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Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated
nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well
known, for a vibrational system, including the DE system, the dynamic properties are significantly affected
by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the
geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary
rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic
performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase
paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The
resonance characteristics of DEs incorporating geometrical effects are also investigated. The results
indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and
resonance, are tuned when the geometrical sizes vary.
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I. INTRODUCTION

As the soft electroactive polymers, dielectric elastomers
(DEs) can generate a large deformation under the external
stimuli [1–6]. With a combination of mechanical forces and
an applied voltage, the induced maximum areal strain can
be up to 1692% [7], implying a significant potential
application as soft actuators and robots. The reported
typical DE actuators include spring rolls [8], balloons
[9], tunable lenses [10], flying wings [11], electric fish
[12], loudspeakers [13], and energy generators [14].
During DE’s actuation, various deformation modes can

be induced by different voltage signals [15]. A dc voltage
induces a static or quasistatic deformation, and the DEs
obtain an invariable deformation eventually. During the
past decade, nonlinear modeling and stability analyses of
DEs under static deformation have been well investigated
and documented in various forms [16–18]. However, when
DEs are performed as dynamic electromechanical actua-
tors, such as flying wings [11], electric fish [12], loud-
speakers [13], pumps [19], and acoustic absorbers [20], the
ac voltage is required. Under such actuations, the inertial
effect plays a decisive role in determining DEs’ perfor-
mance, which should be inevitably included.
Recently, with consideration of different configurations,

various researchers carried out the nonlinear dynamical
modeling of DEs. The two fundamental approaches to

establish dynamics governing equations are the method of
virtual work [21,22] and the Euler-Lagrange equation
[23,24]. However, the geometrical effects on the dynamic
properties of DEs are totally ignored in the reported
literature [21–28]. Besides, in previous modeling work,
many researchers considered only the inertial force in the
in-plane directions, while neglecting the inertial force in the
thickness direction. DE membranes are generally in a
specific thickness, when the DE membranes are in a large
in-plane size, the inertial effect in the thickness may be very
weak; however, when the in-plane size of DEs is small, the
inertial effect in the thickness direction will become very
obvious. That is, the combined effects of the geometrical
sizes and the inertial forces in three principal directions are
very important in practical applications of DE actuators.
Furthermore, the negative works done by the viscous
damping in three principal directions are basically ignored
by many researchers. As we know, for a vibrational system,
the dynamic properties, such as resonant frequency, ampli-
tude, and periodicity, are strongly affected by the geomet-
rical sizes. However, investigations on such opening issues
have not yet been explored.
Furthermore, the majority of the workhorse DE materials

are popularly the electroactive macromolecular polymers,
which exhibit different levels of viscoelasticity [28–33].
Viscoelasticity causes the deformation to have a significant
time dependence, dissipates the mechanical energy, and
suppresses the amplitude of vibration. Also, a strong
viscoelasticity may induce the drifting behavior of the
mean stretch of DEs during vibration [32,33], which
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enhances the difficulty in practical applications. Recently,
Gu et al. [33] developed a theoretical and experimental
study on the viscoelastic electromechanical behaviors of
DEs, indicative of the obvious phenomena of drift and
hysteresis. Therefore, the viscoelastic effects should be
involved in developing the DEs’ dynamical model.
In this paper, by utilizing the method of virtual work, we

deduce a dynamical model of viscoelastic DEs by consid-
ering the geometrical effects. Based on the dynamical
model, the dynamic properties of DEs are explored.
Through the phase paths and Poincaré maps, we also
analyze the vibrational periodicity evolution of DEs when
the geometry varies.

II. NONLINEAR DYNAMICAL MODEL OF
VISCOELASTIC DES

As illustrated in Fig. 1(a), a DE membrane of initial
length L1, width L2, and thickness H in the reference state,
is employed to deduce the dynamical model. The compliant
electrodes are coated on both surfaces of the DEs for
electroactuation. Subject to the tensile forces P1 and P2,
and a high voltage ϕ, the DE deforms to the actuated state.
We set the three principal stretches as follows: the stretch in
length direction is λ1, the stretch in width direction is λ2,
and the stretch in thickness direction is λh. Hence, the DE in
the actuated state deforms to the length L1λ1, width L2λ2,
and thicknessHλh, as shown in Fig. 1(b). Since the Poisson
ratio of DEs is approximately 0.5, it is generally regarded
that DE membranes are incompressible [34], that is,
λ1λ2λh ¼ 1. Therefore, the stretch in thickness direction
is obtained as λh ¼ λ−11 λ−12 .
As mentioned previously, the majority of the widely used

DE materials exhibit different levels of viscoelasticity. To
describe the viscoelastic behavior of DEs, Wissler and
Mazza [35] first proposed the Prony series model.
Subsequently, based on the theory of rheology, Foo et al.
[36] and Hong [37] reported that the DEs can be approx-
imately represented by a rheological model that includes
two parallel units, i.e., the standard linear solid (SLS)
model. Afterwards, Khan et al. [38] established the
generalized Maxwell viscoelastic model by paralleling

three units of the Maxwell model. Subsequently, to capture
both the initial jumping deformation and the following slow
creeping of DEs under step stimulations, Zhang et al. [39]
proposed the Kelvin-Voigt-Maxwell model by parallel
connecting the Kelvin-Voigt model and Maxwell model.
In this paper, to be more accurate, we adopt the Wiechert
model [33,40,41] to describe the viscoelasticity of DEs, as
sketched in Fig. 2. In the Wiechert model, one unit consists
of a reversible spring α, and the other unit consists of a
group of Maxwell arms which includes the springs βm and
the series-wound viscous dampings cm (m ¼ 1; 2; 3;…n).
By employing the Wiechert model, the principal stretch
λi (i ¼ 1; 2; h) is regarded as the stretch of both units,
which is also the stretch of spring α. For an arbitrary
Maxwell arm, the stretch of spring βm is described by λeim
and is determined by a well-established multiplication
rule [33,36,37,39,42] as λeim ¼ λi=ξimði ¼ 1; 2; h;m ¼ 1; 2;
3;…; nÞ, in which ξim represents the principal stretches in
the viscous damping.
Thus, with the employment of the Gent model [43], the

free-energy density function of DEs is obtained as

W¼−μαJα

2
log

�
1−λ21þλ22þλ−21 λ−22 −3

Jα

�

−Xn
m¼1

μβmJ
β
m

2
log

�
1−λ21ξ

−2
1mþλ22ξ

−2
2mþλ−21 λ−22 ξ21mξ

2
2m−3

Jβm

�

þD2

2ε
; ð1Þ

where ε is the permittivity, μα and μβm are the shear moduli
of spring α and springs βm, Jα, and Jβm are the material
constants related to the limiting stretches of the springs, D
is the electric displacement, and is defined as D ¼ Q=
ðL1L2λ1λ2Þ, where Q is the charge on DE surfaces. The
free-energy density is extensively utilized to deduce the
dynamical model of DEs, and a good agreement between
theoretical modeling and experimental measures has been
demonstrated [44].

FIG. 1. (a) In the reference state, a DE membrane of initial
length L1, width L2, and thickness H. (b) In the actuated state,
subject to the tensile forces P1 and P2, and a high voltage ϕ, the
DE deforms, with three principal stretches λ1, λ2, and λh.
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FIG. 2. The Wiechert model: one unit consists of a reversible
spring α, and the other unit consists of a group of Maxwell arms
which include the springs βm and the series-wound viscous
dampings cm (m ¼ 1; 2; 3;…; n).
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During the actuation, the viscous damping does nega-
tive work and dissipates energy. The work done by the
viscous damping in three principal directions can be
calculated as [39] ð− cmL2

i =2Þðdξim=dtÞδξimði ¼ 1; 2Þ,
and ð− cmH2=2Þðdξhm=dtÞδξhm, where t denotes the time,
and cm is the viscous damping. On the other hand, when the
ac voltage is applied, the DEs vibrate nonlinearly,
and the inertial forces should be involved. As

reported previously, the work done by the inertial
forces in three principal directions can be calculated
as [22] ð− ρL1L2L3L2

i =3Þðd2λi=dt2Þδλiði ¼ 1; 2Þ, and
ð− ρH3L1L2=3Þðd2λh=dt2Þδλh, in which ρ is the density
of DEs. For a viscoelastic DE system, it can be derived that
the variation of the free-energy of DEs is equal to the work
done jointly by the voltage, the tensile forces, the viscous
dampings, and the inertial forces, that is,

L1L2HδW ¼ ϕδQþ
X2
i¼1

PiLiδλi −
X2
i¼1

�Xn
m¼1

cmL2
i

2

dξim
dt

δξim

�
−Xn

m¼1

cmH2

2

dξhm
dt

δξhm −X2
i¼1

�
ρL1L2HL2

i

3

d2λi
dt2

δλi

�

− ρL1L2H3

3

d2λh
dt2

δλh: ð2Þ

According to the incompressibility of DEs, it can be implied that the inertial force and the viscous damping in the
thickness direction can be expressed as

d2λh
dt2

¼ −λ−21 λ−12
d2λ1
dt2

− λ−11 λ−22
d2λ2
dt2

þ 2λ−31 λ−12
�
dλ1
dt

�
2

þ 2λ−11 λ−32
�
dλ2
dt

�
2

þ 2λ−21 λ−22
dλ1
dt

dλ2
dt

; ð3Þ

and

dξhm
dt

¼ −ξ−21mξ−12m dξ1m
dt

− ξ−11mξ−22m
dξ2m
dt

: ð4Þ

Meanwhile, the variations of λh and ξh in the thickness direction are obtained as

δλh ¼ −λ−21 λ−12 δλ1 − λ−11 λ−22 δλ2 ð5Þ

and

δξhm ¼ −ξ−21mξ−12mδξ1m − ξ−11mξ−22mδξ2m: ð6Þ

On the basis of Eqs. (2)–(6), replacing the charge Q with the electric displacement D yields

∂W
∂λi ¼

Pi

LjH
þ ϕD

H
λj − ρL2

i

3

d2λi
dt2

þ ρH2

3
λ−2i λ−1j

�
−λ−2i λ−1j

d2λi
dt2

− λ−1i λ−2j
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dt2

þ 2λ−3i λ−1j
�
dλi
dt

�
2

þ 2λ−1i λ−3j
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dλj
dt

�
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dλi
dt

dλj
dt

�
; ð7aÞ

∂W
∂ξim ¼ − cmLi

2LjH
dξim
dt

− cmH
2LiLj

ξ−2im ξ−1jm
�
ξ−2imξ−1jm

dξim
dt

þ ξ−1imξ−2jm
dξjm
dt

�
; ð7bÞ

∂W
∂D ¼ ϕ

H
λiλj: ð7cÞ

When i ¼ 1 and j ¼ 2, Eqs. (7a) and (7b) describe the variations of deformation in length direction; and when i ¼ 2 and
j ¼ 1, Eqs. (7a) and (7b) describe the variations of deformation in width direction. The indices i and j and their values also
apply to the following formula derivations.
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According to Eq. (1), we obtain

∂W
∂λi ¼

μαðλi − λ−3i λ−2j Þ
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; ð8aÞ
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; ð8bÞ

∂W
∂D ¼ D

ε
: ð8cÞ

Combing Eqs. (7) and (8), and eliminating the electric displacement D, we obtain
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and �
cmLi

2LjH
þ cmH
2LiLj

ξ−4imξ−2jm
�
dξim
dt

þ cmH
2LiLj

ξ−3imξ−3jm
dξjm
dt

¼ μβmðλ2i ξ−3im − λ−2i λ−2j ξimξ
2
jmÞ
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Thereby, the dynamical model of the viscoelastic DEs is
preliminarily deduced. As shown in Fig. 3, in order to
consider the geometrical effects, we define the length and
width of DEs as

L1 ¼ N1H ð11Þ
and

L2 ¼ N2H; ð12Þ
where N1 and N2 are the dimensionless multiples. Under
such a condition, the length and width of DE membranes
can be random multiples of the thickness. By inserting
Eqs. (11) and (12) into the governing equations (9) and
(10), the dynamical model of viscoelastic DEs is general-
ized and obtained as

ðN2
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; ð14Þ

in which T ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðρH2Þ=3μα�

p
is the dimensionless time,

Pi ¼ ½Pi=ðμαH2Þ� (i ¼ 1, 2) is the dimensionless tensile
force,Φ ¼ ðϕ=HÞ ffiffiffiffiffiffiffiffiffiffi

ε=μα
p

is the dimensionless voltage, and
Cm ¼ ðcm=μβmÞ½1=ð2H2Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð3μαÞ=ρ�p

is the dimensionless

viscous damping. Hence, the dynamical model for visco-
elastic DEs is established. Based on this model, the
geometrical effects of DEs on dynamic performances
can be explored and predicted. Also, a DE membrane with
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an arbitrary rectangular dimension can be modeled and
theoretically described by varying the values of N1 and N2.
As the Wiechert model consists of n groups of Maxwell
units and cannot be completely involved, we only consider
three of them in the following calculation. The required
material parameters for calculations are set as follows,
μα=μβm ¼ 1, Jα ¼ Jβm ¼ 100, C1 ¼ 0.1, C2 ¼ 0.01, C3 ¼
0.001. The periodic sinusoidal voltage Φ ¼ Φ0 sinðΩTÞ is
applied to stimulate the nonlinear vibration of DEs, in
which Φ0 denotes the dimensionless voltage amplitude,
and Ω is the dimensionless voltage frequency. In the
following calculation process, the parameters of applied
voltage are set as Φ0 ¼ 0.5 and Ω ¼ 0.1.

III. DYNAMIC PROPERTIES OF DES WITHOUT
TENSILE FORCES

Since the tensile forces may affect geometrical bounda-
ries and tune the dynamic properties [22,24,26], therefore,
we study the dynamic performances of DEs with and
without tensile forces, respectively. In this section, we
investigate the dynamic properties of DEs without tensile
forces by incorporating the geometrical effects. Both the
square and rectangular DE membranes are considered.

A. Square DEs with different geometrical sizes

In this subsection, by combining Eqs. (13) and (14) and
setting P1 ¼ P2 ¼ 0, we theoretically detect the dynamic

properties of viscoelastic DEs with square sizes. N1 and N2

are prescribed as N1 ¼ N2 in order to guarantee the
square DEs. Under such a square case, the dynamic
responses of λ1 and λ2 are identical to each other, that
is, λ1 ¼ λ2 ¼ λ.
Figure 4 describes the dynamic response of the square

viscoelastic DEs when the geometrical sizes are set as
N1 ¼ N2 ¼ 10, 30, 70, and 90, respectively. When
N1 ¼ N2 ¼ 10, the dynamic response of DEs vibrates
the most strongly and nonlinearly, and exhibits the phe-
nomenon of “beating,” which does not exist when N1 and
N2 take other values. During the DEs’ nonlinear vibration,
we regard the maximum level of the difference between the
peak and valley value of λ as λP-V . It can be found that both
the value of λP-V and the nonlinearity weaken gradually
when N1 and N2 are added. Furthermore, the frequency of
the dynamic response also gradually decreases when N1

andN2 increase. In addition, the decreasing rate of λP-V and
the frequency of dynamic response reduces as N1 and N2

enlarge, resulting from the combination of the extended
geometrical sizes and the weakened effect of the inertial
force in the thickness direction.
Under the same actuation and boundary conditions in

Fig. 4, the corresponding phase paths and the Poincaré
maps of the square DEs are illustrated in Fig. 5. The phase
paths and the Poincaré maps are used to further detect the
dynamic properties of the DE systems [23]. If the points in
Poincaré maps overlap to one point, the DE system
experiences a periodic vibration. Meanwhile, if the points
in Poincaré maps form a closed loop, the DE system
undergoes a quasiperiodic vibration. On the contrary, if the
points in Poincaré maps are disordered, the dynamic system
experiences an aperiodic vibration. When N1 ¼ N2 ¼ 10,
the Poincaré map is disordered, indicative of an aperiodic
vibration of DEs, as shown in Fig. 5(a). However, with
an increase of N1 and N2, the Poincaré map becomes
ordered and forms the closed loops, such as N1 ¼ N2 ¼ 30
[Fig. 5(b)], 70 [Fig. 5(c)], and 90 [Fig. 5(d)], which
demonstrates that the DEs under these geometrical sizes
undergo the quasiperiodic vibration. Therefore, it can be
concluded that a transition from aperiodic vibration to quasi

T
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1 2 70N N= = 1 2 90N N= =
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0 500 1000 1500 2000
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FIG. 4. Dynamic response of
square DEs without tensile forces
when the geometrical sizes are set
as N1 ¼ N2 ¼ 10, 30, 70, and 90,
respectively.

1 1N H=

2 2N H=H L

L

FIG. 3. A schematic to describe the geometrical effects of DEs.
The length and width of DEs are related to random multiples of
the thickness.
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periodic vibration of DEs occurs when N1 and N2 increase,
that is, the increase of areal size of square DEs leads to the
DEs transforming from aperiodic vibration to quasiperiodic
vibration.

B. Rectangular DEs with different geometrical sizes

Compared with the last subsection, here we investi-
gate the dynamic properties of viscoelastic DEs with
rectangular sizes. Also, the tensile forces are prescribed

(b)(a)

(d)(c)

λ

d
dt
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d
dt
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FIG. 5. The phase paths and the
Poincaré maps of square DEs with-
out tensile forces when the geomet-
rical sizes are set as N1 ¼ N2 ¼ 10,
30, 70, and 90, respectively.
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FIG. 6. Dynamic response of
rectangular DEs without tensile
forces when the geometrical
sizes are set as N2 ¼ 10, 30,
70, and 90 with the con-
stant N1 ¼ 50.
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as P1 ¼ P2 ¼ 0. In order to obtain the rectangular DE
membranes, we set N1 ¼ 50 as a constant and vary the
values of N2 from N2 ¼ 10, 30, 70, to 90. Under such a
condition, λ1 and λ2 are nonidentical and coupled with each
other during the DE’s vibration.
The dynamic response of λ1 and λ2 of the rectangular

DEs is exhibited in Fig. 6 when the tensile forces are set as

P1 ¼ P2 ¼ 0. When N2 is less than N1, the stretch λ2
shows a stronger vibration than λ1, as shown in Figs. 6(a)
and 6(b) and Figs. 6(e) and 6(f). Particularly, when N1 ¼
50 and N2 ¼ 10, λ2 vibrates the strongest and the beating is
induced [Fig. 6(e)]. As N2 adds up and exceeds N1, the
dynamic response of λ1 becomes stronger than that of λ2, as
revealed in Figs. 6(c) and 6(d) and Figs. 6(g) and 6(h).
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FIG. 7. The phase
paths and the Poincaré
maps of rectangular
DEs without tensile
forces when the geo-
metrical sizes are set
as N2 ¼ 10, 30, 70,
and 90 with the con-
stant N1 ¼ 50.
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Furthermore, for the vibration of λ1, the nonlinearity
weakens when the value of N2 increases. However, an
increase of N2 enhances the nonlinearity in the vibration of
λ2. The above analysis implies that a larger geometrical
scale in a certain in-plane direction suppresses the dynamic
response and enhances the nonlinearity in this direction.
When the same actuation and boundary conditions are

consistent with Fig. 6, the corresponding phase paths and
the Poincaré maps of λ1 and λ2 of the rectangular DEs are
given in Fig. 7. We first consider the case when N2 is
smaller thanN1. WhenN2 ¼ 10, the Poincaré maps of both
λ1 and λ2 are quite disordered, as shown in Figs. 7(a) and
7(e). Subsequently, the Poincaré maps of both λ1 and λ2
become somewhat ordered and form some bunches
when the value of N2 adds up to 30, which is revealed
in Figs. 7(b) and 7(f). After N2 is beyond the prescribed
value of N1 ¼ 50, such as N2 ¼ 70 and 90, the Poincaré
maps of both λ1 and λ2 go back to the disordered state.
According to the results in Fig. 5, the DEs with square
geometry may undergo the quasiperiodic vibration. As for
the case in Fig. 7, all the Poincaré maps are disordered
whenever N2 is below or beyond the prescribed value of
N1 ¼ 50, and the Poincaré maps become somewhat
ordered and form some bunches when N2 is close to 50.
Therefore, it can be concluded that, when the geometrical
size in a certain in-plane direction increases and the
geometrical size in another certain in-plane direction
is prescribed as a constant, the DEs experience two
transitions: a first transition from aperiodic vibration to
quasiperiodic vibration, and a second transition from
quasiperiodic vibration to aperiodic vibration.

IV. DYNAMIC PROPERTIES OF DES WITH
TENSILE FORCES

In Sec. III, the dynamic properties of DEs without the
tensile forces are considered. In this section, we study the
dynamic performances of DEs by incorporating the effects
of tensile forces and geometrical sizes. In order to focus on
the geometrical effects, we apply the equal-biaxial dimen-
sionless tensile forces of P1 ¼ P2 ¼ 0.5. Respectively, we
consider the effects of both small and large geometrical
sizes on the dynamic properties of rectangular DEs under
equal-biaxial tensile forces.

A. Rectangular DEs with small geometrical sizes

In this subsection, by employing the dimensionless
tensile forces P1 ¼ P2 ¼ 0.5, we study the dynamic
performance of rectangular DEs with relatively small
geometrical sizes. The calculation results are described
in Fig. 8. We keep N1 ¼ 5 as the constant and vary N2

between 1 and 10. An increase of N2 from 1 and 10 leads to
a reduction of the mean stretch of λ1, and induces an
enlargement of the mean stretch of λ2. During the nonlinear
vibration, the mean stretch of DEs is defined as half of the
sum of the peak and valley value of λ. Furthermore, as N2

increases from 1 and 10, λP-V of λ1 reduces and λP-V of λ2
enlarges.
Subject to the tensile forces of P1 ¼ P2 ¼ 0.5, the

corresponding phase paths and the Poincaré maps of λ1
and λ2 of the rectangular DEs with small geometrical sizes
are presented in Fig. 9. All the phase paths are disordered
and appear as a tangle of interlaced curves, indicating the
DEs possess very complicated nonlinear behavior. In
addition, all the Poincaré maps are disordered and do
not form the closed loops, detecting that the DEs experi-
ence the aperiodic vibration.

B. Rectangular DEs with large geometrical sizes

Compared with the last subsection, here we consider the
dynamic characteristics of rectangular DEs with relatively
large geometrical sizes by applying the identical tensile
forces P1 ¼ P2 ¼ 0.5. In the simulation, N1 ¼ 50 is set as
the constant, and N2 is tuned from 10 to 100. Similar to
Figs. 8(a) and 8(b), both the mean stretch and λP-V of λ1
reduce when N2 enlarges from 10 to 100. However, for the
vibration of λ2, both the mean stretch and λP-V also decrease
as N2 increases, which is not consistent with the results in
Figs. 8(a) and 8(b).
Under the same actuation conditions in Fig. 10, the

corresponding phase paths and the Poincaré maps of λ1 and
λ2 of the rectangular DEs with large geometrical sizes are
presented in Fig. 11. Similar to the results in Fig. 9, the
phase paths are all emerging as tangles of interlaced curves,
implying a complicated nonlinear vibration. Also, all the
Poincaré maps are disordered and do not form the closed
loops, demonstrating an aperiodic vibration of DEs.
However, when the geometrical sizes of DEs are set as
N1 ¼ 50 and N2 ¼ 10, the Poincaré maps of both λ1 and λ2
appear as some groups of ordered bunches, declaring that
DEs are approaching the quasiperiodic vibration.
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FIG. 8. By employing the equal-biaxial dimensionless tensile
forces of P1 ¼ P2 ¼ 0.5, the dynamic response of λ1 and λ2 of
rectangular DEs with relatively small geometrical sizes.
(a) N1 ¼ 5, N2 ¼ 1; (b) N1 ¼ 5, N2 ¼ 10.
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Combining Figs. 8–11, we conclude that the geometrical
sizes largely affect the dynamic performances of DEs that
subject to the equal-biaxial tensile forces. When the
geometrical sizes of DEs are comparably small, enlarge-
ment of the geometrical size in a certain in-plane direction
(the geometrical size in another in-plane direction is set as a
constant) enhances the vibration in this direction and
suppresses the vibration in another in-plane direction.
However, when the geometrical sizes of DEs are compa-
rably large, the vibrations in both of the two in-plane

directions are suppressed as the geometrical size in a certain
in-plane direction increases (the geometrical size in another
in-plane direction is set as a constant). Such a conclusion
results from the combined effects of the geometrical sizes
of DEs and the external tensile forces, leading to the
different variation of the mean stretch and λP-V of DEs with
comparably small and large geometrical sizes.

V. ANALYSIS OF RESONANCE
CHARACTERISTICS

In the above analysis, the dynamic properties of DEs
under a specific voltage frequency are investigated. In this
section, we explore the effects of geometrical sizes on
resonance characteristics of DEs by involving the whole
frequency ranges. We assume that when λP-V peaks, the
resonance of DEs occurs. The frequency when λP-V peaks is
regarded as the resonant frequency ΩR, and the peak value
of λP-V at the resonant frequencyΩR is defined as λP-VðΩRÞ.
In this section, the λP-V of λ1 is considered.
When DEs are with no tensile forces, that is

P1 ¼ P2 ¼ 0, the frequency-response spectrums of DEs
are exhibited in Fig. 12. Both the square and rectangular
DE membranes are considered. Figure 12(a) illustrates the
frequency-response spectrums of square DEs. When the
geometrical sizes of DEs range from N1 ¼ N2 ¼ 10 to 90,
both ΩR and λP-VðΩRÞ reduce gradually. By keeping N1 ¼
50 as a constant and varying the value of N2, the frequency-
response spectrums of rectangular DEs are obtained, as

(c)

1λ

(a)

(d)(b)

2λ

1d

dT

λ

1d

dT

λ

2d

dT

λ

2d

dT

λ

1 25 1N N= =

1 25 10N N= =

1 25 1N N= =

1 25 10N N= =

1.0 1.2 1.4
-0.05

0.00

0.05

0.9 1.0 1.1

-0.05

0.00

0.05

0.8 1.0 1.2
-0.05

0.00

0.05

0.9 1.0 1.1 1.2

-0.02

0.00

0.02

FIG. 9. By employing
the equal-biaxial dime-
nsionless tensile forces
of P1 ¼ P2 ¼ 0.5, the
phase paths and the
Poincaré maps of λ1
and λ2 of rectangular
DEs with relatively
small geometrical sizes.
N1 ¼ 5, N2 ¼ 1 for
(a) λ1 and (c) λ2;
N1 ¼ 5, N2 ¼ 10 for
(b) λ1 and (d) λ2.

T

(a)

(b)

1 250 10N N= =

1 250 100N N= =

1λ
2λ

1λ 2λ

1
2

,
λ

λ
1

2
,

λ
λ

0 500 1000 1500 2000

1

2

0 500 1000 1500 2000

1.00

1.05

1.10

FIG. 10. By employing the equal-biaxial dimensionless tensile
forces of P1 ¼ P2 ¼ 0.5, the dynamic response of λ1 and λ2 of
rectangular DEs with relatively large geometrical sizes.
(a) N1 ¼ 50, N2 ¼ 10; (b) N1 ¼ 50, N2 ¼ 100.

NONLINEAR DYNAMICAL MODEL OF A SOFT … PHYS. REV. APPLIED 8, 064016 (2017)

064016-9



given in Fig. 12(b). When N2 is smaller than N1, the
increase of N2 dramatically causes a reduction of both ΩR
and λP-VðΩRÞ, such as the increase of N2 from 10 to 30. On
the other hand, when N2 is larger than N1, the resonant
frequency ΩR is weakly decreased as N2 enlarges from 100
to 200. However, the peak value λP-VðΩRÞ almost stays
invariable and is rarely affected by an increase of N2. The

reason is due to the combination of the augmented in-plane
geometrical sizes and the weakened inertial effect in the
thickness direction.
Figure 13 provides the frequency-response spectrums of

rectangular DEs under the tensile forces P1 ¼ P2 ¼ 0.5.
Two kinds of DEs with relatively small and large
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FIG. 13. Under the tensile forces P1 ¼ P2 ¼ 0.5, the fre-
quency-response spectrums of rectangular DEs with consider-
ation of geometrical effects. (a) The DE membranes with different
small geometrical sizes. (b) The DE membranes with different
large geometrical sizes.
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geometrical sizes are investigated. As shown in Fig. 13(a),
when N1 ¼ 5 is kept as the constant and N2 is tuned from 1
to 5 and 10, the geometrical effects on resonance properties
of DEs are revealed. The resonant frequency ΩR initially
increases when N2 enlarges from 1 to 5, and subsequently
reduces whenN2 further enlarges from 5 to 10. Besides, the
peak values λP-VðΩRÞ seem unbounded, implying the
electromechanical breakdown occurs. When N1 ¼ 50 is
kept and N2 ranges from 10 to 50 and 100, the geometrical
effects on resonance characteristics of DEs are presented in
Fig. 13(b). The resonant frequency ΩR reduces as the value
of N2 increases. Simply, the reductive process can be
divided into two stages: the dramatic reduction of ΩR
between N2 ¼ 10 and 50; the weak reduction of ΩR
between N2 ¼ 50 and 100. Similarly, the reason is due
to the combination of the augmented in-plane geometrical
sizes and the weakened inertial effect in the thickness
direction.
Based on the modeling work, the various dynamic

performances of DEs with different geometrical sizes are
revealed. Under the external stimuli, DEs are the versatile
materials for potential applications as soft sensors and
actuators. When the ac voltage is applied, the DE-based
configurations and structures can work as the dynamic
electromechanical actuators, such as pumps, loudspeakers,
flying wings, acoustic absorbers, electric fish, etc. As we
know, for a vibrational system, including the DE system,
the dynamic properties are strongly affected by the geo-
metrical sizes. However, previous modeling work on DE
dynamics totally ignored the effects of geometrical sizes
of DEs. This research explores the geometrical effects
on dynamic performances of DEs by deducing a nonlinear
viscoelastic dynamical model. Nowadays, various
researchers have designed many kinds of dynamic DE
actuators, which own different geometrical sizes, respec-
tively. Therefore, the various DE actuators have different
working frequencies, vibrational amplitudes, and vibra-
tional periodicity. People have to carefully select the
applied voltage value and frequency to guarantee the stable
vibration and avoid the unwelcome dynamic instabilities.
In this paper, we consider the geometrical effects of DEs on
the nonlinear dynamic properties. Based on the present
work, people can clearly select the required voltage value
and frequency when they actuate the designed DE actua-
tors. According to the structural need, people first can
design the required geometrical sizes of the DE actuators,
and then they can select the adequate voltage for actuation
to avoid the failure and achieve the stable vibration. On the
other hand, according to the functional need, people first
can select the required geometrical sizes of DEs, and then
design the corresponding actuators that own the desired
actuations. From both of these points of view, it can be
found that this work can advance the development of DEs
as actuators, that is, this work can be utilized to design and
fabricate the practical DE actuators.

VI. CONCLUSIONS

In this article, by incorporating the geometrical effects,
we develop a dynamic model to investigate the dynamic
performances of viscoelastic DEs. The dynamic model
enables a prediction of the dynamic properties of DEs with
arbitrary rectangular geometrical sizes. In addition, the DEs
with and without external tensile forces are involved to
explore the dynamic properties, respectively. The main
results can be summarized as follows. When DEs are with
no tensile forces, the dynamic response of square DEs is
suppressed and the response frequency is reduced when the
geometrical sizes of DEs increase. Furthermore, the DEs
experience a transition from aperiodic vibration to quasi-
periodic vibration as the geometrical sizes of DEs increase.
For rectangular DEs without tensile forces, the dynamic
response is comparably suppressed in a certain in-plane
direction when the geometrical size in this in-plane
direction is beyond the geometrical size in another in-
plane direction. Besides, rectangular geometrical size
induces the coupled nonlinear vibration between the two
in-plane directions, resulting in an aperiodic vibration of
DEs. When DEs are subject to equal-biaxial tensile forces,
the dynamic properties of rectangular DEs with small and
large geometrical sizes are, respectively, studied. When the
geometrical sizes of DEs are comparably small, an enlarge-
ment of the geometrical size in a certain in-plane direction
enhances the vibration in this direction and suppresses the
vibration in another in-plane direction. However, when the
geometrical sizes of DEs are comparably large, the vibra-
tions in both of the two in-plane directions are suppressed
as the geometrical size in a certain in-plane direction
increases. Also, the coupled vibration leads to the aperiodic
vibration of rectangular DEs with the equal-biaxial tensile
forces. Subsequently, the resonance characteristics of DEs
with incorporation of geometrical effects are explored.
Without tensile forces, the resonant frequency reduces
gradually with the increase of the geometrical sizes of
square DEs. For the nonsquare DEs, when the geometrical
size in a certain in-plane direction is prescribed, the
resonant frequency also reduces with the increase of the
geometrical size in another in-plane direction. Subject to
the equal-biaxial tensile forces, the resonance properties of
rectangular DEs with comparably small and large geomet-
rical sizes are researched. When the geometrical sizes of
DEs are comparably small, the enlargement of the geo-
metrical size in a certain in-plane direction induces an
initial addition and a subsequent reduction of the resonant
frequency. However, when the geometrical sizes of DEs are
comparably large, the resonant frequency reduces gradually
as the geometrical size in a certain in-plane direction
increases. This research reveals the geometrical effects
on the dynamic properties of viscoelastic DEs, and pro-
vides a dynamics model to describe the DEs with the
arbitrary rectangular geometrical sizes. The research results
can be used to predict the dynamic performances of
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practical DE actuators with random rectangular sizes, and
also are helpful to adequately determine the required
geometrical sizes of DEs to achieve the desired dynamic
properties in practical application.
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