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Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs=ðAl;GaÞAs
heterostructure enable a large variety of applications ranging from fundamental research to high-speed
transistors. Electrical circuits are thereby commonly defined by creating barriers for carriers by the selective
depletion of a preexisting 2DES. We explore an alternative approach: we deplete the 2DES globally by
applying a negative voltage to a global top gate and screen the electric field of the top gate only locally using
nanoscale gates placed on the wafer surface between the plane of the 2DES and the top gate. Free carriers are
located beneath the screen gates, and their properties can be controlled by means of geometry and applied
voltages. This method promises considerable advantages for the definition of complex circuits by the electric-
field effect, as it allows us to reduce the number of gates and simplify gate geometries. Examples are carrier
systems with ring topology or large arrays of quantum dots. We present a first exploration of this method
pursuing field effect, Hall effect, and Aharonov-Bohm measurements to study electrostatic, dynamic, and
coherent properties.

DOI: 10.1103/PhysRevApplied.8.064015

I. INTRODUCTION

The electric-field effect is a powerful tool for nano-
electronics. It is widely used for creating potential barriers
in a two-dimensional electron system (2DES) by applying
voltages to individual metal gates placed on the wafer
surface. When used with multiple individual gates, it
provides full tunability while also being compatible with
high-mobility wafers. Alternative methods for structuring a
2DES include etching [1–4] and surface oxidation tech-
niques [5,6]. While they ensure additional possibilities in
combination with in-plane side gates [7] or metal gates [8,9],
etching and oxidation techniques alone lack tunability. More
importantly, they are restricted to wafers with a shallow
2DES causing a close proximity of surface states and doping
atoms limiting the carrier mobility [10] and the electrostatic
stability at the nanoscale (related to the 1=f spectrum of
charge noise [11–13]). Applications based on the quantum-
mechanical coherence of localized carriers require superior
control and stability favoring the field effect.
A straightforward—and the most common—approach to

shaping potential landscapes by the field effect, starting
from an extended 2DES, is based on the controlled local
depletion of the 2DES beneath individual surface gates.
This approach works perfectly for relatively small struc-
tures with a simple topology, such as few-coupled quantum
dots [14,15] or quantum point contacts. However, an
individually tunable one-dimensional array of N quantum
dots requires at least about 2N metal gates, while even more

gates are needed for a two-dimensional array or for
increased tunability. Failure of a single gate would alter
the current path and typically make the entire device
useless. Furthermore, nontrivial topologies, such as an
Aharonov-Bohm ring allowing carriers to move in a circle
around a depleted center, require voltage biasing of a center
gate without depleting the surrounding carriers. This goal
has been achieved by implementation of three-dimensional
air bridges [16,17]. However, the fabrication of air bridges
is rather complex and is limited to relatively big structures.
In this article, we propose an alternative method to define

complex nanoelectronic circuits based on the field effect,
offering full tunability of high-quality devices. Compared
to common strategies, our method simplifies the production
of ring topologies and offers the prospect of scalability
while limiting the danger of general failure. Our idea,
sketched in Fig. 1(a), is based on globally depleting the
2DES using a single top gate while we place nanoscale
screen gates between the top gate and the 2DES to locally
shield the effect of the top gate and thereby regain free
carriers. We electrically isolate the top gate from the
screen gates using an approximately 100-nm-thick layer
of cross-linked PMMA [18,19], while the 2DES at the
interface between (Al,Ga)As and GaAs is separate from
the screen gates on the wafer surface by another 110 nm,
consisting of the following electrically insulating layers:
a 5-nm-thick capping layer of GaAs to prevent oxidation
of the surface, followed by 70 nm of homogeneously
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Si-doped Al0.36Ga0.64As, and 35 nm of undoped
Al0.36Ga0.64As [20,21]. The carrier density and the detailed
geometry of the confinement potential depend on the
electric field at the 2DES and can be fine-tuned by
adjusting the voltages applied to both the top gate and
the screen gate. In Fig. 1(a), we sketch the screening effect
on a grounded 2DES for the example of a positively
charged screen gate beneath a negatively charged top gate.
A global top gate above gates at the surface has been used
before for different purposes. In a previous attempt to
structure a 2DES, a single top gate was combined with a
local dielectric to partially screen the field of the global
top gate [22,23]. Here, the missing screen gate results in a
reduced tunability compared to our approach. A global top
gate has also been employed to decrease telegraph noise
[12] or to incorporate carriers in undoped quantum wells
[24,25]. In the last two examples, gates on the GaAs surface
are used to locally deplete the 2DES, while, in our case,
carriers accumulate beneath the screen gate.
In Fig. 1(b), we display a SEM image of an actual Hall-

bar sample, and in Fig. 1(c) a descriptive sketch. The screen
gate (s) directly on the sample surface is shown in orange,
the top gate (t) above, which is electrically isolated by
cross-linked PMMA, in light gray. By charging the top
gate negatively with respect to the grounded 2DES and a
grounded back gate at the bottom of the 540-μm-thick
wafer, we deplete the 2DES beneath the top gate wherever
it is not shielded by the screen gate. Below the top gate, the
shape of the screen gate corresponds to the approximate
shape of the 2DES beneath. The screen gate in Fig. 1(b)
defines a Hall bar with source (S) and drain (D) for the

current and four side contacts used as voltage probes (1, 2,
3, 4). The top gate includes a large center square and six
arms reaching to the outside. The arms have the function to
avoid electrical shorts between the six contacts outside of
the Hall-bar region where they would otherwise be shorted
by 2DES [as the yellow areas in Fig. 1(c) are conducting].
In our Hall bar, the free carriers are located directly

beneath a metal gate, which results in two important
differences from traditional devices: the direct vicinity of
metal can reduce the disorder potential, as charged defects
are partly screened by electron rearrangement at the metal
surface. At the same time, the metal will tend to screen the
electron-electron interaction in the 2DES below. In this
article, we do not explore this reduced Coulomb interaction
but rather demonstrate the general feasibility of our method.

II. FIELD-EFFECT CHARACTERIZATION

For a first characterization of our device, we present
in Fig. 2 the current flowing between source and drain
contacts (while the side contacts are left floating) in
response to a source-drain voltage of VSD ¼ 0.84 mV as
a function of both the top-gate and screen-gate voltages, Vt
and Vs. The lines of constant current display a kink at
Vt ≡ Vd

t ¼ −1.48 V, marked by a dashed horizontal line in
Figs. 2(a) and 2(b), indicating complete depletion of the
2DES for Vt < Vd

t . The almost-constant slope of each line
of constant current for Vt < Vd

t suggests, for a given value
of Vs, a constant ratio of the capacitances between the Hall
bar and the two respective gates, Cs=Ct ¼ dVt=dVs. To
keep the current constant, a change in the screen-gate

FIG. 1. (a) Sketch of the heterostructure with screen and top gates. The top gate (gray) is biased at Vt ¼ −1 V and the screen gate at
Vs ¼ 0.1 V, and the 2DES (blue) is grounded. Away from the screen gate but below the top gate, the 2DES is absent (fully depleted).
The electrostatic potential (shown as equally spaced equipotential lines; arrows indicate the field strength) has been calculated by self-
consistently solving the Poisson equation using ϵ ¼ 2 for cross-linked PMMA and ϵ ¼ 12.7 for (Al,Ga)As. For the calculation, we
consider charges on the gates and in the 2DES but neglect the effect of positively charged doping ions which are immobile at cryogenic
temperatures. (b) False-colored optical microscope image of a Hall-bar sample. Orange indicates the screen gate (s) covered by cross-
linked PMMA (dark) and, finally, the top gate (gray). (c) Descriptive sketch of the sample surface. As in (b), it shows the screen gate
(orange) covered by PMMA (light gray, slightly yellow) and the top gate (gray). At the white surrounding the sample, the surface is
etched away such that the 2DES is destroyed. Ohmic contacts to the 2DES for source (S), drain (D), and voltage probes (1, 2, 3, 4) are
indicated by crosses. In a Hall-bar measurement, the 2DES is depleted beneath the top gate but not beneath the screen gate. Yellow
regions are not covered by a gate and always contain a conducting 2DES 110 nm beneath the surface.
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voltage by δVs can be compensated for by a shift of the top-
gate voltage by δVt ¼ −δVsCs=Ct. The value of Cs=Ct
quantifies the shielding of the influence of the top gate on
the 2DES by the screen gate. It depends on the dielectric
constants and geometry of the layers, which influence the
electric field originating from the top gate. The coupling
ratio, which we plot in Fig. 2(d) versus Vs, takes the large
value of Cs=Ct ≃ 75 at Vs ≃ −200 mV near depletion,
where it indicates an efficient screening of the top gate by the
screen gate. The gradual increase to Cs=Ct ≃ 45 at Vs ≃
300 mV indicates a growing influence of the top gate at a
more positive Vs. Because the 2DES shaping the Hall bar is
the only variable component of our system, the observed
reduction of the shielding effect, as Vs is increased, indicates
an increase of the Hall-bar width. Variations in the Hall-bar
width, in turn, result in a rearrangement of the confinement
potential perpendicular to the Hall-bar edges. Consequently,
the combination of top- and screen-gate voltages can be used
to tune the steepness of the confinement at the Hall-bar edges
which influence the shape and stability of quantumHall edge
states [26]. Reliable predictions can be achieved by employ-
ing a Poisson-Schrödinger solver such as NEXTNANO

3 [27],
while breakdown measurements of the quantum Hall effect
would provide an experimental test [26]. Both ideas go
beyond the scope of this paper but are topics for the future.
To quantitatively evaluate the shielding, we compare

the measured capacitance ratio Cs=Ct with the ratio
expected without screening, Cs=C0

t , where C0
t denotes

the capacitance between the top gate and the 2DES without
the existence of a screen gate. For a first estimate,
we compare the measured depletion voltages of the
respective gates, Cs=C0

t ≃ Vd
t =Vd

s ≃ 1.48=0.23≃ 6.4. As
a result, we find C0

t =Ct ¼ ðCs=CtÞ=ðCs=C0
t Þ≃ 75=6.4≃

11.7 at Vs ¼ −0.23 V; i.e., the screen gate reduces the
coupling of the top gate to the 2DES by roughly 1 order of
magnitude. Clearly, this result depends on the geometry
details and the applied voltages. The accuracy of the above
numbers is around 10%, reflecting the accuracy in deter-
mining the pinch-off voltages.
In a second approach, we compare our first estimate

based on direct measurements with the prediction of a
simple plate-capacitor model, assuming two separate
plate capacitors, one between the top gate and the
2DES—but without the screen gate—and the other
between the screen gate and the 2DES. The model predicts
Cs=C0

t ≃ 1þ ϵðAl;GaÞAs=dðAl;GaÞAs × dPMMA=ϵPMMA, where
the capacitor between the top gate and the 2DES contains
two layers of dielectricum, dPMMA ¼ 100 nm of PMMA,
and dðAl;GaÞAs ¼ 110 nm of (Al,Ga)As. We determine the
required dielectric constant of our cross-linked PMMA
from our measured depletion voltage Vd

t ¼ −1.48 V of
the top gate and the carrier density of the 2DES n0s ≃
1.45 × 1011 cm−2 at grounded gates, Vt ¼ Vs ¼ 0, based
on Hall measurements. Using our simple plate-capacitor
model, we find ns¼ðdPMMA=ϵPMMAþdðAl;GaÞAs=ϵðAl;GaÞAsÞ
Vd
t =ϵ0, with ϵ0 being the vacuum permeability. Using the

literature value ϵðAl;GaÞAs¼12.7 [28], we find ϵPMMA ≃ 2.0.
Finally, our plate-capacitor model predicts Cs=C0

t ≃
1þ ϵðAl;GaÞAs=dðAl;GaÞAs × dPMMA=ϵPMMA ≃ 6.8, which is
in fair agreement with our first estimate. From the equation
above, it is evident that a thicker insulator layer between the
screen gate and the top gate with a smaller dielectric
constant would increase the screening effect.

III. HALL MEASUREMENTS: CARRIER
DENSITY AND MOBILITY

We aim at evaluating the quality of the 2DES in nano-
circuits created with our method. Below, we use an
Aharonov-Bohm ring for phase-coherent measurements.
However, first we measure carrier density and mobility
based on the Hall bar introduced above. As a reference, we
use the “nominal” mobility and carrier density averaged
over the wafer, which we measure directly after growth at
the cryogenic temperature of T ¼ 4, 2 K [21]. They are
μ ¼ 0.7 × 106 cm2V−1 s−1 and ns ¼ 2.27 × 1011 cm−2,
corresponding to a mean free path of lm ¼ 5.5 μm. In
our sample, we determine the carrier density (averaged
over the width of the Hall bar) by measuring the classical
Hall voltage VH ∝ 1=ns and the mobility by measuring
the longitudinal resistance in the limit B → 0 [R13 ¼
R24 ∝ ρ0 ∝ ðnsμÞ−1], both at T ≃ 4.2 K. In Fig. 3, we
present our results as a function of screen-gate voltage Vs

FIG. 2. (a) Current I through the Hall bar at VSD ¼ 0.84 mV
(gray scale and lines of constant current at an interval of 0.2 μV)
as a function of the top gate Vt (y-axis) and screen gate Vs
(x-axis) voltages. The horizontal dashed line at Vt ≡ Vd

t ¼
−1.48 V indicates the onset of depletion of the 2DES below
the top gate away from the screen gate. (b),(c) Vertical and
horizontal cuts IðVtÞ and IðVsÞ from (a) (fixed voltages Vs and
Vt, respectively, are indicated by color-coded arrows). Symbols
in (c) represent identical data multiplied by a factor of 100 to
demonstrate complete pinch-off for Vs < −0.228 V, independent
of Vt. (d) The slope dVt=dVs of the constant current lines versus
Vs at Vt ¼ −2.5 V. Vertical dashed lines indicate intersections
with the constant current lines in (a).
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and for various top-gate voltages, Vt < Vd
t , i.e., where the

2DES beyond the Hall bar is fully depleted and the Hall bar
is well defined. Both the carrier density and the mobility
depend only a little on the top-gate voltage, but they are
widely tunable by varying the screen-gate voltage. For
Vs < 100 mV, we observe a linear decrease of both ns and
μ, with a decreasing Vs indicating an approximately
constant capacitance Cs between 2DES and the screen
gate and a resistivity ρ0 ∝ n−2s (equivalent to μ ∝ ns). We
note that gate-voltage-independent capacitances (as our Cs
value) between gates and the 2DES are not guaranteed, as
this property depends on the wafer material.
In our sample, at Vs ¼ 0, carrier density and mobility are

reduced by approximately a factor of 2 compared to the
nominal values of the pristine wafer. However, the nominal
values can be recovered by applying a positive Vs value.
This result suggests that wafers with a higher doping level
could be advantageous for applications requiring a high
mobility or a highly tunable carrier density.

IV. AHARONOV-BOHM MEASUREMENTS:
PHASE COHERENCE

Our method offers a straightforward way to fabricate
conducting pathways with a ring topology. In Fig. 4, we
present a photography of a sample containing seven quasi-
one-dimensional Aharonov-Bohm (AB) rings of various
sizes and shapes in a parallel configuration connected to
two-dimensional leads. The conductance of an individual
ring can be measured by depleting the 2DES below the top
gate and below all ring-shaped screen gates besides the one
of the AB ring of interest. To explore the phase coherence
of the carriers, we here concentrate on the smallest ring
(rightmost in Fig. 4), which is also presented as a scanning-
electron-microscope picture in Fig. 5(b). In Fig. 5(a), we
present an example of AB oscillations, measured in a
dilution refrigerator at a lattice temperature of 25 mK.
Plotted is the current I flowing through our ring in response
to a source-drain voltage of V ¼ 0.1 mV versus the

perpendicular magnetic field B. The AB oscillations can
be formally described as

I ¼ Ī

�
1þ v cos

�
e
ℏ
ABþ δφes

��
; ð1Þ

where Ī is the current averaged over B, v ¼ I0=Ī the
visibility of the AB oscillations with amplitude I0, and A
the area enclosed by the AB ring (which weakly depends
on Vs). The first term contained in the cosine is 2π times
the number of enclosed magnetic flux quanta, while δφes
sums up all other phase shifts which can be related to the
existence of multiple paths (as for universal conductance
fluctuations [29–31]) or geometry (such as the electrostatic
AB effect [32]). The measured period of the AB oscillation
in Fig. 5(a) of δB≃ 7.9 mT corresponds to the enclosed
area of A ¼ h=eB≃ 0.5 μm2, coinciding with the area
framed by the dashed line in Fig. 5(b).

(a) (b)

FIG. 3. Hall measurements. (a) Electron carrier density ns and
(b) mobility μ of the 2DES versus the screen-gate voltage Vs for
various top-gate voltages, Vt < Vd

t . (Inset) The actual measured
longitudinal resistance R13ðVsÞ at B → 0 mT.

FIG. 4. False-colored opticalmicroscope image of theAharonov-
Bohm sample with seven individual AB rings. The screen gates are
depicted in orange and the top gate in gray. Unused AB rings are
depleted by applying a sufficiently negative Vs value.

(a) (b)

FIG. 5. (a) Measured current I − Ī as a function of the
perpendicular magnetic field B for three values of Vs − Vd

s near
depletion and Vt ¼ −3 V. (At Vd

s , the carriers beneath the screen
gate are depleted.) The bath temperature is T ¼ 25 mK and
the source-drain voltage V ¼ 0.1 mV. (b) Scanning-electron-
microscope image of the measured AB ring. The screen gate is
shown in orange. The dashed white line embraces the area of
A ¼ 0.5 μm2 corresponding to the measured magnetic-field
period of δB ¼ 7.9 mT; see the text. The white double arrow
indicates an error in A of�0.1 μm2 corresponding to a maximum
error in δB of �1.5 mT. This value reflects the experimental
uncertainty in the tilt angle between the 2DES and the magnetic
field of�1° (B is the field component perpendicular to the 2DES).
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In order to observe the AB oscillations shown in
Fig. 5(a), it is necessary to almost completely deplete
the carriers in the AB ring by applying Vs close to the
depletion voltage Vd

s . This observation hints at a channel
width so wide that it allows for multiple paths (in each arm)
contributing with individual phases to the conductance
which effectively reduces the visibility of the AB oscil-
lations [33]. As a rule of thumb, for our geometry, an
enclosed area difference of about 1% would suffice to
generate a phase shift of π at B≃ 200 mT. The almost-
depleted ring sufficiently reduces the number of possible
paths to reach a visibility of a few percent. Taking the Hall-
bar measurements above as a reference for the applied gate
voltages, we expect a carrier density of approximately
8 × 109 cm−2 and a mean free path on the order of 1 μm,
which is the same order of magnitude as the arm length of
our AB ring of L≃ 1.5 μm. However, screening is reduced
along the almost-depleted AB ring, such that the mean free
path could be shorter. Hence, we conclude that the electron
dynamics in our AB ring is located somewhere between the
quasiballistic and the diffusive regime. One way to reach
the ballistic regime in future devices will be to further
reduce the intrinsic channel width such that quasi-one-
dimensional channels can be realized at relatively large
carrier densities. A further reduction of the screen-gate
width by a factor of 4 is easily achievable by electron-beam
lithography.
In Fig. 6(a), we present AB oscillations of the current

I − Ī as a function of B and Vs, while in Fig. 6(b), we show
an exemplary depletion curve plotting the current ĪðVsÞ
averaged over B. The latter strongly oscillates as observed
for Coulomb-blockade oscillations, the current becomes

small but stays finite in the Coulomb valleys. Such a
behavior can be explained assuming two quantum dots in
parallel [34], i.e., one dot in each arm of the AB ring, as
indicated in the inset. The exact position of the quantum
dots is thereby unknown. The overall resistance of R≃
120kΩ ≫ h=e2 at the two distinct current maxima below
Vs − Vd

s ¼ 10 mV is in agreement with the assumption of
two parallel dots giving rise to well-established Coulomb-
blockade oscillations.
The two-terminal AB oscillations in Fig. 6(a) feature

(i) continuous phase shifts at finite B values, confirming the
contribution of multiple paths in each arm, and (ii) phase
jumps as a function of Vs, confirming the existence of
quantum dots in the arms of the AB ring (phase jumps
were previously observed for one dot in one arm) [35,36].
Note that our ring is too small to explain the observed phase
jumps by means of the electrostatic AB effect [32].
In the following, we discuss the dephasing as a function

of temperature and source-drain voltage. In an ideal two-
terminal AB ring composed of one-dimensional arm
dephasing by energy broadening is absent at modest
energies. The reason is phase rigidity [36–40] allowing
only phase shifts by multiples of π, which would require
either a very different arm length or an unreasonably large
energy window. Such an ideal AB ring would be a perfect
device to study the electron-electron interaction [41–43]
remaining as a possible dephasing process. However,
realistic AB rings such as ours host multiple paths com-
promising the phase rigidity, such that the temperature or
source-drain voltage dependence of the dephasing at
relatively small energies is dominated by energy broad-
ening [44–47]. The measured temperature and source-drain
voltage dependence of the visibility are presented in Fig. 7
for Vs − Vd

s ¼ 15 mV, where the two-terminal resistance is
≃60 kΩ; compare these results to Fig. 6(b). Having already
established the existence of two parallel quantum dots,

(a) (b)

FIG. 6. (a) Current oscillations I − Ī as a function of the
screen-gate voltage and the magnetic field at Vt ¼ −3 V. The
data shown in Fig. 5(a) are plots along the horizontal dashed
lines. (b) Coulomb-blockade oscillations in ĪðVsÞ (averaged over
B). The inset displays an SEM image of the AB ring with possible
positions of the two quantum dots indicated as QD1 and QD2.
Two individual Coulomb-blockade maxima are indicated with
CB. The bath temperature is T ¼ 25 mK and the source-drain
voltage V ¼ 0.1 mV.

(a) (b)

FIG. 7. Visibility (a) vðTÞ at V ¼ 0.1 mV and (b) vðVÞ at
T ¼ 25 mK. Vs − Vd

s ¼ 15 mV and Vt ¼ −3 V. The solid red
lines are model curves assuming diffusive transport calculated
with (a) Eq. (2) and (b) Eq. (3) for v0 ¼ 56%, ETh ¼ 36 μeV,
α ¼ 0.015 psmeV2=3, β ¼ 0.009 psmeV2=3, and κ ¼ 0.52.
Dashed black lines are calculated assuming ballistic transport
with Eq. (4) for v0 ¼ 2.56%, Δτ ¼ 30 ps, and κ ¼ 0.52.
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we now consider two scenarios, namely, either ballistic or
diffusive transport between the quantum dots. Searching
for an answer, we fit the measured data in Fig. 7 for two
idealistic models. The first one assumes diffusive transport
in an AB ring with quasi-one-dimensional arms for which
the temperature dependence of the visibility has been
obtained from the weak localization theory [48],

vðTÞ ¼ v0

�
ETh

kBT

�
1=2

exp

�
−Lffiffiffiffiffiffiffiffiffi
Dτϕ

p
�
; ð2Þ

with τϕ ¼ αðkBTÞ−2=3 [49]. This equation takes into
account thermal broadening (the square-root term) and
decoherence by a scattering of electrons (the exponential
term). Here, ETh ¼ ℏD=L2 is the Thouless energy, D the
2D diffusion constant, and τϕ the electrons’ decoherence
time. The according voltage dependence of the visibility
derived from nonequilibrium dephasing models is [50,51]

vðVÞ ¼ v0

�
eκV
ETh

�
1=2

exp

�
−Lffiffiffiffiffiffiffiffiffi
Dτϕ

p
�
; ð3Þ

with τϕ ¼ βðeκVÞ−2=3 [52,53]. The prefactor κ ¼ 0.52
takes into account the fact that part of the source-drain
voltage V drops in the leads of the AB ring. The red solid
lines in Fig. 7 are fits to the respective temperature
and voltage dependences given by Eqs. (2) and (3). The
diffusive model describes the measured data well for high
energies but drastically overestimates the visibility at low T
or V values. This deviation can be explained with the
approximations done by assuming V ¼ 0 for fitting the T
dependence and T ¼ 0 for fitting the V dependence. The
actual fit parameters are listed in the caption of Fig. 7.
In our second idealistic scenario, we assume ballistic

transport through the AB ring. Because the dwell time
≃L=vF of an electron moving ballistically through the AB
ring is short compared to τϕ, in this case, we can neglect
the influence of Nyquist noise, which leaves energy
broadening as the only remaining dephasing process
[49]. Combining voltage and temperature dependence at
first order, the ballistic scenario can be described by [54]

v ¼ 2πv0
kBT
jeκVj sinh

−1
�
πkBT
ℏ=Δτ

����� sin
�

eκV
2ℏ=Δτ

�����; ð4Þ

where Δτ defines the difference of the dwell times of a
ballistic electron in the two arms of the AB ring. A single fit
to both data sets of Eq. (4) representing the ballistic model
is shown as black dashed lines in Fig. 7. Our ballistic model
describes the temperature dependence well but shows
qualitative deviations in the voltage dependence (at high
voltages). The actual fit parameters are listed in the caption
of Fig. 7. We find a dwell-time difference of Δτ ¼ 30 ps.
On the one hand, this corresponds to an unrealistically large

arm-length difference of approximately 1 μm assuming
ballistic motion at the Fermi velocity. On the other hand,
the existence of a quantum dot in each arm leads to multiple
reflections which would enhance dwell times. As a result,
without further experimental and theoretical efforts, it is
impossible to determine from our data whether transport
through the AB ring is diffusive or ballistic. Diffusive
transport might be caused by the almost complete depletion
in the AB rings which is necessary to reduce the number of
one-dimensional channels preventing a higher visibility.
We believe that AB rings with narrower arms but higher
carrier density will help to reach ballistic transport in
the future and to reduce the chance of the formation of
quantum dots.

V. CONCLUSION

In this article, we explore an alternative method to
define mesoscopic circuits in heterostructures based on
the electric-field effect. The idea is to deplete most of the
2DES by means of a global top gate. Only at those areas
where carriers are needed are screen gates placed below the
top gate used to shield the effect of the top gate locally. The
resulting circuits are highly tunable on the nanoscale, as
demonstrated in the presented experiments. Importantly,
our method has the advantage of reducing the complexity
of gate-defined nanostructures. In more detail, it provides
a straightforward way to realize conducting paths with
ring topology and offers a way to define complex structures
with a smaller number of gates compared to the conven-
tional technology based on multiple depletion gates. Our
Aharonov-Bohm measurements demonstrate phase coher-
ence comparable to that in conventional AB rings in
semiconductors, which makes our method suitable for
quantum-information applications. While not demonstrated
here, the closer vicinity of a metal gate to the carriers is
expected to lead to a reduction of the Coulomb interaction
between carriers. As such, our method can be viewed as
an alternative which will facilitate an increase in the variety
of physical properties in nanocircuits. Future tasks will
include the definition of quantum point contacts and chains
of quantum dots by using screen gates.
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