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An accurate determination of microscopic transport and magnetization currents is of central importance
for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin
films, and of electronic devices. Current distribution is usually derived from the measurement of the
perpendicular component of the magnetic field above the surface of the sample, followed by numerical
inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream
function g, which is then differentiated in order to obtain the current distribution. However, this two-step
procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this
oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the
stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of
noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that
cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by
several numerical examples.
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I. INTRODUCTION

Determination of two-dimensional current distribution
from measurement of the normal component of a magnetic
field is an important and commonly used tool for the
investigation of a wide range of physical systems, including
high-temperature superconductors [1–6], topological states
of matter [7,8], oxide heterostructures [9,10], and carbon
nanotubes and nanostructures [11–13], as well as for the
nondestructive evaluation of semiconductor circuits [14].
Mapping of the local magnetic fields is commonly
attained by scanning Hall probes [1,15–20], Hall-probe
arrays [21,22], magneto-optical imaging [2–4,23–31], and
scanning superconducting quantum-interference devices
(SQUIDs) [7,16,32–39]. These techniques generate microm-
eter-to-millimeter-scale two-dimensional images of the nor-
mal component of the magnetic field Bzðx; yÞ above a
sample. Recently, however, nanoscale magnetic imaging has
become a rapidly developing area of metrology, based on
technological advances in scanning nitrogen-vacancy centers
in nanodiamonds [11,40–43], nano-SQUIDs [44–52], and
cold atom chips [53–55]. These techniques have the poten-
tial to provide higher spatial resolution, nanoscale proximity
to the sample surface, improved field sensitivity, and lower
measurement noise.
To take advantage of these recent developments in

nanoscale magnetic imaging, accurate analytical methods
for the reconstruction of electric currents are required.
Reconstruction of current distribution from the measured

out-of-plane magnetic field requires inversion of the Biot-
Savart law, which poses a number of challenges [1–3,
56–59]. First, the inversion equation, formulated as a
Fredholm integral equation of the first kind, is ill posed,
resulting in amplification of the high-spatial-frequency
components during the inversion process. In fact, high
frequencies are never negligible in practice and therefore
dominate the solution unless they are damped during the
inversion [60]. Thus, a naive inversion of the Biot-Savart
law is unstable and must be regularized. The second
complication arises from the long-range nature of cur-
rent-induced magnetic fields. The magnetic field in the
imaged area can be affected by currents flowing outside the
field of view, making the inversion equation underdeter-
mined. Therefore, in order to obtain an accurate and unique
solution, one must make assumptions about the behavior of
the current outside the measurement window. This problem
is usually resolved by assuming that the entire current
distribution is encompassed in the measurement window,
similarly to the case where magnetization currents flow in
closed loops. However, in the case of externally applied
transport currents that significantly contribute to the mea-
sured field and necessarily cross the boundaries of the
imaged area, this assumption is invalid and does not
constitute a good approximation.
Various approaches that address the instability of the

inversion of the Biot-Savart law have been utilized to date.
These approaches introduce additional control parameters
such as a cutoff frequency [3,56] or a limitation on the
number of numerical iterations [57,58]. However, none of
these methods provide a systematic means for determining
the optimal control parameters, with the exception of the
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work of Feldmann [59], who recognized the inversion
problem as mathematically ill posed. To overcome this
difficulty, Feldmann used the Tikhonov regularization
scheme [61] for current reconstruction, in which a free
regularization parameter is used for controlling the smooth-
ness of the solution. He then applied the generalized-
cross-validation (GCV) method [62] for methodical
determination of the regularization parameter. However,
the method of Feldmann presented in Ref. [59] is not
accurate at low heights above the sample. This lack of
accuracy is particularly disadvantageous for next-generation
techniques, which aim to provide magnetic imaging for
current reconstruction at nanometer heights above the
sample surface in order to improve the sensitivity and the
spatial resolution [11,45,55].
The instability problem impacting commonly used

inversion methods for the Biot-Savart law is further
exacerbated by the use of an auxiliary stream function
for the inversion [3,57–59]. Specifically, these methods
determine the current distribution Jðx; yÞ in the sample by
means of a two-step procedure. First, the stream function
gðx; yÞ is derived by inversion from the measured magnetic
field Bzðx; yÞ, and the current is then determined from the g
function using the relation

J ¼ ∇ × ½gðx; yÞẑ�: ð1:1Þ

In these two-step inversion methods (which we term GI
methods), each of the steps is able to amplify the noise. In
the first step, the noise is controlled by a regularization
procedure that filters high spatial frequencies from the
reconstruction. The resulting reconstructed g, however, is
usually not sufficiently smooth to be differentiated with
a regular numerical differentiation, which significantly
amplifies any remaining noise. Consequently, it is neces-
sary to apply an additional smoothing filter to g, such as
the Savitzky-Golay filter proposed by Feldmann [59], prior
to differentiation. Application of a second filter in addition
to the Tikhonov filter results in the smoothing of fine details
in the solution that would have been otherwise preserved.
Preservation of fine details is important in many cases. One
such example is the reconstruction of sharp one-dimensional
paths of higher current density at oxide interfaces [9], where
oversmoothing can lead to inconclusive results. An excep-
tion to the above methodology in which a one-step procedure
is used was proposed in Ref. [56]. However, the solution of
the direct problem given in this paper differs from ours and
does not use a rigorous regularization.
As mentioned above, the presence of external contribu-

tions to the magnetic field makes the inversion procedure
more difficult. As far as we know, this problem has not
yet been addressed systematically, and all of the methods
cited above assume that the entire current distribution is
contained in the measurement window. This is a severe
restriction for most experimental setups, even in the

absence of an external transport current that requires the
use of an enlarged measurement window to ensure enclo-
sure of all the currents. In this work, the instability of the
inverse problem and the presence of currents crossing
the image boundary, which challenge the magnetic-field
inversion schemes, are addressed by the introduction of a
number of alternative procedures, as detailed below.

(i) We introduce an inversion method utilizing the
Tikhonov regularization in which the current dis-
tribution is obtained through a single-step inversion
of the measured Bzðx; yÞ, without the need for the
intermediate derivation and differentiation of the
stream function g. We show that this direct-inversion
(DI) scheme provides substantial improvement in
the accuracy of current reconstruction over a wide
range of noise levels. We also find that the quality of
the reconstructions is not very sensitive to the exact
value of the imaging height above the sample. This
property is important, as the exact height is usually
not known in practice.

(ii) We develop two systematic procedures to determine
the free Tikhonov regularization parameter in con-
junction with the DI method based on GCV (DI
GCV) and on Stein’s unbiased risk estimate (SURE)
[63–65], which we refer to as DI SURE. For Bzðx; yÞ
imaged at low heights h above the sample, the two
procedures give comparable results; however, at
larger h values, DI SURE is preferable.

(iii) We introduce a reflection procedure addressing the
transport-current challenge. By symmetrically ex-
tending the Bzðx; yÞ image, we show that a reliable
inversion can be attained in the case of currents
crossing the boundary of the magnetic image. This
reflection procedure performs best in conjunction
with the DI-SURE regularization.

(iv) We improve the existing GI-GCV method and
develop an alternative GI-SURE method, both of
which can handle transport currents.

(v) The four schemes DI GCV, DI SURE, GI GCV, and
GI SURE are applied to solve specific numerical
examples, and their solutions are analyzed and
compared showing the advantages and limitations
of each method.

(vi) A user-friendly code is provided for all four inver-
sion methods [66].

This paper is organized as follows. In Sec. II, we briefly
describe the GI method. In Sec. III, we present our DI
method for current reconstruction. In order to recover
currents crossing the image boundary, we introduce the
reflection scheme in Sec. III C and the DI-SURE method in
Sec. III D. In Sec. IV, we present and discuss numerical
results of two-dimensional current reconstruction using the
GI and DI methods. An algorithm for the noise-variance
estimation required for the SURE parameter-choice method
is presented in the Appendix.
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II. STREAM-FUNCTION GI METHOD

A. Forward problem

We begin by defining the problem and summarizing the
stream-function GI method [59]. The current J flows in a
three-dimensional thin film of thickness d, bounded in
space by −d=2 ≤ z ≤ d=2, 0 ≤ x ≤ w, and 0 ≤ y ≤ l. The
measurement plane is parallel to the surface of the sample
and to the x-y plane. Inside the film, J is static, depends
on x and y, and is uniform along the z axis inside the
sample. The magnetic field is measured at height h ¼
z − d=2 above the sample, where z is the z coordinate of the
measurement plane. We assume the field detector to be
sensitive only to the z component of the magnetic field, and
small enough that its nonzero sensing area does not distort
the reconstructed current.
The experimentally measured field distribution Bzðx; yÞ

at height z is related to the true currents in sample Jtrue and
their corresponding stream function gtrue through

Bzðx; y; zÞ ¼ Kðx; y; zÞ � gtrueðx; yÞ þ Nðx; yÞ; ð2:1Þ

where Nðx; yÞ is an additive noise of zero mean and
constant variance σ2, the kernel K can take different forms
depending on the assumptions of the problem, and the
convolution of Fðx; yÞ and fðx; yÞ is given by

Fðx;yÞ�fðx;yÞ¼
Z

∞

−∞

Z
∞

−∞
Fðx−x0;y−y0Þfðx0;y0Þdx0dy0:

ð2:2Þ

For reconstruction of volume currents in a thin film with
a non-negligible thickness d, the kernel is given by

Kðx; y; z; dÞ ¼ μ0
4π

�
z − d=2

½x2 þ y2 þ ðz − d=2Þ2�3=2

−
zþ d=2

½x2 þ y2 þ ðzþ d=2Þ2�3=2
�
; ð2:3Þ

where μ0 is the permeability of free space. We define the
two-dimensional Fourier transform and its inverse as

f̂ðu; vÞ ¼
Z∞
−∞

Z
∞

−∞
fðx; yÞe−2πiðuxþvyÞdxdy; ð2:4Þ

fðx; yÞ ¼
Z∞
−∞

Z
∞

−∞
f̂ðu; vÞe2πiðuxþvyÞdudv; ð2:5Þ

respectively, abbreviated as f̂ ¼ F ½f� and f ¼ F−1½f̂�.
The Fourier transform of Eq. (2.3) can be evaluated
analytically as

K̂ðu; v; z; dÞ ¼ μ0e−2π
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
z sinh

�
πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p �
: ð2:6Þ

If d ≪ h, we can use the concept of sheet current, which
assumes that currents are confined to an infinitesimally thin
film, with the corresponding kernel given by

Kðx; y; zÞ ¼ μ0
4π

2z2 − x2 − y2

ðx2 þ y2 þ z2Þ5=2 ; ð2:7Þ

and its Fourier transform given by

K̂ðu; v; zÞ ¼ μ0π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
e−2π

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
z: ð2:8Þ

Both kernels (2.3) and (2.7) can be thought of as low-pass
filters with a cutoff frequency governed by the imaging
height z. As such, they make the problem of approximating
gtrueðx; yÞ in Eq. (2.1) ill posed and require regularization
for a proper reconstruction [59].
Note that kernels (2.3) and (2.7) and their matching

stream functions have different dimensions. In the case of a
film of thickness d, the current density J is given in units of
A=m2, g in units of A=m, and K in units of T=Am. In the
case of sheet currents, J, g, andK are given in units of A=m,
A, and T=Am2, respectively.

B. Inverse problem

The approximation of gtrueðx; yÞ in Eq. (2.1) by Tikhonov
regularization for a measured magnetic field Bz consists of
finding the gλ that solves the problem

min
gλ

ðjjK � gλ − Bzjj22 þ λjjLgλjj22Þ ð2:9Þ

for a given regularization parameter λ and regularization
operator L, where the 2-norm is defined as

∥fðx; yÞ∥22 ¼
Z

∞

−∞

Z
∞

−∞
jfðx; yÞj2dxdy: ð2:10Þ

The regularization parameter λ in Eq. (2.9) sets the balance
between a solution dominated by noise for small λ values
and an oversmoothed solution for large λ values. In order
to penalize nonsmooth solutions, we define L ¼ ∇2 by
following Ref. [59]. It can be shown that the minimizer of
Eq. (2.9) is given by

gλðx; yÞ ¼ F−1
� ¯̂Kðu; vÞB̂zðu; vÞ
jK̂ðu; vÞj2 þ λð2πÞ4ðu2 þ v2Þ2

�
; ð2:11Þ

where a bar denotes complex conjugation. The current
distribution can be found similarly to Eq. (1.1) using

Jλ ¼ ∇ × ½gλðx; yÞẑ�: ð2:12Þ
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We note that the stream function gλ is defined up to a
gradient term, whereas the current Jλ is unique [58].
The regularization parameter λ can be estimated

using the GCV method [62], which seeks to approxi-
mately minimize the predictive mean-square error (PMSE),
jjK � gtrue − K � gλjj22, where gtrue is the unknown true
stream function. Since gtrue is not known, the GCV method
minimizes a slightly different function than the PMSE and
is given by

G1ðλÞ ¼
jjBz − K � gλjj22

½T1ðλÞ�2
; ð2:13Þ

where T1ðλÞ indicates the residual effective degrees of
freedom used in regression analysis (see p. 63 of Ref. [62])
and, in our case, it formally equals

T1ðλÞ ¼
Z

∞

−∞

Z
∞

−∞
1 −

jK̂ðu; vÞj2
jK̂ðu; vÞj2 þ λð2πÞ4ðu2 þ v2Þ2 dudv:

ð2:14Þ

A more intuitive presentation of the GCV method and its
connection to the PMSE can be found in Ref. [67].

C. Numerical implementation

In practice, the magnetic field is sampled on a rectan-
gular grid with N points in the x direction, distanced Δx
units apart, and M points in the y direction, distanced
Δy units apart. Thus, the physical space grid consists
of the points ðnΔx;mΔyÞ for n ¼ 0; 1;…; N − 1 and
m ¼ 0; 1;…;M − 1 and the frequency space grid of the
points ½ðk=NΔxÞ; ðl=MΔyÞ� for k ¼ 0; 1;…; N − 1 and
l ¼ 0; 1;…;M − 1. We can approximate Eq. (2.11) on
the discrete grid by using the discrete Fourier transform
(DFT) and its inverse, defined as

f̂kl ¼ ΔxΔy
XN−1

n¼0

XM−1

m¼0

fnme−i2πkn=N−i2πlm=M; ð2:15Þ

fnm ¼ 1

ΔxΔy
1

NM

XN−1

k¼0

XM−1

l¼0

f̂klei2πkn=Nþi2πlm=M; ð2:16Þ

respectively, abbreviated as

f̂kl ¼ DFT½fnm�kl; ð2:17Þ

fnm ¼ DFT−1½f̂kl�nm: ð2:18Þ

Then we can approximate Eq. (2.11) as

gnm ¼ DFT−1

"
¯̂KklB̂kl

jK̂klj2 þ λj∇̂2
klj2

#
nm

; ð2:19Þ

where K̂kl ¼ K̂½ðk=NΔxÞ; ðl=MΔyÞ; z� is defined in
either Eq. (2.6) or Eq. (2.8), the Laplacian is approximated
by the second-order central finite difference and B̂kl ¼
DFT½Bnm�kl. Note also that because Eq. (2.19) employs
DFT for the inversion, it implicitly assumes periodic
boundary conditions at the boundaries of the measurement
window. In the presence of currents crossing the bounda-
ries, this assumption leads to highly inaccurate reconstruc-
tions, as discussed in Sec. III C, making this inversion
method inapplicable in such cases.
The stream function gnm reconstructed from a noisy

measurement of Bnm is not smooth. Therefore, estimation
of electric current using Eq. (2.12) by a simple numerical
differentiation is not accurate and will amplify any noise
left in gnm. A more appropriate method for computation of
the derivatives in this case is the Savitzky-Golay differ-
entiation filter [68], which fits a polynomial of degree p to
each set of 2qþ 1 successive data points by least squares.
In this paper, the current Jλ is estimated by the differ-
entiation of the fitted polynomial, using p ¼ 2 and q ¼ 2,
as suggested in Ref. [59].
For the GI-GCV method, the regularization parameter λ

in Eq. (2.19) is found using the GCV scheme (2.13). The
discrete version of the function G1ðλÞ is given by [69]

G1ðλÞ ¼
P

N−1
k¼0

P
M−1
l¼0 ð1 − ẐklÞ2jB̂klj2

ðNM −
P

N−1
k¼0

P
M−1
l¼0 ẐklÞ2

; ð2:20Þ

where

Ẑkl ¼
jK̂klj2

jK̂klj2 þ λj∇̂2
klj2

: ð2:21Þ

The regularization parameter λ is then estimated as the
minimizer of the function G1ðλÞ.
It is important to note that evaluation of the kernel using

the discrete transform

K̂kl ¼ DFT½KðnΔx;mΔy; zÞ�kl; ð2:22Þ

as suggested in Ref. [59], should be avoided due to the large
inaccuracy of this approximation compared to the exact
expressions in Eqs. (2.6) and (2.8), especially for small
heights. This difference in accuracy is demonstrated in
Fig. 1, where we measure the accuracy of current
reconstruction in the absence of noise by the mean-square
deviation (MSD) defined as

MSD ¼ ∥Jtrueðx; yÞ − Jλðx; yÞ∥22
∥Jtrueðx; yÞ∥22

¼ ∥jx;true − jx;λ∥22 þ ∥jy;true − jy;λ∥22
∥jx;true∥22 þ ∥jy;true∥22

: ð2:23Þ
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Here, Jtrue is the actual current in sample A (as described
in Sec. IV), and Jλ is the current reconstructed from the
calculated magnetic field at height h using either the
analytical kernel (2.6) or the DFT kernel (2.22). Figure 1
shows that the DFT kernel introduces a large error and
cannot be used for heights smaller than about twice the grid
spacing, which, in this example, is Δx ¼ 1 μm.
To summarize, the GI method constitutes an inversion of

the magnetic field by having us take the following steps:
(1) Estimate the regularization parameter λ as the

minimizer of G1ðλÞ in Eq. (2.20).
(2) Compute the stream function gðλÞ using Eq. (2.19).
(3) Obtain the currents Jλ by applying the Savitzky-

Golay differentiation filter to g as described above,
with p ¼ q ¼ 2.

In the following section, we develop an alternative method
that does not require the intermediate computation of the
stream function g.

III. THE DI OF THE BIOT-SAVART LAW

In this section, we introduce an alternative formulation
of the inversion problem, which produces higher quality
reconstructions, particularly in the presence of low noise.

In addition, we present both a reflection procedure for the
reconstruction of currents crossing the image boundaries
and a projected SURE method for determination of the
regularization parameter in this case.

A. The forward problem

The forward problem of calculating the magnetic field,
given distribution of the current, requires the solution of
the Biot-Savart law, which is given by

BðrÞ ¼ μ0
4π

Z
Ω

Jðr0Þ × ðr − r0Þ
jr − r0j3 dr0; ð3:1Þ

where r is the observation coordinate, r0 is the source
coordinate, and J ¼ jxðx; yÞx̂þ jyðx; yÞŷ is the current-
density vector field. The z component of the magnetic field
can be determined from Eq. (3.1) as

Bzðx; y; zÞ

¼ μ0
4π

Z
d=2

−ðd=2Þ

Z
w

0

Z
l

0

ðy − y0Þjxðx0; y0Þ − ðx − x0Þjyðx0; y0Þ
½ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2�3=2

× dx0dy0dz0: ð3:2Þ

We can rewrite Eq. (3.2) as

Bzðx; y; zÞ

¼
Z

d=2

−ðd=2Þ
½A1ðx; y; z − z0Þ � jxðx; yÞ

þ A2ðx; y; z − z0Þ � jyðx; yÞ�dz0
¼ K1ðx; y; z; dÞ � jxðx; yÞ þ K2ðx; y; z; dÞ � jyðx; yÞ;

ð3:3Þ

where kernels A1 and A2 are given by

A1ðx; y; zÞ ¼
μ0
4π

y

½x2 þ y2 þ z2�3=2 ; ð3:4Þ

A2ðx; y; zÞ ¼
μ0
4π

−x
½x2 þ y2 þ z2�3=2 ; ð3:5Þ

and kernels K1 and K2, which depend on the thin film
thickness d, are given by

K1ðx; y; z; dÞ ¼
8<
:

μ0
4π

y
x2þy2

h
zþd=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þðzþd=2Þ2
p − z−d=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þðz−d=2Þ2
p

i
; x2 þ y2 > 0;

0 x2 þ y2 ¼ 0;
ð3:6Þ

K2ðx; y; z; dÞ ¼
8<
:

μ0
4π

x
x2þy2

h
z−d=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þðz−d=2Þ2
p − zþd=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þðzþd=2Þ2
p

i
; x2 þ y2 > 0;

0 x2 þ y2 ¼ 0;
ð3:7Þ

0 1 2 3
h ( m)

10−2

10−1

100

M
S

D

DFT kernel

analytical

FIG. 1. The MSD of current reconstruction vs the field
measurement height h, obtained using the analytical kernel
(2.6) and the DFT kernel (2.22). The calculation is performed
on sample A (as described in Sec. IV) with no additive noise,
using the GI-GCV scheme with grid size Δx ¼ 1 μm. The DFT
kernel becomes accurate only when h > 1.7 μm.
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for jzj > d=2. The analytical Fourier transforms of kernels A1 and A2 are

Â1ðu; v; zÞ ¼
8<
:

−i μ0
2
e−2π

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
z vffiffiffiffiffiffiffiffiffiffi

u2þv2
p ; u2 þ v2 > 0;

0; u2 þ v2 ¼ 0;
ð3:8Þ

Â2ðu; v; zÞ ¼
8<
: i μ0

2
e−2π

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
z uffiffiffiffiffiffiffiffiffiffi

u2þv2
p ; u2 þ v2 > 0;

0; u2 þ v2 ¼ 0;
ð3:9Þ

while those of kernels K1 and K2 are

K̂1ðu; v; z; dÞ ¼
8<
:−i μ0

2π e
−2π

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
z sinhðπd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ v
u2þv2 ; u2 þ v2 > 0;

0; u2 þ v2 ¼ 0;
ð3:10Þ

K̂2ðu; v; z; dÞ ¼
8<
: i μ0

2π e
−2π

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
z sinhðπd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ u
u2þv2 ; u2 þ v2 > 0;

0; u2 þ v2 ¼ 0.
ð3:11Þ

If h ≫ d, we can use the concept of sheet currents, in which
case the magnetic field is given simply by

Bzðx; y; zÞ ¼ A1ðx; y; zÞ � jxðx; yÞ þ A2ðx; y; zÞ � jyðx; yÞ;
ð3:12Þ

without an integral in the z direction.
The relation (3.3) [or (3.12)] leads us to the following

compatibility condition. By applying the Fourier transform
to Eq. (3.12), we can present the relation for the zero mode
(u ¼ v ¼ 0) as

B̂zð0; 0; zÞ ¼ K̂1ð0; 0; zÞĵxð0; 0Þ þ K̂2ð0; 0; zÞĵyð0; 0Þ:
ð3:13Þ

Since K̂1ð0; 0; zÞ and K̂2ð0; 0; zÞ are zero, the value of
B̂zð0; 0; zÞ should also be zero. In real space, the condition
requires the mean value of Bz to be zero. Thus, the
compatibility condition implies that the mean value of
the currents cannot be deduced from the measured field
since it does not contribute to this field. The reconstruction
of the current is therefore possible only up to an additive
constant that represents a uniform current in the physical
space. On the positive side, Eq. (3.13) implies that our
reconstruction is not sensitive to offsets in the magnetic
field that are usually inflicted by external sources.
For a better understanding of the problem, we can find

the length scale which characterizes kernels (3.8) and (3.9)
on a grid. In the simple case of (Δx ¼ Δy ¼ Δ), the kernels
become dependent on one parameter, the ratio between the
height z and the pixel size Δ. For kernels (3.10) and (3.11),

the same argument applies if the ratio between the height
and the sample thickness d is kept constant. To see this
dependence, we can rewrite our kernels in Fourier space
outside the origin as

Â1ðu; v; zÞ ¼ −i
μ0
2
e−2π

ffiffiffiffiffiffiffiffiffi
k2þl2

p
z

NΔ
lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ l2
p ; ð3:14Þ

where k ¼ 0;…; N, l ¼ 0;…;M, andΔ is the grid spacing.
From Eq. (3.14), it is easy to see that, for fixed N and M
values, it is only z=Δ that determines the decay of the
kernel and the corresponding spatial resolution of the
reconstructed currents. This finding is important because
the kernel decay determines the smoothing effect of the
kernel—and consequently the ill-conditioning and hence
the difficulty of the reconstruction—as described in the
next subsection.

B. The inverse problem

Equations (3.3) and (3.12) enable us to find the magnetic
field from either the volume or the sheet-current distribu-
tion within the sample. The corresponding derivation of
the currents from Bz thus requires solving the inversion
problem with two kernels. This task may seem to be
challenging and less controllable than the hitherto-used GI
method, which involves only a single kernel. However, it is,
in fact, more accurate, as it does not require the second
Savitzky-Golay filter used in the GI method, thus enabling
reconstruction of the finer details. In the following, we
develop this alternative DI method and demonstrate its
advantages.
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Assuming an additive noise model as in Eq. (2.1), we can
rewrite Eqs. (3.3) and (3.12) as

Bzðx;yÞ¼K1 �jxðx;yÞþK2 �jyðx;yÞþNðx;yÞ; ð3:15Þ

where K1 and K2 in Eqs. (3.6) and (3.7) can be replaced
with kernels A1 and A2 in Eqs. (3.4) and (3.5), respectively,
if h ≫ d. The inversion of the Biot-Savart law (3.15) and
determination of the currents jxðx; yÞ and jyðx; yÞ from
Eq. (3.12) given Bz is ill posed. Therefore, similarly to
Sec. II, we solve this problem using Tikhonov regulariza-
tion by minimization of the following functional:

min
jx;jy

ð∥K1 � jx þ K2 � jy − Bz∥22 þ λð∥Ljx∥22 þ ∥Ljy∥22ÞÞ;

ð3:16Þ

where the same parameter λ multiplies both penalty terms
due to the lack of a directional preference in the problem,
and we set L ¼ ∇2 as in Sec. II B. For simplicity, we
suppress in Eq. (3.16) the dependence of the kernels and of
the currents on the variables x and y. The regularized
solutions that minimize Eq. (3.16) are given by

jxðλÞ ¼ F−1
� ¯̂K1B̂z

jK̂1j2 þ jK̂2j2 þ λð2πÞ4ðu2 þ v2Þ2
�
; ð3:17Þ

jyðλÞ ¼ F−1
� ¯̂K2B̂z

jK̂1j2 þ jK̂2j2 þ λð2πÞ4ðu2 þ v2Þ2
�
: ð3:18Þ

It is easy to verify that the reconstructed current (3.17) and
(3.18) satisfies

∇ · J ¼ 0: ð3:19Þ

Owing to the compatibility condition (3.13), the dc compo-
nents of the currents are not defined by Eqs. (3.17) and
(3.18) and, as discussed above, cannot be reconstructed from
the measured field. Therefore, we set them to zero, which is
equivalent to assuming no uniform current flowing in the
measurement window.
Discretizing Eqs. (3.17) and (3.18), as in the previous

section, we obtain

jx;nmðλÞ¼DFT−1
� ¯̂K1;klB̂kl

jK̂1;klj2þjK̂2;klj2þλj∇̂2
klj2

�
nm

; ð3:20Þ

jy;nmðλÞ¼DFT−1
� ¯̂K2;klB̂kl

jK̂1;klj2þjK̂2;klj2þλj∇̂2
klj2

�
nm

; ð3:21Þ

where K̂j;kl ¼ K̂j½ðk=NΔxÞ; ðl=MΔyÞ; z� is given by the
analytic expressions in either Eqs. (3.8) and (3.9) or

Eqs. (3.10) and (3.11), and the Laplacian is approximated
by the central second-order finite-difference stencil.
In the presence of currents crossing the boundaries, a

naive application of Eqs. (3.20) and (3.21) fails to produce
an accurate solution due to the artifacts caused by the DFT,
which assumes periodicity of the measured field, and due to
the fact that these equations satisfy Eq. (3.19) everywhere,
including the boundary. To overcome this problem, we
apply a reflection rule to the measured magnetic field, as
explained in the next subsection.

C. Reflection rule

In this section, we consider the inversion problem in the
presence of currents flowing through the image boundary.
An accurate reconstruction of the currents through the
boundary requires knowledge of the magnetic field outside
the imaged region. Absent such knowledge, the inversion
equation (3.15) becomes underdetermined and does not
have a unique solution. A naive application of the DFT, as
in Eq. (2.19) or Eqs. (3.17) and (3.18), assumes periodic
boundary conditions, extending the currents periodically to
infinity. Since the measured field produced by currents that
cross the boundary of the measurement window is, in
general, nonperiodic, application of periodic boundary
conditions in this case creates a discontinuity at the
boundary. This discontinuity, in turn, causes Gibbs oscil-
lations of the reconstructed current at the same boundary. In
addition, the current conservation property (3.19), fulfilled
by either Eq. (1.1) in the GI method or Eqs. (3.17)
and (3.18) in the DI method, forces an incorrect closure
of the current loops inside the reconstruction window if
periodic boundary conditions are used. Thus, to handle
current distributions extending beyond the measurement
window, we must either supply information about the field
outside the measurement window—which is not generally
available—or implement more appropriate boundary con-
ditions for the currents, which we develop in this section.
To implement more appropriate boundary conditions

for the currents, we suggest replacing the image of the
magnetic-field measurement with an extended image,
such that the magnetic field outside the measurement area
is a mirror image of the field inside the boundaries.
Specifically, we symmetrically extend Bz by embedding
it into a larger matrix ~Bz, such that

~Bz ¼
�
Brc Bc

Br Bz

�
; ð3:22Þ

where Bc is obtained from Bz by flipping its columns, Br is
obtained by flipping the rows, and Brc is obtained by
flipping both. The solution is then obtained by substituting
~Bz into Eqs. (3.17) and (3.18) for Bz and taking only the
part of the Tikhonov solution in the original window.
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The reflections in Eq. (3.22) ensure a continuous flow of
the current across the different boundaries of the image by
closing currents outside the measurement window, as
shown in the following analysis. For simplicity of presen-
tation, the analysis is carried out in continuous space. We
examine first the effect of the reflection upon the
reconstruction using the GI method. Since the recon-
structed currents given by Eqs. (3.17) and (3.18) are
translationally invariant due to their implicit periodic
extension by the DFT, we consider here only two bounda-
ries, x ¼ 0 and y ¼ 0, where the reflections in Eq. (3.22)
ensure Bzð−x; yÞ ¼ Bzðx; yÞ and Bzðx;−yÞ ¼ Bzðx; yÞ,
respectively. We also need to recall that the convolution
of two odd or two even functions is even, and the
convolution of an odd and an even function is odd.
The kernel K, from either Eq. (2.3) or Eq. (2.7), is

even in both the x and y directions. Disregarding the noise
term in Eq. (2.1), we deduce that, if Bzð−x; yÞ ¼ Bzðx; yÞ,
then the function gtrue should also be even [gtrueð−x; yÞ ¼
gtrueðx; yÞ] and, since the derivative of an even function is
odd, and vice versa, we obtain

jxð−x; yÞ ¼ jxðx; yÞ; ð3:23Þ

jyð−x; yÞ ¼ −jyðx; yÞ: ð3:24Þ

On the other hand, if Bzðx;−yÞ ¼ Bzðx; yÞ, then
gtrueðx;−yÞ ¼ gtrueðx; yÞ. Using the same argument, we
obtain

jxðx;−yÞ ¼ −jxðx; yÞ; ð3:25Þ

jyðx;−yÞ ¼ jyðx; yÞ: ð3:26Þ

Therefore, upon crossing the boundary, the component
of the current perpendicular to the boundary remains
unchanged, whereas the component parallel to the boun-
dary changes its sign, as shown in Fig. 2.
To obtain similar results when the noise term is non-

negligible, we recall that the inverse Fourier transform of a
real and even function is even and that of an imaginary and
odd function is odd. Next, we rewrite Eq. (2.11) used for
reconstruction of gλ as

gλðx; yÞ ¼ F−1
� ¯̂Kðu; vÞ
jK̂ðu; vÞj2 þ λð2πÞ4ðu2 þ v2Þ2

�
� Bzðx; yÞ;

ð3:27Þ

and since K̂ðu; vÞ is even and real, we conclude that
gλð−x; yÞ ¼ gλðx; yÞ and gλðx;−yÞ ¼ gλðx; yÞ for Bz
even about x ¼ 0 and y ¼ 0, respectively. As a result,
Eqs. (3.23)–(3.26) are satisfied by the Tikhonov solution gλ.
Analysis of the effect of the symmetric extension on

current reconstruction by the DI method is similar. Using
either Eq. (3.3) or Eq. (3.12) and noting that K1 and A1 are
even in x and odd in y, while K2 and A2 are odd in x and
even in y, we deduce that if Bzð−x; yÞ ¼ Bzðx; yÞ, then,
using the aforementioned properties of convolution, we
obtain Eqs. (3.23) and (3.24). Similarly, if Bzðx;−yÞ ¼
Bzðx; yÞ, we find that Eqs. (3.25) and (3.26) are satisfied.
This result is identical to the case of the GI method and is
also illustrated by Fig. 2. Taking the noise into account, we
use Eqs. (3.17) and (3.18) for reconstruction of the current
field. Applying similar reasoning to that used above, we
conclude that the currents obtained from Eqs. (3.17) and
(3.18) also satisfy Eqs. (3.23)–(3.26).

D. Regularization parameter-choice methods

In the present section, we discuss the parameter-choice
methods for the reconstruction of current densities using
Eqs. (3.20) and (3.21). If the currents do not cross the
boundaries, we can still use the GCV method similar to the
one discussed in Sec. II B. The GCV for the DI method
consists of minimization of the function

G2ðλÞ ¼
∥Bz − K1 � jxðλÞ − K2 � jyðλÞ∥22

T2ðλÞ2
; ð3:28Þ

where T2ðλÞ is formally given by

T2ðλÞ ¼
Z

∞

−∞

Z
∞

−∞
½1 − ĤðλÞ�dudv; ð3:29Þ

and

ĤðλÞ ¼ jK̂1ðu; vÞj2 þ jK̂2ðu; vÞj2
jK̂1ðu; vÞj2 þ jK̂2ðu; vÞj2 þ λð2πÞ4ðu2 þ v2Þ2 :

ð3:30Þ

Similarly to Eq. (2.13), the function (3.28) is designed so
that its minimum is close to the minimum of the PMSE,
which is defined by

PMSEðλÞ ¼ ∥Btrue − BðλÞ∥22;

where Btrue ¼ Bz − N is the true value of the magnetic
field, BðλÞ ¼ K1 � jxðλÞ þ K2 � jyðλÞ, and N is the

(+)(+)

(−)
(+)

(+)

(−)

(−)

(−)

(a) (b)

FIG. 2. A schematic description of the direction of currents (a) jx
and (b) jy upon implementation of the symmetric extension of the
field. The measurement window is marked by a dashed line.
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unknown noise. The discrete version of the GCV method is
given by

G2ðλÞ ¼
P

N−1
k¼0

P
M−1
l¼0 ½1 − ĤklðλÞ�2jB̂klj2

½MN −
P

N−1
k¼0

P
M−1
l¼0 ĤklðλÞ�2

; ð3:31Þ

where

ĤklðλÞ ¼
jK̂2;klj2 þ jK̂1;klj2

jK̂1;klj2 þ jK̂2;klj2 þ λj∇̂2
klj2

: ð3:32Þ

The values of λ found using Eq. (3.28) are typically very
close to optimal. However, they become unsatisfactory
when currents cross the boundaries of the measurement
window. Even though utilization of the reflection rule,
achieved by substituting ~Bz [given by Eq. (3.22)] for Bz in
Eq. (3.28) provides a significant improvement, the regu-
larization may still be far from optimal. More accurate
estimates of λ in this case can be obtained, however, by
using the projected SURE method, which is similar to the
method proposed in Refs. [64,65]. Particularly, let P denote
a projection operator from the enlarged domain ~Bz to a
region inside Bz. For example, in our numerical tests we
choose the image of the projection P to contain the central
80% of the measured field Bz. To find the regulari-
zation parameter which gives the best reconstruction, we
approximately minimize the projected PMSE norm fðλÞ ¼
∥P½ ~Bz − N − ~BðλÞ�∥22, where ~BðλÞ is calculated using the
currents [jxðλÞ and jyðλÞ] obtained by the inversion for-
mulas (3.17) and (3.18) applied to the symmetrically
extended magnetic field ~Bz. We can rewrite fðλÞ as

fðλÞ ¼ ∥PN∥22 þ ∥P½ ~Bz − ~BðλÞ�∥22 − 2CðλÞ; ð3:33Þ

where, defining the l2 inner product by h� � � ; � � �i2, the last
term is given by

CðλÞ ¼ Re½hPN;P½ ~Bz − ~BðλÞ�i2�: ð3:34Þ

The first term on the right-hand side of Eq. (3.33) is
independent of λ and therefore can be neglected. The
second term in Eq. (3.33) can be easily calculated, while
CðλÞ cannot be exactly calculated due to its dependance on
an unknown noise N. However, it is possible to approxi-
mate CðλÞ as follows. First, we rewrite Eq. (3.34) as

CðλÞ ¼ Re½hPN;Pð ~Btrue þ NÞi2�
− Re½hPN;P½BtrueðλÞ þ NðλÞ�i2�; ð3:35Þ

where NðλÞ ¼ F−1½ĤðλÞN̂�, BtrueðλÞ ¼ F−1½ĤðλÞ ~̂Btrue�,
and ~Btrue is the symmetrically extended version of Btrue.
We can then drop the terms Re½hPN;P ~Btruei2� and

Re½hPN;PBtrueðλÞi2� as in Refs. [67,70] since their
expected value is zero, so that

CðλÞ≃ ĈðλÞ≡ ∥PN∥22 − Re½hPN;PNðλÞi2�: ð3:36Þ

In the discrete version of the projected SURE method,
we can approximate Eq. (3.36) by replacing the unknown
noise Nnm with a known noise N1;nm, which has the same
mean and variance as Nnm [64]. Following Ref. [71], we
choose N1;nm such that its components are either þσ or −σ
with probability 0.5, where σ is the standard deviation of
Nnm, which we estimate by a simple algorithm described in
the Appendix. Using this method, the required regulariza-
tion parameter can be found by minimizing the function

SðλÞ ¼∥PDFT−1
�

λj∇̂2
klj2ð ~̂BklÞ

jK̂1;klj2 þ jK̂2;klj2 þ λj∇̂2
klj2

�
∥
2

2

− 2ĈðλÞ;

ð3:37Þ

where

ĈðλÞ ¼ ∥PN1∥22 − Re½hPN1; PDFT−1½HklðλÞN̂1;kl�i2�:
ð3:38Þ

The projected SURE for the GI-SURE scheme is obtained
from Eqs. (3.37) and (3.38) by replacing jK̂1;klj2 þ jK̂2;klj2
in Eq. (3.37) with jK̂klj2.
Thus, to apply the DI method, the following steps have to

be taken:
(1) Compute the extended field ~Bz using Eq. (3.22)

(if currents cross the image boundary).
(2) Compute λ by minimizing either Eq. (3.28) for

DI GCV or Eq. (3.37) for DI SURE.
(3) Obtain the currents using Eqs. (3.17) and (3.18),

with ~Bz substituted for Bz.
(4) Take only the currents lying inside the measurement

window.
In Sec. II, we presented the algorithm for implementation
of the GI method without discussing the possibility of
symmetric extension of the field. Implementation of the
GI method with the symmetric extension is similar to the DI
method presented in this section in the sense that the
calculations are performed using symmetrically extended
data, and the result is taken from inside the measurement
window. In the next section, we compare the performance
of these two methods through several numerical examples.

IV. NUMERICAL RESULTS

In this section, we apply the above-proposed inversion
algorithms to three examples of current distributions in thin
films. Each example consists of a square sample with side
length l1 and a square hole in the center with side length l2.
The circulating currents in the samples are determined by
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numerically solving the Ginzburg-Landau equations in
the presence of an applied external magnetic field [72].
The measured window, however, may contain only part
of the sample and is further corrupted by noise,

Bnm ¼ Btrue;nm þ σWnm: ð4:1Þ

Here, Btrue;nm is calculated using the Biot-Savart law while
taking into account the currents that flow in the entire
sample, and σWnm is Gaussian white noise with the standard
deviation σ¼ smax jBtrue;nmj and s∈f10−1;10−2;10−3g.
Below, the magnetic field is given in units of gauss, the
electric current in milliamperes, and the length in microm-
eters, so that μ0 ¼ 4π. We set the grid step to Δx ¼ Δy ¼
1 μm, the imaging height to h ¼ 1 μm, and the thickness of
the sample to d ¼ 0.05 μm.
Sample A consists of a loop of outer and inner side

lengths l1 ¼ 161 μm and l2 ¼ 83 μm, respectively, and a
clockwise current flow [see Fig. 3(a)]. The sample is
entirely contained in the square measurement window of
side length 223 μm, making this example solvable without
the reflection procedure.
Sample B consists of a square loop with l1 ¼ 159 μm

and l2 ¼ 43 μm that carries a counterclockwise current
flow in the inner part of the loop and a clockwise flow in the
outer part, as shown in Fig. 3(d). The square measurement
window with a side length 99 μm includes one corner of
the loop only, making the use of reflection necessary for
accurate current reconstruction.

The third example, sample C, shown in Fig. 3(g), con-
sists of a square loop with l1 ¼ 161 μm and l2¼ 41 μm.
The loop has several vortices distributed in the sample.
The measurement window of side length 151 × 61 μm cuts
the loop from all four sides. The bottom cut is very close
to the cores of the vortices, representing a challenging
inversion problem that can be dealt with by our reflection
rule as demonstrated below.
The true current densities in samples A, B, and C are

shown in Figs. 3(a), 3(d), and 3(g). Magnetic fields
generated by the currents are corrupted by noise with
s ¼ 10−1 and are shown in the central column [Figs. 3(b),
3(e), and 3(h)]. In the right-hand column [Figs. 3(c), 3(f),
and 3(i)], we present the current densities reconstructed
from the corresponding magnetic fields in the central column
using the DI-SURE scheme. Comparing the left- and right-
hand columns, we can conclude that the quality of the
reconstruction is high, notwithstanding the high noise level
in the central column. The success of current reconstruction
in sampleC is particularly impressive in view of the presence
of vortices that are cut through by the measurement window,
the reconstruction of which can be assumed to require more
sophisticated boundary conditions.
In order to highlight the difference between the GI and

DI methods, we present in Fig. 4 the results of current
reconstruction in samples A, B, and C in the presence of
low noise with s ¼ 10−3. The true current densities for
these three samples are shown in Figs. 4(a), 4(e), and 4(i),
and their reconstructions using a prior symmetric extension
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FIG. 3. (Left column) The
true current density in samples
A (top row), B (middle row),
and C (bottom row). (Middle
column) The corresponding
calculated magnetic field at
height h ¼ 1 μm perturbed
by a noise of s ¼ 10−1. (Right
column) The current density
reconstructed from the noisy
Bzðx; yÞ using the DI-SURE
scheme. The edges of the plots
coincide with the measure-
ment window. The x and y
axes are in units of microme-
ters, the current density in
mA=μm2, and the field in
gauss.
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of the magnetic field by either the DI-SURE or the
GI-SURE method are shown in Figs. 4(b), 4(f), and 4(j)
and Figs. 4(c), 4(g), and 4(k), respectively. Comparing
these results, we observe that the GI method produces a
smoother solution, while the DI method provides a better
reconstruction of the sharp features in the current density.
The reason for this behavior, as mentioned above, is the
strong smoothing by the GI method, which uses two filters
for current reconstruction. To emphasize the advantage of
the reflection procedure, we present in the last row of the
figure [Figs. 4(d), 4(h), and 4(l)] the results of reconstruc-
tions using GI SURE without a prior symmetric extension
of the magnetic field. As expected, the reconstruction
remains accurate for sample A, where the currents are
closed within the measurement window. However, for
samples B and C, the reconstruction is highly inaccurate,
especially near the window boundary.
We now perform a quantitative analysis to compare

the results of the four presented inversion methods by
comparing their MSDs, which are defined in Eq. (2.23).
We apply the inversion procedure to each sample 100
times, each time using a different noise realization, and
present box plots of the MSD values in Fig. 5. The box
plots graphically depict the results by splitting them into
quartiles, so that each box spans the range that contains
the second and third quartiles, termed the interquartile

range (i.e., the middle 50% of the data). The horizontal
line in each box denotes the median, while the error
bars span 150% of the interquartile range above the
third quartile and below the second quartile. Any point
outside this interval is denoted by “þ” and considered an
outlier.
The MSD of the reconstructions in Fig. 5 is given

alongside the best possible MSD, which is calculated using
the λ value that minimizes the MSD function (2.23).
The accuracy of the reconstruction in sample A—where
the current does not cross the image boundary and the
symmetric extension is therefore not performed—is shown
in Figs. 5(a)–5(c). By contrast, in samples B and C, the
current crosses the measurement boundary, and a symmet-
ric extension of the measured magnetic field is therefore
necessary. The accuracy of the reconstruction of these
samples is shown in Figs. 5(d)–5(f) and Figs. 5(g)–5(i). As
can be seen, both methods are close to their optimum
solutions, but the DI methods consistently achieve a lower
MSD compared to the GI methods—in all examples. The
advantage of the DI method becomes more significant
at conditions of lower noise since, in contrast to the GI
method, which uses the Savitzky-Golay filtering upon
differentiating the g function, the DI method does not
use an additional filter and thus preserves the sharp features
of the solution. This effect is particularly pronounced in

FIG. 4. (Top row) Surfaces of
the true current density. (Second
row) The current density recon-
structed with DI SURE using
the symmetric extension of the
field. (Third row) The current
density reconstructed with GI
SURE using the symmetric ex-
tension of the field. (Bottom
row) The current density recon-
structed with GI SURE without
using the symmetric extension
of the field. The results are
presented for s ¼ 10−3 in sam-
ples A (left column), B (middle
column), and C (right column).
The x and y axes are in units of
micrometers and the current
density in mA=μm2.
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Fig. 5(c), where the DI methods provide a MSD that is
more than an order of magnitude lower.
Next, we use the magnetic field simulated at htrue ¼

1 μm and assume, as in real measurements, that the exact
values of the true height are not known. The accuracy of
reconstructions of the currents, assuming different heights
h, is shown in Fig. 6. The MSD curves in the presence
of noise are not steep around the true height, and the
reconstruction therefore remains reliable even with an
incorrect estimation of htrue, with underestimation prefer-
able to overestimation. The DI methods provides the lowest
MSD value at htrue, while the lowest MSD values using the
GI method are obtained for values slightly above the true
height. For heights comparable to and lower than htrue, the
DI method provides consistently lower MSD values, while
for values above htrue, GI attains lower MSD values.
Finally, we analyze the accuracy of the inversion

methods at different measurement heights, assuming that
the reconstruction is performed at a true, variable height.
In Fig. 7, we show the MSD curves of the reconstructed
currents as a function of the true height, htrue. At low
heights, the DI methods result in lower MSDs, but at
large heights, the GI methods may have an advantage
in some cases, as exemplified by sample C, in which highly
irregular currents cross the measurement window. Another
observation is that, when the currents are not closed
within the measurement window, the GCV regularization

becomes ineffective for both the DI and the GI methods at
larger heights, while the projected SURE regularization
remains accurate for a much wider range of measurement
heights.

V. CONCLUSIONS

Reconstruction of nanoscale electric-current distribu-
tions in thin samples is important for the characterization
of low-dimensional materials and the evaluation of electric
devices. A general scheme for the reconstruction of electric
currents from a measured out-of-plane component of the
magnetic field above the sample surface is presented. Our
approach comprises three innovative parts: (1) a direct
formulation of the inversion problem, (2) a symmetric
extension of the measured magnetic field, and (3) an
enhanced method for determination of the regularization
parameter. Using the method of Feldmann [59] as refer-
ence, we show that direct formulation of the reconstruction
problem allows us to improve the accuracy of current
reconstruction, especially at regions that contain sharp
alterations, while the symmetric extension of the measured
magnetic field enables reconstruction of nonclosed cur-
rents. Finally, our scheme for determination of the regu-
larization parameter makes current reconstruction possible
over an extended range of measurement heights.
In this paper, we present several methods for current

reconstruction. Two of the methods, DI GCV and DI
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SURE, reconstruct current fields directly, while two other
methods, GI GCV and GI SURE, reconstruct the stream
function from which the current fields are obtained using a
smoothed differentiation. The advantage of the DI methods
is most pronounced at smaller heights, which are preferable
for resolution of a local magnetic structure. At small
heights (relative to the grid spacing), the DI methods
indeed demonstrate a significant gain in accuracy in all
of our numerical experiments. In the presence of large noise
and at large heights, the DI schemes still outperform the GI
schemes for samples with closed currents, albeit with a
smaller gain in accuracy, with the GI schemes providing the
extra benefit of a smoother solution. In our numerical
simulations, the difference between GCV-based and
SURE-based methods is very small. Therefore, for closed
currents, we suggest using DI GCV at all times, unless a
smooth solution is required and an accurate reconstruction
of sharp changes of currents is not needed, in which case
we suggest using GI GCV.
When currents cross the measurement boundary, a

symmetric extension of the measured field is used to
effectively approximate them and enable usage of the
DFT, which requires periodicity. For small heights, the
DI-GCV and DI-SURE schemes have a very similar
accuracy which is superior to that of the GI schemes,
which is similar to the case of closed currents. For large
heights, however, GCV-based schemes become less accu-
rate due to the poor reconstruction close to the measure-
ment boundary, rendering the SURE-based schemes
essential. In this case, the use of the GI-SURE method
is recommended.
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APPENDIX: METHOD FOR
VARIANCE ESTIMATION

An accurate estimation of the variance σ2 of the
measured magnetic field Bnm is important for a determi-
nation of the regularization parameter using the projected
SUREmethod in Sec. III D. Here, we describe an algorithm
which is based on the ideas developed in Ref. [67] and
carried over to the discrete Fourier space using arguments
given in Ref. [73]. Assuming that the image Bnm represents
a smooth magnetic field corrupted by noise, the Fourier
coefficients B̂nm can be divided into two parts, the part
containing the information about the magnetic field and
the other part containing the noise. We shift B̂nm such that
the zero Fourier mode is located at n ¼ m ¼ 1, while the

high-frequency noise coefficients occupy the center of B̂nm.
For a successful estimation, it is sufficient to find the region
in the frequency space B̂nm which contains only noise and
to compute its sample variance. For this purpose, we
construct a nested sequence of rectangular submatrices
Mj;nm such that M1;nm equals the entire matrix B̂nm and
Mq;nm contains only the highest Fourier modes in the center
of B̂nm. We then define the function

VðjÞ ¼
X
nm

jMj;nmj2=Nj;

where Nj is the number of elements inMj;nm. It is shown in
Ref. [67] that the value of the curve VðjÞ, which approx-
imates the expected value of jMk;nmj2, decreases and levels
off at σ2. We thus find an index k0 in the flat region of VðkÞ
by minimizing ∥ log½Vðkþ 1Þ� − log½VðkÞ�∥ and obtain
our estimate to be σ2 ≃ Vðk0Þ.
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