of double-zero-index
material. The top and bottom boundaries are treated with periodic
boundary conditions, while the left and right boundaries use
perfectly matched layers to avoid reflections. As expected, no
phase change occurs inside the metamaterial slab. (b) The out-of-
plane displacement field showing the cloaking capability of the
double-zero material when an object 3 × 4 units in dimension is
embedded in the slab. (c) The out-of-plane displacement field
showing the supercoupling capabilities when a U-shaped narrow
channel is filled with the double-zero material.
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is mounted vertically in an aluminum frame, and visco-
elastic tape is applied on the top and bottom edges in order
to minimize reflections from the boundaries. An array of
microfiber composite (MFC) patches [Fig. 7(a)] is surface
bonded on the plate and simultaneously actuated to gen-
erate a quasi-A0 planar incident wave. The out-of-plane
response (velocity) of the entire plate is acquired using a
Polytec PSV-500 laser-scanning vibrometer. We perform
both steady-state and transient measurements. The steady-
state response is collected following a harmonic excitation
at the target frequency of 54.1 kHz. The time transient
measurement is obtained in response to a 50-count wave-
burst excitation signal having a 54.1-kHz center frequency.
Figure 7(b) shows the measured out-of-plane velocity field
at a fixed time instant, while the inset provides an enlarged
view of the wave field in the area after the DZIM slab. The
data in this inset are obtained from a separate time transient
scan which is performed exclusively on the area following
the DZIM [white dashed box in Fig. 7(a)] by using an
increased scanning mesh size (for improved resolution) and
a rescaled color bar range. Despite some unwanted reflec-
tions due to the finite size of the test sample, the planar

nature of the transmitted wave field is clearly recognizable.
At the same time, the transmitted intensity is subject to a
substantial level of attenuation. Figures 7(c) and 7(d) show
the amplitude and phase distribution of the steady-state
response at the target frequency. Overall, the phase-field
distribution over the entire structure [Fig. 7(d)] appears
consistent with the numerical results (see Fig. 10 in the
Appendix), and the planar nature of the transmitted wave
fields is still well identifiable. Similarly, the amplitude field
distribution [Fig. 7(c)] highlights the attenuation in the
intensity as the wave is transmitted through the DZIM
section.
To further understand the origin of the large attenuation

of the transmitted amplitude, we perform additional
numerical analysis by taking into account the effect of
damping. Aluminum has a small intrinsic loss factor that
can vary depending on the specific type of alloy and
manufacturing treatments but that generally never exceeds
ηs ¼ 0.01. Hence, we add this loss factor to the whole
structure by using a complex notation of Young’s modulus
E ¼ E0ð1þ ηsjÞ. The amplitude and phase distribution of
the wave field for the case of supercoupling are recalcu-
lated, and the results are provided in Figs. 8(a) and 8(b).
These results are in much better agreement with the
experimental observations, therefore, confirming the lim-
ited effect of damping on the phase distribution and the
large impact on the amplitude attenuation. Given the large
observed attenuation somewhat beyond the expected
amplitude reduction due to a ηs ¼ 0.01, we perform an
additional numerical analysis on a flat plate with a
comparable value of damping. The results [Figs. 8(c)
and 8(d)] show that a much lower level of attenuation
should be expected when the DZIM is not present. This
comparison suggests that the DZIM produces also a
significant amplification of the damping effect. These
results are consistent with recent experimental studies
[63,64] on locally resonant acoustic metamaterials that

FIG. 7. Experimental setup and results. (a) Front view of the
test bed consisting of a 4-mm-thick aluminum plate with a U-
shaped waveguide channel filled with DZIM material. An array
of MFC patches is surface bonded to generate the ultrasonic
excitation. The scans cover the entire plate including the DZIM
section where the out-of-plane velocity response is measured.
(b) The measured transmitted A0 wave field (out-of-plane
velocity) showing that the waves propagate through the U-shaped
channel preserving its planar nature. The inset shows an enlarged
view of the wave field after the DZIM section (marked by the
white dashed box). This data are obtained by performing a
separate time transient scan that employs a refined scanning mesh
grid and a rescaled color bar range. (c) and (d) show the
amplitude and phase distribution of the steady-state responses
of the whole structure at the targeted frequency.

FIG. 8. Numerical simulations showing the effect of damping
in a DZIM material. (a) and (b) show the phase and amplitude
distributions of the wave field for the supercoupling case when a
loss factor ηs ¼ 0.01 is added to the whole structure. Compar-
isons of the amplitude attenuation level obtained in identical
damped waveguides with (c) and without DZIM (d) are also
presented. A significant amplification of the attenuation level can
be observed clearly.
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demonstrated how losses, even in a small amount,
might have a strong impact on the dynamic response.
Nevertheless, further theoretical analyses are required to
rigorously assess this attenuation amplification mechanism
in the presence of double-zero material properties.
Overall, the measurements confirm the theoretical and

numerical predictions by clearly indicating that the A0

mode can be propagated undistorted through the U-shaped
DZIM waveguide channel. Nevertheless, significant ampli-
tude attenuation takes place during the transmission, which
is, in general, not due to backscattering but due to an
enhanced effect of damping.

III. CONCLUSIONS

Wepresent and experimentally demonstrate the design of
a double-zero-index structural waveguide that is able to
achieve simultaneous zero effective density and elastic
compliance. The design leverages locally resonant geo-
metric tapers that are used as fundamental unit cells to
achieve and tune Dirac-like dispersion at the center of the
Brillouin zone. We show both by theoretical and numerical
methods that the material can be mapped to a double-zero
effective medium when excited in the neighborhood of the
Dirac-like point. Full-field numerical simulations show that
this material can be used to achieve cloaking and super-
coupling in elastic waveguides. Both theoretical and
numerical results are confirmed by experimental measure-
ments that validate the design and provide conclusive
evidence that double-zero properties can be successfully
achieved in solids. This study also highlights the important
role of damping when locally resonant materials are excited
in the proximity of zero effective density conditions. While
the phase profile is not altered, the amplitude of the
transmitted wave can suffer a severe reduction.
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APPENDIX: SUPPLEMENTARY INFO

1. Details on numerical simulations and
experimental setup

The full-wave simulations performed throughout the
paper are obtained using a commercial finite-element solver
(COMSOL MULTIPHYSICS). The thin plate is built out of
aluminum with the following properties: Young’s modulus
E ¼ 70 GPa, density ρ ¼ 2700 kg=m3, and Poisson’s ratio
ν ¼ 0.33. Perfectly matched layers are used on the outer

boundaries to avoid reflections. For the experimental setup,
additional details are provided below. The experimental
sample is mounted in an aluminum frame providing
clamped-free boundary conditions. A 3M viscoelastic tape
(3M2552Damping Foil Tape) is used all around the panel to
minimize the effect of boundary reflections. An array of nine
MFC patches is surface bonded on the plate and simulta-
neously actuated to generate an A0 (quasi-) planar incident
wave. The actual plate used in the experimental setup is
shown in Fig. 9(a). The main difference with the numerical
model consists of extended edges of the U-shaped section
(marked by the dashed areas) that are used to enforce the
clamped boundaries. Numerical simulations [Fig. 9(b)]
indicate that this modification of the boundary conditions
does not alter the overall behavior of the DZIM channel with
respect to the original all-clamped boundary.

2. Details on the derivation of Eq. (6)

Below, we provide the detailed expression of the elements
in Eq. (6) for our 3D bulk medium. Note that the spatial
distribution of the material properties ρðr⃗Þ, λðr⃗Þ, and μðr⃗Þ is
described by step functions. The gradient of these functions
generates Dirac (δ) functions, i.e., ∇λðr⃗Þ ¼ λ0δðr⃗ ¼ r⃗0Þn⃗,
where r⃗0 stands for the interface between the vacuum layer
and the aluminum plate, and n⃗ is the normal to the interface
pointing toward the aluminum domain. By substituting into
Eq. (6), the x component of p⃗jl is

FIG. 9. (a) Schematic view of the experimental test bed. The
edges of the DZIM slab (indicated by the dark dashed areas) are
extended in order to allow for clamping. (b) Full-field numerical
simulations show that the planar wave front of the transmitted
wave is practically unaffected.
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The numerical values of the elements of p⃗jl can be
obtained by performing numerical integrations based on the
knowledge of the Bloch states.

3. Amplitude and phase distribution contours
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