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We demonstrate basic operations of a two-component superconducting gravity gradiometer (SGG) that
is constructed with a pair of magnetically levitated test masses coupled to superconducting quantum-
interference devices. A design that gives a potential sensitivity of 1.4 × 10−4 EHz−1=2 (1 E≡ 10−9 s−2) in
the frequency band of 1 to 50 mHz and better than 2 × 10−5 EHz−1=2 between 0.1 and 1 mHz for a
compact tensor SGG that fits within a 22-cm-diameter sphere. The SGG has the capability of rejecting the
platform acceleration and jitter in all 6 degrees of freedom to one part in 109. Such an instrument has
applications in precision tests of fundamental laws of physics, earthquake early warning, and gravity
mapping of Earth and the planets.
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I. INTRODUCTION AND BACKGROUND

Precise gravity measurements are required to study the
fundamental nature of gravitation. Measurements of gravity
can also provide a better understanding of Earth and the
planets, help find natural resources, and improve inertial
navigation and surveying. To distinguish gravity from
platform accelerations, the equivalence principle requires
a differentialmeasurement. A gravity gradiometer detects a
spatial derivative of the gravitational field and ideally is
immune to the vibrations of the platform.
Several versions of the superconducting gravity gradi-

ometer (SGG) have been developed at the University of
Maryland (UM) with support from NASA and other
funding agencies [1–3]. A three-axis diagonal-component
SGG with a baseline of 19 cm and mechanically suspended
test masses reached a performance level of 0.02 EHz−1=2
[1 E≡ 10−9 s−2, E (eötvös) is a unit of gravity gradient] in
the laboratory, which is 3 orders of magnitude more
sensitive than demonstrated to date by other gradiometers,
including atom-interferometer gravity gradiometers [4–7].
The SGGwas used to set the best limit of Newton’s inverse-
square law (ISL) at 1 m, at the level of two parts in 104 [8].
An off-diagonal SGG was also developed for an airborne
application [9].
Time-variable gravity measurements from space are

essential to address the causes and consequences of climate
change [10]. The satellite-to-satellite tracking (SST) mis-
sion, Gravity Recovery and Climate Experiment (GRACE),
proved the importance of global gravimetric measurements
from satellites to observe and understand mass transports
driven by climatic, tectonic, and anthropogenic forces
[11]. The first space-borne gradiometer, Gravity Field
and Steady-State Ocean Circulation Explorer (GOCE)
[12], demonstrated that satellite gradiometer data can

substantially advance our knowledge of the static gravity
field to higher spatial resolution [13].
To improve our knowledge of the gravity field for Earth

and the planets to beyond that achieved by other missions,
we are developing a more sensitive SGG based on levitated
test masses [14]. By replacing the relatively stiff mechani-
cal springs used to suspend the test masses in the earlier
devices with soft magnetic levitation, the sensitivity of the
SGG can be improved by 2 to 3 orders of magnitude. A
levitation scheme, which simplifies the design and con-
struction of the advanced SGG, was demonstrated [15]. We
construct and test a prototype two-component SGG based
on this levitation scheme and demonstrate common-mode
(CM) rejection, the most essential characteristic of a SGG.
Unlike SST, where the gravity signal is deduced from

orbital motions of two satellites, a gradiometer directly
measures the gravitational field over a short baseline within
a spacecraft. In addition, the SGG measurements have full
3D observability and are not limited to along-track obser-
vations, as in the case of the SST system [16]. A very
attractive feature of the SGG is the tunability of the
measurement band and sensitivity in flight by changing
its resonance frequency, which allows measurements of
both static and time-variable gravity fields from the same
mission (see Fig. 9). Decade-long gravity missions require
space-qualified cryocoolers. A 4-K cryocooler has already
flown on the International Space Station [17], and other
cryocoolers with negligible vibration levels are under
development [18–20].
In this paper, we discuss the design and operating

principle of the SGG, report a demonstration of the
SGG constructed with levitated test masses, and compute
its potential sensitivity. We also discuss the applications of
the SGG technology in Earth and planetary sciences as well
as in fundamental physics.
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II. DESIGN AND OPERATING PRINCIPLE
OF THE SGG

A. Principle of gravity gradiometry

The second spatial derivatives of the gravitational
potential ϕðxi; tÞ form a gravity gradient tensor Γij:

Γij ≡− ∂2ϕ

∂xi∂xj : ð1Þ

Γij is symmetric, and its trace is proportional to the local
mass density ρ due to the ISL:X

i

Γij ¼ −∇2ϕ ¼ 4πGρ: ð2Þ

This constraint leaves five independent components for the
tensor: two diagonal and three off diagonal. A diagonal-
component gradiometer can be constructed by differencing
signals between two linear accelerometers whose sensitive
axes are aligned along their line of sight. Likewise, an off-
diagonal-component gradiometer can be constructed by
differencing signals between two concentric angular accel-
erometers whose moment arms are orthogonal to each other.
In a diagonal-component gradiometer, linear and angular

accelerations of the platform couple to the gradiometer
through departures from parallelism and concentricity of
the sensitive axes of the accelerometers, respectively [1].
There are like error sources in an off-diagonal-component
device. A departure of the rotation axes from parallelism
provides coupling to angular acceleration, and an asym-
metric mass distribution in each moment arm causes linear
acceleration to couple to the gradiometer [9]. For a review
of superconducting accelerometry and gravity gradiometry,
see Ref. [21].

B. SGG with levitated test masses

1. Levitation scheme

Amagnetically levitated mass requires 5 or 6 degrees-of-
freedom (d.o.f.) control, which generally requires levitation
coils of elaborate design [22]. A simple levitation scheme,
which provides stiff suspension for unwanted d.o.f. while
permitting complete compliance along and about the
sensitive axis, has been devised and demonstrated at UM
(see Appendix A).
Figure 1 illustrates the principle of levitation by a current

induced along a superconducting tube. Inside the levitation
tube, each of N-turn wires carries current IL. This induces a
screening current on the tube NIL to flow along the inner
surface of the tube and return along the outer surface. The
current density on the outer surface is uniform, independent
of the current distribution inside the tube. This generates a
cylindrically symmetric magnetic field, which falls off as
1=r, as shown in Fig. 1(a). A tube-shaped superconducting
test mass with a larger diameter surrounds the levitation
tube. When the test mass is concentric with the levitation
tube, the field is uniform around the levitation tube and

does not exert a net force on the test mass. However, if the
test mass is displaced radially, as shown in Fig. 1(b), the
field becomes stronger at P and weaker at Q, resulting in a
radial restoring force.

2. Two-component SGG

A prototype two-component SGG with levitated test
masses has been constructed and tested [14]. The guiding
principle in designing the SGG for laboratory test is the
capability to levitate the test masses in 1 g. The required 1 g
operation leads to a test mass design using thin vanes to
produce a light mass (m ¼ 0.10 kg). Figure 2 is a per-
spective view of two niobium (Nb) test masses levitated by
a current along a single horizontal Nb tube. Each test mass
has two wings 180° apart, which provide a moment arm
about the tube axis (x). A balancing screw is provided at the
end of each wing to adjust the center-of-mass (c.m.)
position and bring it to the rotation axis. The current
flowing along the tube provides stiff suspension in the
radial directions (y and z) but leaves the test masses to

Superconducting tube

Test mass

Current in wireB(r) Point P

Point Q

(b)(a)

FIG. 1. Principle of levitation by current induced on a super-
conducting tube. (a) In the absence of a test mass, the current
induced on the levitation tube generates a cylindrically symmetric
magnetic field. (b) A tube-shaped superconducting test mass with
a larger diameter surrounds the levitation tube. If the test mass is
displaced radially, the field becomes stronger at P and weaker at
Q, resulting in a radial restoring force.

FIG. 2. Two superconducting test masses levitated around a
single superconducting tube.
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translate freely along the axis and rotate freely about the
same axis.
On the ground, still a large levitation current ðNIL ∼

103 AÞ is required to levitate the test masses against Earth’s
gravity, and the SGG suffers g-related errors, such as
sensitivity to tilt. In 0 g, the levitation and alignment can
be achieved with much smaller currents and g-related errors
disappear; thus, it should be much easier to reach the
intrinsic noise level of the SGG.
Figure 3 shows the test mass and sensing coil configu-

ration for the SGG. For the diagonal component, pancake-
shaped Nb coils Lijði ¼ 1; 2; j ¼ 1;…; 4Þ are placed near
the disk faces of the test masses to detect their translational
motion, as shown in Fig. 3(a). For the off-diagonal
component, pancake-shaped coils Lij are located near
the rectangular surfaces of the test masses to detect their
rotational motion, as shown in Fig. 3(b).
Figure 4(a) is the gradient sensing circuit of the

diagonal component. Persistent currents I1 and I2
are stored in the superconducting loops formed by L11

and L12, and by L21 and L22, respectively. The linear
acceleration signals from the two test masses are differ-
enced in the superconducting quantum-interference
device (SQUID) to detect gravity gradient Γxx. In an
ideal gradiometer with perfectly matched test masses and
sensing coils, setting I1 ¼ I2 gives perfect rejection of the
CM in the differential-mode (DM) output. In a real
device, there are mismatches, and I2=I1 is adjusted to
maximize the CM rejection ratio (CMRR). Figure 4(b) is
the CM sensing circuit. With the sense of I2 reversed, the
linear acceleration signals are summed in the SQUID to
detect linear acceleration ax.

Circuit diagrams for off-diagonal-component gradient
Γyz and angular acceleration αx are identical to those in
Figs. 4(a) and 4(b). The rotation of test masses 1 and 2
modulates the corresponding inductances in the same way
as the translation of the test masses in Figs. 4(a) and 4(b).

3. Scale factor and null stability

Signal differencing by means of stable persistent currents
before detection is a feature of the SGG. This assures
excellent null stability of the device, which, in turn,
improves the overall CM rejection. Further, the SQUID
sees only a small differential signal, thereby reducing the
dynamic range requirement on the amplifier and signal-
processing electronics. The mechanical stability of the
materials at cryogenic temperatures guarantees that mis-
alignments are also stable. These error coefficients can,
therefore, be measured once and for all during the initial
setup, multiplied by the proper acceleration components,
and subtracted from the gradiometer output. By applying
this “residual CM balance” [23], the acceleration error
coefficients are reduced effectively to ≤10−7 and ≤10−9
for the diagonal and off-diagonal components, respectively,
in our previous devices [3,9].
The SGG is a completely passive system. Because of the

extreme stability of persistent currents and the mechanical
stability of materials at low temperatures, once persistent
currents are stored in the levitation and sensing coils, the
positions and orientations of the test masses with respect to
the coils, as well as the accelerometer scale factors, remain
constant. Hence, there is nothing to control actively, except
for the temperature. This greatly simplifies the design and
operation of the SGG.

FIG. 3. Test mass and sensing coil con-
figuration for (a) the diagonal-component
and (b) the off-diagonal-component SGG.

FIG. 4. (a) Gravity gradient and (b) linear acceleration sensing circuit of the diagonal-component SGG.
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III. INSTRUMENT NOISE AND ERRORS
OF THE SGG

A. Intrinsic instrument noise

The instrument noise power spectral density (PSD) limit
set by thermal force noise and readout noise for a diagonal
component is given by

SΓðfÞ ¼
8

ml2

�
kBT

ωD

QD
þ ðω2 − ω2

DÞ2
2βηω2

D
EAðfÞ

�
; ð3Þ

where m and l are the mass of each test mass and the
gradiometer baseline, ωD and QD are the (angular) reso-
nance frequency and Q of the DM, β and η are the
electromechanical energy coupling and energy coupling
efficiency from circuit to SQUID, and EAðfÞ is the energy
resolution of the SQUID at signal frequency f, respectively.
The instrument noise PSD for an off-diagonal component is
given by

SΓðfÞ ¼
2

ξ2J

�
kBT

ωD

QD
þ ðω2 − ω2

DÞ2
2βηω2

D
EAðfÞ

�
; ð4Þ

where ξ is the gradient-to-angular-acceleration conversion
factor, and J is the moment of inertia of the rotating arm.
Equations (3) and (4) are generalized from those derived by
Chan et al. [2] and by Moody et al. [24] to allow fD < f.
In the SGG with mechanically suspended test masses, β

is given by

β ¼ ke
ke þ km

; ð5Þ

where ke and km are the electrical and mechanical spring
constants, respectively. In the SGG with levitated test
masses, km ¼ 0; therefore, β should be unity. In practice,
the levitation field may provide parasitic stiffness causing
β < 1, which must be investigated. The circuit energy
coupling efficiency η is given by

η ¼ Li

Lp þ Li
; ð6Þ

where Lp ≡ ðL−1
11 þ L−1

12 þ L−1
21 þ L−1

22 Þ−1 is the parallel
combination of the four sensing coil inductances, and Li
is the inductance of the SQUID input coil. For our earlier
models of SGG, SΓðfÞwas dominated by the SQUID noise.
In the present device, S1=2Γ ðfÞ is reduced by over 2 orders of
magnitude by replacing the stiff mechanical spring
(fD ∼ 10 Hz) with a soft magnetic spring (fD ≤ 0.1 Hz).
Table I summarizes the design parameters of

our prototype SGG. Substituting these values along with
T ¼ 4.2 K and EAðfÞ ¼ ð1þ 0.1 Hz=fÞ5 × 10−31 J Hz−1
(commercial dc SQUID) into Eqs. (3) and (4), we find
S1=2Γ ðfÞ¼1.4×10−4EHz−1=2 for the diagonal components

and 3.5 × 10−4 EHz−1=2 for the off-diagonal components
in the frequency band of 1 to 50 mHz. Below 10−3 Hz, the
SGG exhibits a 1=f power noise. The sensitivity of this
compact SGG exceeds that of the much larger SGG with
mechanically suspended test masses by 2 orders of
magnitude.

B. Temperature sensitivity

The enhanced displacement-to-acceleration sensitivity
(by ω2

D) gives another important advantage: reduced sensi-
tivity to temperature change. Because of the dependence of
the superconducting penetration depth on the temperature,
the SGG is sensitive to temperature fluctuations through the
modulation of sensing coil inductances [1]. For the SGG to
reach the 3 × 10−5 EHz−1=2 sensitivity, the temperature
needs to be controlled to 2 × 10−5 KHz−1=2, well within
the capability of germanium thermometers. Although the
gradient sensitivity increases by 2 orders of magnitude from
that of the mechanically suspended SGG, the temperature
control becomes easier by an order of magnitude [3].

C. Patch fields

Electrostatic patch fields apply parasitic forces to the test
masses. The resolution of the Gravity Probe B (GPB)
mission was severely compromised by this error [25]. The
patch effect is also an important error source for the LISA
test masses [26]. However, unlike GPB and LISA, which
require disturbance-free gyros or reference masses, the
SGG uses test masses suspended with relatively stiff
magnetic springs from the spacecraft. This implies that
the residual motion of the test masses is small relative to the
gap; hence, the spatial variability of patch fields is less of a
concern. However, the nonlinear modulation of the gap
produces acceleration noise that cannot be removed by the
CM balance. The patch fields will also interact with the
fluctuating charge of the isolated test mass. This error will
lead to a charge control requirement.
Here, we estimate the noise generated by modulation of

the patch fields on the diagonal component Γxx. The test
mass response to the platform acceleration in the radial

TABLE I. SGG design parameters.

Parameter Diagonal Off diagonal

m (kg) 0.10
l (m) 0.135
J (kgm2) 8.1 × 10−5
ξ 0.96
fC (Hz) 0.1 0.1
QC 104 104

fD (Hz) 0.02 0.02
QD 2 × 106 2 × 106

β 1 1
η 0.4 0.4
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direction is negligible due to the very stiff (>10-Hz) radial
suspension provided by the levitation current. The platform
acceleration apðωÞ along the sensitive axis causes the test
mass to be displaced with respect to the sensing coils by
xðωÞ ¼ apðωÞ=ðω2 − ωC

2Þ, where ωC is the CM (angular)
resonance frequency. The patch potentials produce a force
gradient [27] given by

∂F
∂x ¼ κ

ε0Aν2

d3
; ð7Þ

where A is the area, ε0 is the permittivity of vacuum, v is the
rms potential fluctuation, d is the gap, and κ is a dimen-
sionless constant between−1.2 and−1.8, depending on the
assumed form of the voltage distribution. Substituting
dþ x into d, expanding, and integrating over x, we find

F ¼ F0 þ
κε0Av2

d3
x − 3

2

κε0Av2

d4
x2 þO

��
x
d

�
3
�
: ð8Þ

The first-order term modifies the CM spring constant:

k ¼ mω2
C − κε0Av2

d3
: ð9Þ

The second-order term represents the nonlinear coupling
to the platform noise. By dividing platform acceleration
PSD SaðfÞ by the CM frequency response function and
Fourier transforming, we obtain the autocorrelation func-
tion of displacement RxðτÞ. By Fourier transforming
½RxðτÞ�2 again with the aid of Eq. (8), we find the gravity
gradient noise PSD due to the patch fields:

SΓ;PFðfÞ ¼
Z

∞

−∞
dτe−i2πfτ

�
1

2π

Z
∞

−∞
df0

3

2

κε0Av2

mld4
1

ð2πÞ4
Saðf0Þ

ðf2C − f02 þ ifCf0=QCÞ2
ei2πf

0τ
�
2

: ð10Þ

By evaluating the f0 and τ integrals, we obtain

SΓ;PFðfÞ ¼
�
3

2

κε0Av2

mld4
SaðfCÞ
ð2πÞ5

1

2f2C

�
2 2πQC

fC

1

ðf − 2fCÞ2 þ ð2fC=QCÞ2
: ð11Þ

SΓ;PFðfÞ peaks at f ¼ 2fC and becomes a white noise at f
sufficiently far away from 2fC. We expect that the patch
potentials will produce similar errors for the off-diagonal-
component channels.
For high-purity Nb with which the test masses are

constructed, v ¼ 0.33 V [28]. With the parameter values
listed in Table I as well as A ¼ 5 × 10−4 m2 and d ¼ 5 ×
10−4 m into Eq. (9), we find k ¼ ð0.16þ 8 × 10−6Þ Nm−1.
This small modification of the spring constant is incon-
sequential since the spring constants of the two test masses
are matched precisely in the CM balancing procedure.
Substituting the parameter values and Sað0.1 HzÞ ¼ 1 ×
10−15 m2 s−4Hz−1 into Eq. (11), we obtain S1=2Γ;PFðfÞ ¼ 3 ×
10−5 EHz−1=2 at f ¼ 0.01 Hz. This is smaller than the scale
factor nonlinearity error by a factor of 3.We aim to reduce the

nonlinearity errors by 2 orders of magnitude by measuring
and compensating for the nonlinear response of the instru-
ment (see Table II).

D. Other noise and errors

Many other types of noisemust be suppressed for the SGG
to reach the intrinsic instrument noise limit. To eliminate
coupling to the external magnetic fields, a μ-metal shield is
provided for the cryostat, and the superconducting circuit is
completely shielded in a superconductor. The SGG platform
needs to be sufficiently rigid for its own thermal noise
to be negligible and to allow a high degree of CM balance.
The techniques to mitigate these noise and other errors
of the instrument have been studied extensively and docu-
mented [2,3].

TABLE II. Expected errors of the diagonal-component channels in the ground laboratory at 0.01 Hz.

Error source Ambient level Coupling compensation Error

Linear acceleration 1 × 10−8 ms−2 Hz−1=2 ð1 × 10−5Þð1 × 10−4Þ 1.3 × 10−7 EHz−1=2
Angular acceleration 3 × 10−9 rad s−2 Hz−1=2 ð1 × 10−5Þð1 × 10−4Þ 5 × 10−9 EHz−1=2
Angular rate 5 × 10−8 rad s−1 Hz−1=2 ð7 × 10−5 rad s−1Þð1 × 10−4Þ 5 × 10−7 EHz−1=2
Attitude 8 × 10−7 radHz−1=2 ð73 s−2Þð1 × 10−5Þð1 × 10−4Þ 6 × 10−5 EHz−1=2
Scale factor nonlinearity 1 × 10−14 m2 s−4 Hz−1 ð90 m−2 s2 Hz1=2Þð1 × 10−2Þ 9 × 10−6 EHz−1=2
Patch field nonlinearity 1 × 10−14 m2 s−4 Hz−1 ð30 m−2 s2 Hz1=2Þð1 × 10−2Þ 3 × 10−6 EHz−1=2
Temperature fluctuations 2 × 10−5 KHz−1=2 ð1.5 EK−1Þð1 × 10−2Þ 3 × 10−7 EHz−1=2
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Table II lists the major errors (in addition to the intrinsic
noise) of the diagonal-component channels of the prototype
SGG in the ground laboratory. The off-diagonal-component
channels have similar errors. The third column shows the
coupling constant to various types of environment noise
times the degree of compensation applied. The angular rate
error multiplied by Earth’s spin rate produces centrifugal
acceleration error. The attitude error modulates Earth’s
gravity gradient as well as gravity field gE. In the SGG
orientation chosen (two axes horizontal and one axis
vertical), the gravity gradient error becomes a second-order
error and is negligible. The scale factor nonlinearity error is
computed by assuming the same nonlinearity coefficient in
the displacement as in our mechanically suspended SGG.
The linear acceleration PSD caused by the attitude error is
entered as the ambient level for both types of nonlinearity
errors. The SGG has sufficient rejection and compensation
capability to keep each error below the intrinsic noise level.

IV. CONSTRUCTION AND TEST OF THE SGG

A. Construction of two-component SGG

Each test mass is constructed by snugly fitting a Nb tube
into a precision hole drilled through the central axis of the
test mass body. For ease of winding the levitation coil, two
separate levitation tubes are used, one for each test mass,
instead of using a common levitation tube for the pair as
shown in Fig. 2. Each levitation coil is wound with 160
turns of Nb wire, 40 turns on each quadrant of the levitation
tube. The return wires are routed on the outside of a
superconducting shield enclosing the test mass and sensing
coils to prevent the magnetic field arising from the current
in the returning wires from canceling that produced by the
levitation current.
Figure 5 shows our prototype SGG mounted on the

cryostat. The cross-shaped housing facing the front is one
of the two Nb housings for the two test masses. The other
one (hidden from view) is mounted on the opposite face of
a precision titanium (Ti) cube, 10.2 cm per side. The Ti
cube is polished to make the surfaces parallel or
perpendicular to two parts in 105.

B. Dynamics of levitated test masses

The test masses are levitated with NIL ¼ 1.1 × 103 A.
To free the test masses, we have to apply a relatively large
asymmetric current in the rotation sensing coils since mass
balance has not been applied to the test masses yet. With the
rotation sensing coils dedicated to freeing the test masses, it
is not possible to demonstrate the off-diagonal-compo-
nent SGG.
Our model indicates that the c.m. of one test mass is

offset by 80 μm away from the rotation axis, which is
consistent with the machining precision of the prototype
SGG. This c.m. offset will be reduced to <1 μm by
adjusting the balancing screws iteratively (see Fig. 2). At

the pressure <10−6 torr, the translational mode exhibits Q
of 3.6 × 104, which is quite remarkable for a single mass
with no CM balance.
Figure 6 shows the observed resonance frequency

squared versus the sensing current squared for the trans-
lational mode of one test mass. The excellent fit of the data
points to a straight line shows that the acceleration-to-
current transfer function is highly linear. The nonzero y
intercept corresponding to 1.4 Hz, however, indicates that
there is parasitic stiffness. A similar plot for the rotational
mode does not show such stiffness. The parasitic stiffness
in the translational mode appears to be coming from
coupling of the levitation current to the translation d.o.f.
For a detailed discussion, see Appendix B.

FIG. 5. Two-component SGG mounted on the cryostat.

FIG. 6. Frequency squared vs current squared for the transla-
tional mode.
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C. Common mode balance

A characteristic of a SGG is its ability to balance out the
CM sensitivity by adjusting persistent currents, thus,
achieving extreme null stability. This is demonstrated in
our SGG. Figure 7 shows the SQUID response to an
applied CM acceleration plotted against the ratio of the
sensing currents in the two accelerometers. The CM
balance is achieved with the current ratio of I2=I1 ¼ −0.37.
Without a provision to measure linear and angular

accelerations in the other two axes, the CMRR in this
device is limited to 103 due to misalignment of the sensitive
axes. This limited CMRR does not permit demonstration of
the sensitivity of the SGG since the DM output is
dominated by uncompensated dynamic noise of the
laboratory.

V. FUTURE MODIFICATIONS AND
IMPROVEMENTS

A. Elimination of parasitic stiffness

As shown in Appendix B, the parasitic stiffness is caused
by magnetic fields produced by screening currents on the
outer surface of the test masses induced by the strong
levitation field. We find a simple solution to eliminate the
parasitic stiffness. We insert a thin insulating layer between
the center tube and the rest of the test mass body, thus,
prevent the screening currents from coupling to the trans-
lational motion.

B. Mass balance and sensitive axis alignment

Our CMRR goal for the SGG is 109 by combining an
initial balance to one part in 105 with persistent currents and
alignments, and a residual balance to one part in 104. To
meet this goal, the mass balance of the test masses must be
improved by a factor of 100. We plan to improve the
balance of the test masses at room temperature by a factor
of 10 by trimming the mass. The remaining factor of 10
improvement will be achieved by iteratively adjusting the
balancing screws and testing the balance at 4.2 K.
The alignment of the levitation tubes is limited to

10−3 rad in our prototype SGG. To achieve the initial

balance to one part in 105, alignment must be improved to
10−5 rad. We investigate the possibility of implementing an
in situ axis alignment system by using the cryogenically
proven PiezoKnobs manufactured by Janssen Precision
Engineering [29]. These piezoknobs have a minimum step
of 1–5 nm at 4 K and can potentially provide 10−7-rad
alignment.

C. Tensor SGG

We plan to expand the SGG to a full tensor instrument.
Figure 8 is a partially exploded view of our future tensor
SGG. Six identical accelerometers are mounted on the Ti
mounting cube. The entire SGG assembly will weigh 12 kg
and fit within a sphere of 22 cm in diameter.
The devicewill measure all six components of the gradient

tensor, as well as all six components of the linear and angular
accelerations of the platform. The acceleration components
will be used to achieve the overall CMRR of 109.

D. Expected sensitivity of the spaceborne SGG

For Earth science missions, the SGG will be scaled up to
m ¼ 1.0 kg and l ¼ 0.20 m to improve the sensitivity by a
factor of 5 over the values computed above. Figure 9 shows
the intrinsic noise spectral densities S1=2Γ ðfÞ for two different
values of fD. With fD tuned to 20 mHz, the SGG will have a
wide bandwidth up to 0.05 Hz, permitting a high spatial
resolution of gravity. With fD tuned to 0.2 mHz, the
sensitivity below 1 mHz will be improved by an order of

FIG. 7. CM acceleration to SQUID transfer function versus the
ratio of sensing currents.

FIG. 8. Partially enlarged view of the tensor SGG.
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magnitude. The sensitivities indicated by the red and blue
curves correspond to 2 to 3 orders ofmagnitude improvement
over those achieved by GOCE [30] and GRACE [13],
respectively. The typical acceleration level encountered in a
low-Earth orbit 1 × 10−6 ms−2Hz−1=2 will produce a gra-
dient error of 8.7 × 10−6 EHz−1=2, 1 order of magnitude
below the target sensitivity of the SGG for Earth gravity
missions. In 0 g, the attitude modulation of gravity field,
which is the largest error in the ground laboratory, is absent. If
the spacecraft vibrations and jitter are controlled to
within 10 times above the levels of the ground laboratory
listed in Table II, the CMRR of 109 will make drag-free
control unnecessary, except in the along-track direction as
in GOCE.
It is interesting to compare the expected sensitivity of our

spaceborne SGG with the demonstrated sensitivity of the
LISA Pathfinder (LPF) [26]. The LPF test masses weighed
1.93 kg each. Between 0.7 and 20 mHz, LPF reached
differential acceleration noise of 5.6 × 10−15 ms−2 Hz−1=2,
which corresponds to 2.8 × 10−5 EHz−1=2 when divided
by the SGG baseline, l ¼ 0.20 m. This is basically
identical to the sensitivity of the SGG tuned to fD ¼
20 mHz (red curve in Fig. 9). It is remarkable that LPF
achieved this sensitivity at room temperature with test
masses only twice as heavy as those of the SGG. However,
to achieve this sensitivity, LPF was sent to the first
Lagrange point (L1), about 1.5 × 106 km from Earth and
had to be in a drag-free satellite. The SGG does not require
a full drag-free satellite. Its sensitivity below 1 mHz
improves by an order of magnitude if fD be tuned to
0.2 mHz. The SGG sensitivity can be improved further by
using a two-stage SQUID with proven lower noise [31]. So,
the SGG can potentially reach sensitivity 2 orders of
magnitude beyond that achieved by LPF.

VI. CONCLUSION AND DISCUSSION

Highly sensitive SGGs were developed at UM in the
1980s and early 1990s. The first gradiometer developed at

UM in the early 1980s demonstrated a gradient resolution
of 0.7 EHz−1=2 [2], a level yet to be surpassed by a room-
temperature device on Earth. A later version has demon-
strated CM rejection to better than one part in 107, which
led to a demonstrated noise level of 0.02 EHz−1=2 [3].
The SGG has the capability of rejecting CM accelerations
to one part in 107 or better, owing to the extreme stability
of persistent currents combined with mechanical stability of
the platform at cryogenic temperatures.
While convenient for ground-based testing, mechanical

springs reduce the inherent sensitivity of the SGG. By
replacing the relatively stiff mechanical springs used in
the earlier devices with soft magnetic levitation, the
sensitivity of the device can be improved by 2 to 3
orders of magnitude. We design, construct, and test a
prototype two-component SGG, one diagonal and one off
diagonal, by combining a pair of levitated test masses, each
with 2 d.o.f. Bothmasses are successfully levitated, and CM
rejection is demonstrated with levitated test masses.We find
parasitic stiffness in the diagonal-component channel due to
the magnetic field produced by the levitation current
coupling to the translational motion. We are able to identify
the cause of the problem and find a way to eliminate this
stiffness by a straightforward modification of the test
masses.
For NASA’s Earth science and planetary science appli-

cations, we plan to construct a full tensor SGG by
combining six levitated test masses [14,32]. A compact
design with each test mass weighing 0.10 kg and a baseline
of 0.135 m yields an intrinsic noise level of 1.4 ×
10−4 EHz−1=2 for the diagonal components and 3.5 ×
10−4 EHz−1=2 for the off-diagonal components in the
frequency band of 1 to 50 mHz. This represents over 2
orders of magnitude improvement beyond what has been
demonstrated with the much larger SGG with mechanically
suspended test masses. The measurement bandwidth and
sensitivity of the SGG can be tuned in flight to detect both
static and time-variable gravity fields from the same
mission [14]. The SGG mission will be like GRACE
and GOCE combined, with the sensitivity improved by
2 to 3 orders of magnitude in all frequencies.
Sensitive SGGs with levitated test masses will find

useful applications in many precision gravity experiments,
such as a satellite test of the equivalence principle [22] and
detection of gravitomagnetic fields in Earth orbit [33].
A scaled-up version of the tensor SGG can detect transient
gravity signals from an earthquake rupture at the speed of
light. A network of such detectors can determine the
magnitude and the epicenter of the earthquake and issue
a more prompt warning of the earthquake than is possible
with a seismometer network [34,35].
The present ground-based laser interferometer GW detec-

tors cover a frequency band from 10 Hz to several kilohertz
[36], whereas a future space mission like LISA will
cover from 0.1 mHz to 0.1 Hz [37]. Recently, a type of

FIG. 9. Intrinsic noise of SGG for Earth science missions. The
red and blue curves represent the instrument noise corresponding
to fD ¼ 20 and 0.2 mHz, respectively.
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ground-based GW detector called SOGRO (Super-
conducting Omni-directional Gravitational Radiation
Observatory) was proposed to cover a midfrequency band
of 0.1 to 10 Hz [38]. SOGRO is basically an enormously
scaled-up version of the tensor SGG to a baseline of 30–50m
with each test mass weighing 5 tons, The target sensitivity of
SOGRO is 10−20 Hz−1=2.
The absolute stability of the superconducting sensing

circuit, which utilizes flux quantization, and the enhanced
stability of the mechanical platform at cryogenic temper-
atures render the SGG the capability of rejecting the platform
vibrations to one part in 109 or better. This gives the SGG a
tremendous advantage over other systems in detecting tiny
gravity signals at low frequencies ðf < 1 HzÞ, where vibra-
tion isolation becomes extremely difficult. These advantages
will be fully utilized in gravity-mapping missions for Earth
and the planets and in the proposed SOGRO detector.
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APPENDIX A: LEVITATION BY CURRENT
ALONG A TUBE

1. Levitation force and resonance frequency

Consider an inner superconducting tube (levitation tube)
of radiusR1withwires inside it carrying a net current I and an
outer superconducting tube (test mass) of radius R2. When
the tubes are centered, the surface currents on the inner tube
are distributed such that the magnetic field outside it is
uniformly centered about the tube from Ampere’s law, as in
Fig. 1(a), regardless of the location of the wires within the
tube. However, if the outer tube is displaced, as shown in
Fig. 1(b), themagnetic field above the inner levitating tube is
compressed, while the field below it is expanded. This
provides a restoring force on the outer tube.
To estimate the restoring force, we use the image current

method since the Lorentz force between two current-
carrying wires obeys the same equation as the Coulomb
force between two line charges (except for the sign). From
electrostatics [39], we know that the equipotentials between
two equal and opposite line charges are circular cylinders.
The force between the two tubes is the same as the force
between the line current inside the levitating tube and its
image current. The location of the tubes and the line
currents is shown schematically in Fig. 10. Solving for the
equipotential between two line charges separated by a
distance 2a, we obtain the following relations:

R1 ¼ acschU1; R2 ¼ acschU2;

D ¼ aðcothU1 − cothU2Þ; ðA1Þ
U1 ¼ 2πε0V=λ; ðA2Þ

where V is the potential, and λ is the line charge per unit
length. Combining these equations, we get

D ¼ ðR2
2 þ a2Þ1=2 − ðR2

1 þ a2Þ1=2: ðA3Þ

The force between two currents separated by a distance 2a
can be expressed as

Fr ¼
μ0
2π

I2

2a
l; ðA4Þ

where l is the length of the outer tube (i.e., test mass). For
the case where the two cylinders are nearly concentric, we
have D ≪ R1; R2. Equations (A3) and (A4) then yield

a ¼ R2
2 − R2

1

2D
; ðA5Þ

Fr ¼
μ0
2π

I2

R2
2 − R2

1

Dl: ðA6Þ

This method establishes the spring constant and, hence, the
frequency of the radial oscillation of the test mass in 0 g,

FIG. 10. Schematic of the test mass and levitation tube.
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where the test mass is concentric with respect to the
levitation tube. Dividing by the mass of the test mass m
gives the radial resonance frequency:

ω2
r ¼

μ0
2π

I2

R2
2 − R2

1

l
m
: ðA7Þ

Now, we consider the case where the test mass sags with
respect to the levitation tube due to gravity. When the
levitating tube rests horizontally on the earth, the outer tube
is initially at rest on top of it. As the levitation current is
increased, it experiences a repulsive force and begins to rise
above the levitating tube and approaches the concentric
position as the current goes to infinity. When the two
cylinders are not concentric, the equations of force have to
be solved to obtain the restoring force:

Fr ¼
μ0
2π

I2

R2
2 − R2

1

Dl ¼ mg: ðA8Þ

The general form of the solution for the distance between
the tubes can be expressed as

D¼
�
R2
2þ

�
μ0
4π

lI2

mg

�
2
�
1=2

−
�
R2
1þ

�
μ0
4π

lI2

mg

�
2
�
1=2

: ðA9Þ

As the test mass is a free rigid body, it will have 6 d.o.f. It
should have three linear modes and three angular modes,
which are all distinct. To calculate the frequencies of the
linear modes of the test mass, we invoke the principle of
flux conservation in the levitating coil:

Φ0 ¼ ðLT þ LSÞIL ¼ LLIL; ðA10Þ

where LT is the inductance due to the magnetic field
between the two tubes, LS is the stray inductance arising
from the field elsewhere, LL is the total inductance of the
levitation coil, and IL is the persistent current in the coil
ðI ¼ NILÞ. To calculate the frequency of the vertical mode,
we need to express the inductance in terms of the separation
D between the centers of the test mass and the levitating
tube. This can be done by calculating the magnetic flux in
the region between the tubes as

LTIL ¼ l
Z

D

0

Bdz: ðA11Þ

The field can once again be calculated using the image
current method described earlier. We get

LT ¼ μ0l
2π

ln

�ðr0 þDÞð2a − r0Þ
ð2a − r0 −DÞr0

�
; ðA12Þ

where

r0 ¼ R −
�
a coth

�
csch−1 R1

a

�
þ a

�
: ðA13Þ

The total stored energy can be expressed as

E ¼ Φ2
0

2LL
: ðA14Þ

The restoring force and the spring constant are given by

Fv ¼ − dE
dD

¼ − Φ2
0

2L2
L

dLL

dD
; ðA15Þ

kv ¼
dFv

dD
¼ Φ2

0

2L2
L

�
2

LL

�
dLT

dD

�
2 − d2LT

dD2

�
; ðA16Þ

using the fact that LS is not modulated by D. Substituting
Φ0 ¼ LLIL, we get

ω2
v ¼

kv
m

¼ I2L
2m

�
2

LL

�
dLT

dD

�
2 − d2LT

dD2

�
: ðA17Þ

The vertical mode frequency of the test mass is
fv ¼ ωv=2π.

2. Demonstration of levitation scheme

To test this levitation principle, we develop the simple
setup shown in Fig. 11. A Nb tube of 4.78 mm o.d. is used
as the levitating tube. The test mass consists of a Nb tube of
6.35 mm o.d., 12.7 mm length, and 0.38-mm wall thick-
ness, weighing 0.78 g. Since there is no magnetic restoring
force along a straight levitation tube, we introduce a slight
curvature in the levitating tube to have gravity provide the
restoring force as in a pendulum. A Nb wire is looped
through the levitating tube 49 times (N ¼ 49). A small
pancake coil located beneath the test mass is connected to a
SQUID to sense its motion.
As IL increases to 1.8 A (total levitation current:

NIL ¼ 88 A), there appear two low-frequency modes
and several high-frequency modes. In particular, the lowest

FIG. 11. Test setup for levitation scheme.
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observed frequency, 0.34 Hz, agrees with the expected
frequency of the sliding mode, in which the test mass slides
along the levitating tube and is trapped in the gravitational
potential well created by the curvature of the tube.
Figure 12 shows f2v versus I2L. The line represents the
2D model derived in Appendix A 1 and is computed
numerically using Eq. (A17). It is remarkable how well
the experiment agrees with our simple theory. When the test
mass is barely levitated, fv is very high (approximately
100 Hz), since the magnetic field above the levitation tube
[point P in Fig. 1(b)] is much stronger than below (point
Q). As IL increases to 3.5 A (NIL ∼ 170 A), fv is reduced
to a minimum (approximately 50 Hz) because the magnetic
field becomes more uniform around the levitation tube as
the test mass becomes more concentric with the levitation
tube. With a continued increase of IL, fv increases again as
the magnetic field increases everywhere.
Equation (A12) yields LT ¼ 0.42 μH for D ¼ 0.36 mm,

and LS ¼ 0.05 μH is obtained from our best fit of the data.
However, the values of LT and LS are expected to change
substantially in a more realistic 3D model.

APPENDIX B: PARASITIC STIFFNESS
AGAINST TRANSLATIONAL MOTION

1. Origin of parasitic stiffness

The magnetic field from the levitation current induces a
current that flows along the inner surface of the central
tube of the test mass and returns through the outer surface
of the test mass. Figure 13(a) shows the current (blue) that
flows through the outer surface of the test mass and the
resulting magnetic field (red). Figure 13(b) shows the side
(cross-sectional) view of the magnetic field that wraps
around the center tube and the two wings. On the outer
surface of the test mass, the current splits into three paths:
one along the center tube and the other two to the two
wings. The magnitude of the current along each path should
be inversely proportional to the inductance of that path.
Each wing is connected to the center tube by two narrow
bridges ðwb × h × rbÞ.

The observed parasitic stiffness against the translational
mode appears to arise mainly from the strong magnetic
field that wraps around the narrow bridges. Because of the
current continuity, the current that flows out across one
bridge must be the same as the current that flows in across
the other bridge. If the test mass undergoes a translational
motion x along the tube axis, the gap between the two edges
of the test mass and the superconducting shield is modu-
lated in the opposite direction: de � x, so the total
inductance of the bridge-wing-bridge path, thus, the current
along that path, will not change to the first order. However,
the magnetic fields are modulated in the opposite directions
in the two gaps, and, therefore, they must produce a net
restoring force.
Let a fraction η of the total current I cross one bridge:

Ib ¼ ηIL. The magnetic field produced by this current in
close proximity to the bridge can be estimated from
Ampere’s law:I

Bb
�!

· dl
�! ¼ Bbð2hþ 2wbÞ ¼ μ0ηI; ðB1Þ

where wb is the width of bridge, and h is the height of the
bridge. From Eq. (B1), we obtain

Bb ¼
μ0ηI

2ðhþ wbÞ
: ðB2Þ

As the test mass is displaced, Bb is modulated by δBb ¼
�Bbðx=deÞ producing a restoring force:

FðxÞ¼ 1

2μ0

�
B2
b

�
1− x

de

�
2−B2

b

�
1þ x

de

�
2
�
A¼−2B2

bA
μ0de

x;

ðB3Þ

where A ¼ 2rbh and rb is the length of the bridge. From
FðxÞ ¼ −mω2

t x,

FIG. 12. Vertical mode frequency squared versus levitation
current squared.

FIG. 13. Induced current on the test mass surfaces and the
resulting magnetic fields.
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ω2
t ¼

2B2
bA

μ0mde
¼

�
μ0ηI

2ðhþ wbÞ
�
2 2A
μ0mde

; ðB4Þ

ft ¼
1

2π

ηI
hþ wb

�
μ0A
2mde

�
1=2

: ðB5Þ

With numerical values η≈0.2, I¼ 1200A, h ¼ 0.51 cm,
wb ¼ 0.20 cm, rb ¼ 0.4 cm, de ¼ 0.23 cm, A ¼ 2rbh ¼
0.41 cm2, and m ¼ 0.1 kg, we find fr ≈ 1.8 Hz. This is
very close to our observed frequency.

2. Hardware modification
to eliminate parasitic stiffness

The original test mass is constructed by snugly fitting a
Nb tube into a precision hole drilled through the central
axis of the Nb test mass (see Fig. 2). One simple solution to
eliminate the parasitic stiffness is to insert a thin insulating
layer between the center tube and the rest of the test mass
body. This prevents the returning currents on the outside of
the test mass from branching to the two wings through the
narrow bridges, thus, eliminating the strong magnetic field
that wraps around the narrow bridges. Elimination of
parasitic stiffness is one of the modifications being made
to improve the performance of our SGG.
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