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We propose a high-resolution microscopy technique for enantiospecific detection of chiral samples
down to sub-100-nm size based on force measurement. We delve into the differential photoinduced
optical force ΔF exerted on an achiral probe in the vicinity of a chiral sample when left and right
circularly polarized beams separately excite the sample-probe interactive system. We analytically prove
that ΔF is entangled with the enantiomer type of the sample enabling enantiospecific detection of chiral
inclusions. Moreover, we demonstrate that ΔF is linearly dependent on both the chiral response of the
sample and the electric response of the tip and is inversely related to the quartic power of probe-sample
distance. We provide physical insight into the transfer of optical activity from the chiral sample to the
achiral tip based on a rigorous analytical approach. We support our theoretical achievements by several
numerical examples highlighting the potential application of the derived analytic properties. Lastly, we
demonstrate the sensitivity of our method to enantiospecify nanoscale chiral samples with chirality
parameter on the order of 0.01 and discuss how the sensitivity of our proposed technique can be further
improved.
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I. INTRODUCTION

Chirality is of supreme importance in life sciences. This
significance originates from the fact that the fundamental
building blocks of life, i.e., proteins and nucleic acids, are
built of chiral amino acids and chiral sugar, respectively
[1]. More important, in pharmaceutical applications, the
enzymes and receptors of the human body can construc-
tively react to drugs with only proper enantiomers known as
the Fischer’s “lock and key” principle [2]. Therefore, if a
drug is racemic, i.e., contains both mirror image enan-
tiomers, namely, R and S enantiomers, then it might result
in detrimental effects in addition to the desired ones. As a
result, based on the importance of chirality in chemical and
pharmaceutical sciences, detection and characterization of
chiral particles (materials) are fundamentally critical issues.
In order to resolve these issues, spectroscopy techniques
based on optical rotation, circular dichroism (CD), and
Raman optical activity (ROA) have been proposed [3–6]. In
these chiroptical techniques, the scattered (refracted or
absorbed) light from the sample is measured to detect the
chirality. In particular, by measuring the difference in
absorbance of the right- and left-hand circularly polarized
(CP) light in CD, not only the chirality but also the primary
and secondary structure of the sample (i.e., proteins) can be
determined [7–9]. However, down to molecular scales,
due to the very weak interaction of light with chiral

nanoparticles, the spectroscopic techniques for chirality
detection encounter major challenges. For instance, the
background scattering noise plays a notable prohibiting
role in the chirality detection by using these techniques.
Although many studies have been performed to resolve the
background noise problem [10,11], still a considerable
amount of the material is required for the detection process.
These challenges call for suitable techniques for the
development of chirality detection at nanoscales.
Recently, optical force, as a powerful tool for a wide

variety of applications from trapping [12–16] and manipu-
lating of nanoparticles [17–19] to optical cooling [20–22]
and imaging the electromagnetic fields [23], has been
brought up for separation or manipulation of enantiomers
[24]. Indeed, in contrast to the long-term common belief
that particles are always pushed by light, in Refs. [25–28],
lateral and pulling optical forces were discovered for chiral
particles. Therefore, by taking advantage of the discrimi-
natory behavior of enantiomers due to their optical activity,
Tkachenko and Brasselet in Ref. [29] have shown how to
sort enantiomers in fluidic environments for micrometer-
sized particles. In Ref. [30], separating of enantiomers has
been expanded to nanometer-sized particles by the same
concept using a plasmonic tweezer that relies on enhanced
near-field gradients. However, optical force has not been
exploited for characterization and enantio-specific detec-
tion of chiral particles.
The importance of detecting chirality at the nanoscale

on one hand and the lack of high-resolution reliable
measurement techniques on the other hand urges us to
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explore possible techniques for the detection of the
chirality of nanoscale particles. Very recently, combining
the advantages of atomic force microscopy (AFM) [31] and
optical illumination in the so-called photoinduced force
microscopy (PIFM) [32–34] has provided the possibility of
probing linear [35] and nonlinear [36] optical character-
istics at the nanoscale with higher accuracies compared to
scattering measurement techniques. However, to the best of
our knowledge, this encouraging technique, which is highly
appropriate and accurate to extract optical properties of
materials (down to nanoscales), has never been opted to
detect the materials’ chirality.
In this work, we use the PIFM for enantiomeric detection

of nanoscale chiral samples. We propose to probe the
difference between the force exerted on the AFM tip in the
vicinity of a sample for CP wave illuminations with
opposite handedness, i.e., right and left hand. Though
material chirality is a weak effect in the light-matter
interaction compared to the electric property, we take its
effect into account by using the dipolar approximation and
considering both electric and magnetic dipole moments.
This way, we provide analytical arguments which prove
that for chiral samples, the proposed differential photo-
induced force is nonzero, whereas for achiral ones, it
vanishes. More important, we demonstrate that for a
specific enantiomer, the differential force is equal with
opposite sign to its mirror image, which paves the way
toward revealing the enantiomer type for a chiral sample at
the nanoscale. Notice that conventional chiroptical methods
such as CD for chirality detection are based on measure-
ments related to averaged far-field scattering from the
sample and require a substantial amount of a chiral
material. Instead, our proposed technique is capable of
enantiospecifically detecting the chirality of samples down
to sub-100-nm size with a chirality parameter of κ ¼ 0.04.
Future developments may even lead to the detection of
weaker chirality.
The main goal of this work is to provide a method for

detecting material chirality at the nanoscale in the broad
sense. The considered material samples can be made, for
example, by a concentration of chiral molecules or of an
engineered chiral nanoparticle.
The paper is structured as follows. In Sec. II, we

outline the physical principle of PIFM operation by
providing the model for a tip-sample system and general
formulation for the exerted force on the tip. In Sec. III, we
prove the concept of using PIFM as a chirality sensor and
provide a simple formulation to predict the differential
photoinduced force on the tip and examine its accuracy by
several examples. Then, in Sec. IV, we demonstrate the
physics behind the tip-sample interactive system. We
exhibit the potential dynamic range of our proposed
method in the detection of chirality at the nanoscale in
Sec. V. At the end, we conclude the paper with some
remarks.

II. OBJECTIVE AND GENERAL
PHYSICAL PRINCIPLE

Figure 1(a) shows the photoinduced force measurement
setup using the PIFM that is investigated in this paper. The
system of the nanoscale sample and the microscope tip are
illuminated by an incident light from the bottom side.
Incident light induces polarization currents on both the
sample and tip. The sample and tip are located at the near
fields of their rescattered fields so that they exert a notable
amount of force on each other in the normal direction (the z
direction in Fig. 1) due to the gradients of their near fields.
The goal of this paper is to show that it is possible to
discriminate with respect to the handedness of the chiral
sample particle based on applying CP light, with separate
left and right polarization and measuring the force exerted
to the tip for both polarizations and obtain the force
difference.
In order to exemplify the fundamental physical principle

of operation, we consider the sample and tip radius to be
optically small. Therefore, we may model both the sample
and tip as two particles illuminated by an external electro-
magnetic field with wave vector k [Fig. 1(b)]. The sample is
characterized by a bianisotropic response (chirality is a
special case) that provides both electric ps and magneticms
dipolar moments (where subscript “s” represents “sam-
ple”). Indeed, the consideration of the magnetic dipole
moment is necessary in the analysis of the electromagnetic
response of chiral particles since under electromagnetic
illumination, a sample composed of chiral inclusions
exhibits optical activity. Under the dipolar approximation
valid for subwavelength particles, such as molecule con-
centrations or engineered “meta-atoms,” the optical activity
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FIG. 1. (a) Schematic of photoinduced force microscopy
capable of detecting the chirality of a sample based on differential
force measurement. (b) Simplified model where the tip and
sample are represented by nanospheres with electric (and perhaps
magnetic) dipole moment(s).
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is well described by the introduction of the electric-dipole-
to-magnetic-dipole (magnetoelectric) polarizability [37].
Notice that although this magnetoelectric polarizability is
weak compared to that associated to the electric dipole
polarizability, neglecting it in the analysis of chiral particles
results in an incorrect prediction of the electromagnetic
response of the sample. Based on the above discussion, by
using the polarizability tensor of such a chiral particle, the
electric and magnetic dipole moments read [38–40]

�
ps

ms

�
¼

� αee
s αem

s

αme
s αmm

s

�
·

�
ElocðrsÞ
HlocðrsÞ

�
; ð1Þ

where Eloc and Hloc are, respectively, the phasors of the
local electric and magnetic field at the sample location rs.
Moreover, αee, αmm, αem, and αme are, respectively,
electric, magnetic, magnetoelectric and electromagnetic
polarizability tensors of the sample particle. The last two
polarizability tensors are also called bianisotropic param-
eters, which relate the local electric (magnetic) field to the
magnetic (electric) dipole moment. In general, there are
four classes of bianisotropic particles, i.e., omega, chiral,
Tellegen, and “moving,” which any dipole particle can be
reduced to. The first two classes are reciprocal, while the
second two are nonreciprocal. Reciprocity implies αme ¼
−ðαemÞT , where superscript “T” denotes the tensor trans-
pose. In addition, for a pure chiral sample particle, the
bianisotropic tensors are diagonal; hence, one has αme

jj ¼
−ðαemjj Þ, where j ¼ x; y; z. Under the assumption of neg-
ligible sample losses, αme

jj is purely imaginary [39].
In the following, we assume that the chiral sample has a

spherical shape and has isotropic response (as in the case it
contains an amorphous arrangement of many chiral mol-
ecules). The sample’s isotropic response implies it has
equal polarizability components in all spatial directions.
Under this assumption, the electric and magnetic polar-
izability tensors reduce to αee ¼ αeeI and αmm ¼
αmmI, respectively, where I is the identity tensor.
Moreover, for a chiral isotropic particle αem ¼ αemI and
αme ¼ −ðαemÞT ¼ −αemI are the magnetoelectric and
electromagnetic polarizability tensors, respectively. The
expressions for polarizabilities of an isotropic spherical
chiral particle in terms of its permittivity, permeability, and
chirality parameter obtained based on Mie scattering theory
are given in Appendix A. We assume the tip is achiral and
model its response to an electromagnetic wave by electric
and magnetic dipole moments

pt ¼ αee
t ·ElocðrtÞ; mt ¼ αmm

t ·HlocðrtÞ: ð2Þ

Notice that the local electromagnetic field is considered
at the tip location rt, where subscript “t” represents “tip.”
Also, the local field at the tip position is the contribution of
the external incident and the scattered fields of the sample,
which is modeled as a dipolar system with the electric and

magnetic moments as defined in Eq. (1). Considering this
model, the general expression of the time-averaged optical
force exerted on the tip is given by [28]

F ¼ 1

2
Re

h
ð∇ElocðrtÞÞ� · pt þ ð∇HlocðrtÞÞ� ·mt

− ck4

6π
ðpt ×m�

t Þ
i
; ð3Þ

where the asterisk denotes complex conjugation, c is the
speed of light, and k is the wave number of the host
medium. Moreover, ∇E and ∇H are two tensors of the
second rank (the gradient of a vector is defined in the
Appendix B). In Eq. (3), the first and second terms
represent the force acting on the corresponding electric
and magnetic dipoles of the tip, respectively, while the third
term represents the force due to the interaction between
both induced electric and magnetics dipoles of the tip. We
calculate the exerted force on the tip in the rest of the paper
by using the above formalism. In this paper, every field is
monochromatic, and the time convention expð−iωtÞ is
implicitly assumed and suppressed.

III. PIFM AS CHIRALILTY SENSOR
AT THE NANOSCALE

In this section, we illustrate the potential of PIFM in
distinguishing the enantiomer type of nanoscale samples.
Based on the force formulation discussed in Sec. II, i.e., by
using the dipole approximation limit and Mie scattering
theory to calculate the polarizability of spherical chiral
sample nanospheres, we examine the force induced on the
achiral tip for different scenarios. As discussed, we illu-
minate the tip-sample system with an incident light from
the bottom side (see Fig. 1). We selectively apply CP light
with both handedness, i.e., right- and left-hand CP (RCP
and LCP) light. The induced polarizations on an achiral
sample will be the same for the RCP and LCP beams. This
results in identical rescattered fields for an achiral sample
when excited with the proposed RCP or LCP. Therefore,
the exerted force on the tip alone (along the propagation z
direction) is the same for opposite sense of handedness of
the incident light. In contrast, by virtue of its optical
activity, the induced polarizations ps and ms on a chiral
sample are not equal for opposite sense of incident light
handedness, and, hence, the rescattered near fields are
different. Therefore, for a chiral sample, the exerted force
on the tip is different for opposite sense of handedness of
the incident light. To verify this, we consider an exemplary
case when the sample and plasmonics tip are both con-
sidered to have equal radii as ¼ at ¼ 60 nm, which are at a
distance to form a particle-to-particle gap of g ¼ 10 nm
(see Fig. 3). Moreover, without loss of generality, the
relative permittivity of the sample is assumed to be
εs ¼ 2.5, whereas the plasmonics tip is assumed to have
a relative permittivity εt ¼ −3.5þ i0.35 (this choice is
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discussed later). The incident light is assumed to be a CP
Gaussian beam propagating along the z direction with
wavelength λ ¼ 504 nm with 1-mW power. The waist of
the Gaussian beam (see Fig. 1) is set to w0 ¼ 0.7λ and is
positioned at the z ¼ 0 plane where the sample is located
because of the higher strength of the field at the beam waist
along the beam axis. The sample is made of a sphere
composed of chiral material described by the chirality
parameter κ that here varies from −1 to 1 (see Appendix A).
By using the introduced analytical formalism, the force
expression (3), we calculate the z component of the induced
force on the tip FRCP

z and FLCP
z versus chirality parameter κ

for the two excitation scenarios with RCP and LCP beams.
The results in Fig. 2 show that there is no force difference
between the two cases of RCP and LCP incidences for
κ ¼ 0. However, as we increase the amplitude of the
chirality parameter κ of the sample, the differences between
induced forces on the tip become more obvious, in the order
of piconewtons. Moreover, we define the differential
photoinduced force as

ΔF ¼ FRCP
z − FLCP

z : ð4Þ
We note that for a pair of enantiomers, ΔF is equal in

amplitude but opposite in sign (we recall that the chirality
parameters of an enantiomer and its mirror image have
equal amplitude and opposite sign). It is worth mentioning
that the differential force is positive for samples with
positive chirality parameter and negative for samples with
negative chirality parameter. This example clearly demon-
strates that by measuring differential photoinduced force,
we can differentiate between chiral enantiomers.
To unravel the physical principle behind this interesting

discriminatory behavior of chiral particles, we note that the
local field acting on the sample to be used in Eq. (1)
provided by both the incident field and the near-field
generated by the tip is found by

ElocðrsÞ ¼ EincðrsÞ þGEPðrs; rtÞ · pt;

HlocðrsÞ ¼ HincðrsÞ þGHPðrs; rtÞ · pt: ð5Þ

Here, GEP and GHP are the dyadic Green’s functions that
provide the electric and magnetic fields, respectively,
generated by an electric dipole [40]. As discussed earlier,
we investigate the case of an isotropic achiral tip, whose
dipole moments pt and mt are given by Eq. (2). Moreover,
in Eq. (5), we assume that the magnetic dipole moment mt
of the tip is negligible, which we clarify later to be an
acceptable approximation for a tip made of plasmonic
material [note that the results of Fig. 2 are obtained
considering all dipole terms in Eq. (3) including a very
smallmt; however, in deriving an approximate formula for
the force, we neglect the magnetic dipole momentmt of the
tip]. The local electric field at the tip is provided by both the
incident field and the near field scattered by the sample that
is assumed to possess both electric ps and magnetic ms
dipole moments:

ElocðrtÞ ¼ EincðrtÞ þGEPðrt; rsÞ · ps þGEMðrt; rsÞ ·ms:

ð6Þ

Here, GEM is the dyadic Green’s function that provides
the electric field generated by a magnetic dipole. The
expression for the time-averaged optical force exerted on
the achiral tip (neglecting the effect of the magnetic dipole,
i.e., mt ¼ 0) reads

F ¼ 1

2
Re½ð∇ElocðrtÞÞ� · pt�: ð7Þ

The calculations are done by using all the dynamic terms
in the Green’s function. Next, neglecting the field’s phase
difference between the tip and sample due to their sub-
wavelength distance, it can be shown (see Appendix B for
more details) that the difference between the forces exerted
on the tip for two CP plane waves with opposite handed-
ness reads

ΔF ≈ − 3jE0j2
4π

ffiffiffiffiffiffiffiffiffi
ε0μ0

p
d4

Imfαeet ðαems Þ�g: ð8Þ

In deriving this approximate but physically insightful
formula, we assume the axial Gaussian beam field to be
approximated with a CP plane wave with electric field
magnitude jE0j. Furthermore, ε0 and μ0 are, respectively,
the free-space permittivity and permeability, and d is the
center-to-center distance between tip and sample. A similar
result for the differential energy of the interaction in chiral
optical binding, which was previously reported in Eq. (39)
of Ref. [41], further supports our obtained result in Eq. (8).
This equation is a striking result since it clearly demon-
strates that in the absence of the magnetoelectric polar-
izability (i.e., αems ¼ 0), ΔF will be zero, while for a chiral
sample, it is not the case. Therefore, we can distinguish
between chiral and achiral samples by observing ΔF. More
important, as is known, the quasistatic approximation for

FIG. 2. The effect of sample chirality on the induced force on
the tip for two incident scenarios of RCP and LCP light.
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magnetoelectric polarizability αem of a chiral sphere with
material parameters εs, μs, and κ is [42]

αems ¼ 12iπa3
ffiffiffiffiffiffiffiffiffi
ε0μ0

p κ

ðεs þ 2Þðμs þ 2Þ − κ2
; ð9Þ

where a is the radius of the sphere, and it is considered that
μs ¼ 1. From Eq. (9), the sign of magnetoelectric polar-
izability αems is dictated by the sign of the chirality
parameter of the sample κ. Therefore, Eq. (8) expresses
that ΔF is equal in amplitude but opposite in sign for a pair
of enantiomers, which affirms that our proposed method is
capable of distinguishing enantiomer type. It is also worth
mentioning that based on Eqs. (8) and (9), ΔF is linearly
proportional to chirality parameter κ of the sample [since κ2

in the denominator of Eq. (9) is much smaller than the first
term for natural materials] within the quasistatic approxi-
mation. Additionally, Eq. (8) states that ΔF is linearly
dependent on the electric polarizability of the tip, empha-
sizing the importance of the tip material and its geometry.
In our example, we assume to have a plasmonic tip to boost
its electric dipolar response and, hence, increasing the
electric polarizability contribution. Furthermore, ΔF ∝
1=d4 (where d is the center-to-center distance between
the tip and the sample), which illustrates the sensitivity of
the probing force to the distance between the tip and the
sample.
We have shown the main physical principle, and we now

dig into Eq. (8) to demonstrate how our analytical formal-
ism boasts itself in predicting the general trends of differ-
ential photoinduced force. To that end, we first emphasize
the dependence of the differential force on the chirality
parameter κ. We assume equal radii for the tip and sample,
i.e., as ¼ at ¼ 60 nm with the gap g ¼ 10 nm between the
tip and sample. Furthermore, we consider the relative
permittivity of the tip and sample to be εt¼−3.5þi0.35
and εs ¼ 2.5, respectively, as done for the result in Fig. 2.
We then sweep over the chirality parameter of the tip from 0
to 1. By applying Eq. (3), we plot the differential induced
forces ΔF on the tip for the two different incidence
scenarios of RCP and LCP beams [solid blue line in
Fig. 3(a)]. As it is clear, ΔF shows linear dependence
on κ when its chirality parameter is smaller than 0.5. For
κ > 0.5, the differential force ΔF diverges from its linear
fitting curve, the red dashed line in Fig. 3(a), which
presents the asymptotic linear behavior of the differential
force for small chirality parameter κ. To provide insight into
the reason for this behavior, we plot the normalized (to 1=c)
magnetoelectric polarizability of the sample as a function
of the chirality parameter [see Fig. 3(b)] calculated with
two methods: the exact calculation using Mie coefficients
(see Appendix A) and the approximate quasistatic formu-
lation in Eq. (9). As it can be seen, for κ < 0.5, the results
of both exact and approximate methods absolutely
match, whereas for higher values of κ, the quasistatic

approximation diverges from the accurate Mie coefficient
result. Thus, αem and, hence, ΔF are assumed to be linearly
dependent on κ for κ < 0.5. Indeed, the direct comparison
between ΔF plotted in Fig 3(a) and the magnetoelectric
polarizability αem of the sample calculated through the
exact Mie coefficient (in Appendix A) shown in Fig 3(b) is
decoding their linear dependence. This result is exactly
what we previously stated based on Eq. (8).
As one can infer from the approximate formula (8), the

next crucial parameter in determining the differential-
induced force is the tip electric dipolar polarizability αeet .
In Fig. 4 we provide ΔF and normalized electric and
magnetic polarizabilities as functions of the real part of the
tip relative permittivity given by εt ¼ ε0t þ i0.35 assuming
as ¼ 60 nm. As shown in Fig. 4(a), ΔF peaks around
ε0t ¼ −3.5, which corresponds to the electric resonance of
the tip, which is demonstrated in Fig. 4(b). From a
comparison between Figs. 4(a) and 4(b), we conclude that
ΔF and αeet reveal similar behaviors as we sweep the real
part of permittivity, which once more proves the potential
of using Eq. (8) to state thatΔF is linearly dependent on the
tip electric polarizability αeet . [The force calculation is done

(a) (b)

FIG. 3. (a) ΔF versus chirality parameter κ of the sample. Tip
and sample spheres’ radii are as¼at¼60nm, εt¼−3.5þi0.35,
and εs ¼ 2.5, and the gap is g ¼ 10 nm. For completeness, we
show a linear fitting curve for ΔF. (b) Normalized magnetoelec-
tric polarizability of the sample using the Mie formula given in
Appendix A and the quasistatic approximation Eq. (9).

FIG. 4. Differential force ΔF and normalized electric and
magnetic polarizability of the tip as a function of the real part
of the tip relative permittivity. A plasmonic tip provides a stronger
electric polarizability and, hence, a stronger force.
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via Eq. (3) using the dynamic Green’s function.] Notice that
the magnetic polarizability is much smaller than its electric
counterpart, emphasizing the negligible contribution of the
second and third terms of Eq. (3). As a result of the above
discussion, we conclude that the choice of material param-
eter for the tip is of quite high importance because the
dynamic range of the experimental measurement setup is
limited by noise, and the force value may be small
depending on particle size, laser power, and materials.
As we discuss in the next section and as we demonstrate in
Eq. (8), a tip with strong electric polarizability enabled by
plasmonic material enhances the measured photoinduced
force response of a chiral sample and, hence, the differ-
ential force [43,44]. Our goal is to enantiospecify samples
with nanoscale size (microscopic chirality identification),
despite the weak chiral response of their matter constituent,
by using plasmonic material for the tip. It should be noted
that the tip shape can also be engineered to provide even
higher electric polarizability compared to a simple plas-
monic sphere [11,30,45–50] (e.g., a triangular prism or
truncated tetrahedron). However, considering the fact that
our aim in this paper is to introduce the technique and to
prove its capability, we assume a plasmonic spherical tip
(simplest shape) in our analysis. Nevertheless, in a future
study involving also experimental verification, the tip shape
can be engineered to further enhance the ability in the
detection of the observable response of the chiral sample.
Note that, however, shorter distances dmay provide a much
stronger force, but we cannot show it here since the dipolar
representation of the tip and sample loses validity for
smaller distances.
Indeed, the last central parameter in the enantiospecific

detection of chiral nanosamples is the tip-sample distance,
as illustrated in the differential force approximate expres-
sion Eq. (8). In Fig. 5, we depict ΔF in logarithmic
scale evaluated by Eq. (3) as a function of the tip-sample
distance from 75 to 175 nm along with a d−4-dependent
function for a tip-sample system with parameters as

follows: as ¼ at ¼ 25 nm, εt ¼ −3.5þ 0.35i, εs ¼ 2.5,
and κ ¼ 0.6. As shown, there is good agreement between
the force and the d−4 function, which is again predicted
by Eq. (8).
So far,wehave analytically proved that byusingPIFM,we

not only detect chiral samples by using achiral probes, butwe
also specifically determine the enantiomer type of a chiral
sample. We support our analytical findings by numerical
calculations. In the next section, by using analytical for-
mulations, we present the effective polarizability model for
an achiral tip when it is closely positioned near a chiral
sample and, hence, give physical insight to explain how the
optical activity of the sample is transferred to the tip.

IV. OPTICAL ACTIVITY TRANSFER FROM
CHIRAL SAMPLE TO ACHIRAL TIP

We provide here a simple formulation to predict the
differential photoinduced force on the tip in the vicinity
of a chiral sample. In this section, we aim to deliver an
equivalent representation of electric dipole moment, which
presents deep physical insight into a unique phenomenon:
the transfer of optical activity from a chiral particle to an
achiral one in its vicinity. In this equivalent representation,
we rewrite the electric dipole moment of the tip as

pt ¼ α̂eet Einc þ α̂emt Hinc; ð10Þ

in which α̂eet and α̂emt are the effective electric and
magnetoelectric polarizabilities of the tip when it is in
close vicinity of the chiral particle. As it is clear, in this
representation, instead of local electric and magnetic fields,
we use incident fields. In other words, we include the
presence of the chiral particle near field by modifying
the polarizability of the tip. As shown in Appendix C, the
effective electric and magnetoelectric polarizabilites are
given by

α̂eet ¼ αeet
1 − αees G

1 − αeet αees G2
; ð11Þ

α̂emt ¼ −αeet αems G
1 − αeet αees G2

; ð12Þ

in which G is defined in Eq. (B4). It is very important
to notice that although the tip is not chiral and is modeled
by a simple electric dipole, the impact of the chiral sample
makes the tip effectively act as a chiral particle as in
Eq. (10). That is to say, a chiral sample can induce chirality
to an achiral particle if placed in the vicinity of it, which can
be utilized in two ways: (1) creating artificial optically
active particles using achiral materials and (2) using
plasmonic particles as a “reporter” (or, equivalently, an
antenna) for chirality detection. Here, we engineer a gold
nanoparticle to be optically active by placing it in the

FIG. 5. ΔF in logarithmic scale versus the distance between the
tip and sample (solid blue line) along with a d−4-dependent
function (red dashed line).
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vicinity of a chiral particle. Thanks to the strong electric
resonance of plasmonic particles, the optical activity of the
tip-sample interactive system will be enhanced compared to
a single chiral particle. The advantage of creating a chirality
reporter using a plasmonic particle can be understood by
observing that the chiral response of most biomolecules
peaks in the UV regime; however, in the vicinity of a
plasmonic particle, this signature can be brought to the
plasmonic band, making the measurement easier in the
visible region. Although this phenomenon has been already
reported in Refs. [50–54], here we provide a rigorous
analytic representation of it which allows us to design
proper antennas in order to maximize magnetoelectric
coupling and, hence, improve the chirality detection.
Using this equivalent approach, we can show that the
differential-induced force on the tip at the close vicinity of
the sample reads (see Appendix C)

ΔF ¼ FRCP
z − FLCP

z

¼ − jE0j2
jαeet j2 Im

�
αeet

�
α̂eet

∂α̂em�
t

∂z − α̂emt
∂α̂ee�t

∂z
������

z¼zt

;

ð13Þ

in which ∂=∂z represents the partial derivative with
respect to the position on the z axis. This formula further
emphasizes the dependence of ΔF on the effective param-
eters of the tip, i.e., the effective electric and magnetoelec-
tric polarizabilities.
We conclude this section by stating that our analytical

formalism allows us to suggest another approach to
maximize the signature of the optical activity of nano-
particles by using properly engineered nanoantennas which
enhance both electric and magnetic fields rather than only
the electric field [55], which is what we show here. Notice
that the magnetic dipole of the antenna must be properly
oriented in order to effectively couple to the chirality of the
sample particle. That is, if the antenna can be represented
by dipole moments, its electric and magnetic moments
must be collinear, which implies a chiral response. To
obtain such strong coupling between the antenna and the
sample particle and, hence, a stronger optical response of
the tip, we suggest taking advantage of a proper combi-
nation of structured light excitation and antenna near-field
response, which can be a subject of further studies. For
instance, one may use a chiral antenna [56,57] with CP
excitation. Alternatively, one may use an achiral antenna
structure with both electric and magnetic responses and use
a combination of the structured light as the excitation
scheme to control the coupling between chiral samples and
the tip [58].
In the next section, we provide a measure to clarify the

dynamic range of our approach in probing the chirality of
optically small nanosamples down to sub-100-nm sizes.

V. POTENTIAL OF THE APPROACH
IN DETECTING NANOSCALE

CHIRAL INCLUSIONS

So far, we have demonstrated the possibility of detecting
chirality and the enantiomer type of nanoscale samples
using photoinduced force. However, we have not yet
discussed the resolution of our proposed method, i.e.,
the minimum size of the specimen which results in a
detectable ΔF and how misalignment of the tip affects the
chirality detection. To investigate this first issue, in Fig. 6
we make a color map showing ΔF in the logarithmic scale
versus chirality parameter κ (again in logarithmic scale) of
the sample and radius of the sample as. We assume that the
radius of the tip is at ¼ 60 nm, the gap is g ¼ 10 nm, and
the sample is positioned at the z ¼ 0 plane on the axis of the
excitation beams at the minimum beam waist. As before,
we assume relative permittivities of the tip and sample to be
the same as Fig. 2. The chosen chirality parameter range
binds the chirality parameter of common chiral specimens
including DNA-assembled nanostructures and composite
nanomaterials [30]. We mark the 0.1-pN force boundary
with a black solid line. For the region above this black line,
ΔF is greater than 0.1 pN. This number is chosen based on
Ref. [59] to be the instrument general sensitivity. It can be
seen, the smallest detectable chirality parameter value κ for
the maximum studied sample radius as ¼ 70 nm is 0.04
(shown with log10jκj ¼ −1.39).
It is worth noting that a chirality parameter of the order

of κ ∼ 10−2, which corresponds to a specific rotation
(which is defined as the optical rotation in degrees per
decimeter divided by the density of optically active material
in grams per cubic centimeter [1]) of ½α�D ∼ 1 000 000°, is
still a giant value compared to that obtained with chiral
molecules such as glucose (C6H12O6), carvone (C10H14O),
testosterone (C19H28O2), etc., with a chirality parameter of
the order of κ ∼ 10−6 [60–63] (which corresponds to a
specific rotation in the order of ½α�D ∼ 100° − 200°). This
giant chirality is observed only in a few molecules and

FIG. 6. Illustration of the sensitivity of our proposed technique.
log10jΔF=1 pNj is shown versus the chirality parameter and
radius of the sample.
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compounds such as helicene or norbornenone with specific
rotation angles of the order of ½α�D ∼ 1 000 000° [64,65].
However, we emphasize that our technique, in contrast with
conventional chiroptical techniques, is capable of detecting
such molecules when the size of a sample is of the order of
sub-100 nm. The detection of chiral samples with smaller
chirality parameter requires some extra considerations, like
an increase of the incident power which is possible in
cryogenic conditions [66] or in liquids to maintain the
condition of the gold-coated tip [67–69] or using nanotips
with stronger electric polarizability, or even explore nano-
tips that are able to express magnetic response.
Notice that on the other extreme side of the studied

ranges of parameters, the smallest detectable radius for a
sample with maximum chirality parameter jκj ¼ 1 (shown
with log10jκj ¼ 0) is 25 nm.
Next, we investigate the transverse resolution of the

proposed PIFM technique by observing the detectability
range of the sample by assuming a controlled misalignment
of the tip. It is expected that this lateral misalignment will
decrease the probed differential force. In the following, we
estimate the full width at half maximum (FWHM) of the
differential force. This is defined as the range of lateral
distances between the tip and sample in which the differ-
ential force is higher than half of its maximum value (i.e.,
when the lateral distance between the tip and sample is
zero) and shown in Fig. 7. In this figure, the differential
force is depicted versus the lateral distance between the tip
and sample assuming the system parameters as in Fig. 2 and
κ ¼ 0.6. As it is expected, when the tip moves laterally (in
either direction), the differential z-directed force decreases,
and the FWHM of the differential force is 200 nm. This
example shows also how far the tip can be to be able to
make an enantiospecific detection of chiral nanosamples.
One may refer to Sec. VI for more analyses of different
parameters influencing the probed differential force such
as the relative positioning of the tip-sample interactive
system and the excitation beam, the tip-sample gap, the tip
radius, etc.

VI. FORCE DEPENDENCE ON PHYSICAL
PARAMETERS

In this section,we investigate the dependenceof the induced
force on the tip on its radius and on the tip-sample relative
displacement with respect to the excitation beam. Incident
light is assumed to be a CP Gaussian beam propagating along
the positive z direction with wavelength λ ¼ 504 nm and
1-mW power. The minimum waist of the Gaussian beam (see
Fig. 1) is positioned at the z ¼ 0 plane, where the sample is
because of the higher strength of the field, and the waist
parameter is set to w0 ¼ 0.7λ (actual waist is 2w0).

A. Tip radius

Here, we assume the relative permittivity of the plas-
monic tip to be εt ¼ −3.5þ i0.35, the sample radius to be
as ¼ 60 nm, and the gap between the tip and sample to be
g ¼ 10 nm (Fig. 1). The effect of the tip radius at on the
force difference ΔF between the two adopted CP polar-
izations is plotted in Fig. 8 for various values of the sample
chirality parameter κ.
It is observed that the differential force ΔF increases for

tip radii larger than at ¼ 40 nm, and it is maximum for
at ¼ 60 nm in each κ case. We do not investigate larger
values for at since the validity range of our analytical model
based on dipole approximation dictates to keep the radius
of the particles considerably smaller than the operational
wavelength (here, the largest sphere radius is such that
at=λ ≤ 0.12). Thus, in order to achieve the maximum
distinction in the force between the two incident scenarios,
it is better to choose at ¼ 60 nm for the tip. Further studies
can be pursued numerically or using multipole spherical
harmonics.

B. Relative displacement of the tip-sample system
and the focus of the beam

We now investigate the robustness of the proposed
method for enantiospecific detection of chiral nanosamples
by observing the sensitivity of the differential force ΔF to

FIG. 7. ΔF versus lateral displacement of the tip versus sample.
As the tip moves laterally, the differential force decreases.

FIG. 8. Differential force ΔF for different chirality parameters
of the sample as a function of the tip radius with as ¼ 60 nm,
g ¼ 10 nm, εt ¼ −3.5þ i0.35, and εs ¼ 2.5.
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the position of the tip-sample interactive system with
respect to the minimum waist location (maximum field
strength) of the excitation beam. As we discussed earlier,
we are exciting the tip-sample system with CP Gaussian
beams with w0 ¼ 353 nm. First, we study the effect of
lateral displacement h of the minimum waist with respect
to the tip-sample system on the differential force ΔF as
shown in Fig. 9.
When h ¼ 0, the differential force ΔF is maximum, and

as h increases, ΔF decreases because the maximum field
strength occurs along the beam axis. However, even with a
displacement as large as h ¼ 250 nm, the samples with a
chirality parameter as small as κ ¼ 0.1 can still be
detectable depending on the instrument sensitivity.
Next, we provide the results for a longitudinal displace-

ment h of the minimum waist with respect to the tip-sample
system as shown in Fig. 10.
In this setup, when h ¼ 0, the sample is at the minimum

beam waist plane, whereas when h ¼ 130 nm, the tip is
located at the minimum waist. As noticed in Fig. 10, the
longitudinal displacement of the waist with respect to
the tip-sample system does not significantly influence
the differential force ΔF since the maximum field strength
is either on the sample or on the tip, and the field does not

strongly change along the beam axis of a CP Gaussian
beam when the waist moves in the upper direction.

VII. CONCLUSION

We introduce the concept of photoinduced force micros-
copy for enantiomer-specific detection of nanoscale chiral
samples. Although we use the same excitations as applied
in standard CD and ROA scenarios for detecting chirality
(i.e., two CP beams with opposite handedness), the idea of
using such beams in photoinduced force microscopy
enables a method for detection of chiral samples down
to nanoscale resolution and sample size. That is to say, we
can specify the enantiomer type of a chiral particle (with a
radius as small as 25 nm) with a chirality parameter as small
as κ ¼ 0.04 with nanometric resolution. We demonstrate
how an achiral plasmonic AFM tip effectively interacts
with chiral nanosamples to enhance the probing force (that
is in a measurable range) by providing an analytical
formalism to predict the exerted force on the tip.
In a future study we plan to implement the proposed

approach in an experimental setup for the enantiomeric
detection of chiral samples. We also discuss how the use of
properly engineered nanoantennas with both electric and
magnetic responses can maximize the measured force,
hence, enabling the detection of even smaller particles or
weaker chirality than the one assumed here.
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APPENDIX A: MIE POLARIZABILITIES
FOR A CHIRAL PARTICLE

The chiral tensorial parameter κ is defined via the
constitutive relations [39]

D ¼ ε0ε ·Eþ i
ffiffiffiffiffiffiffiffiffi
ε0μ0

p κ ·H;

B ¼ μ0μ ·H − i
ffiffiffiffiffiffiffiffiffi
ε0μ0

p κT ·E; ðA1Þ

which provide the connection between the electric field E,
magnetic field H, magnetic induction B, and electric
displacement vector D. The chirality tensor κ provides
an average measure of handedness of inclusions composing
the bulk, in accordance with the role of ε and μ in the
material constitutive relations (A1). Notice that the coef-
ficient

ffiffiffiffiffiffiffiffiffi
ε0μ0

p
is introduced to make the chirality tensor κ

dimensionless, as ε0 and μ0 are introduced to make the
tensors ε and μ dimensionless. It is shown in Ref. [39] that
chirality originates from a first-order spatial dispersion in
material.
For a small (at the wavelength scale) sphere with radius a

and isotropic material parameters ε ¼ εs I, μ ¼ μs I,
and κ ¼ κ I located in free space, we approximate the

h

F
 (

pN
)

h (nm)

= 0.1
= 0.3
= 0.6

z

FIG. 9. Effect of lateral displacement of the tip-sample system
with respect to the beam axis on differential force ΔF for
as ¼ at ¼ 60 nm, g ¼ 10 nm, εt ¼ −3.5þ i0.35, and εs ¼ 2.5.

h

F
 (

pN
)

h (nm)

= 0.1
= 0.3
= 0.6z

FIG. 10. Effect of longitudinal (i.e., vertical) displacement of
the minimum waist with respect to the tip-sample interactive
system for as ¼ at ¼ 60 nm, g ¼ 10 nm, εt ¼ −3.5þ i0.35, and
εs ¼ 2.5.
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electromagnetic response with only dipolar terms whose
electric, magnetic, and magnetoelectric polarizabilities αees ,
αmm
s , and αems are simply related to the material parameters

via the Mie scattering as [70]

αees ¼ −6iπε0 a1k3 ; αmm
s ¼ −6iπμ0 b1k3 ;

αems ¼ 6π
ffiffiffiffiffiffiffiffiffi
ε0μ0

p c1
k3

: ðA2Þ

Here, k is the free-space wave number, and coefficients
a1, b1, and c1 are given by

a1 ¼ − 1

Δ
ið1 − aRaLÞðXLXRY2Y4 þ ULURY1Y3Þ

þ ðXLUR þ XRULÞ
�
aLμ0

ωY1Y4

k
þ kaR

Y2Y3

ωμ0

�
;

b1 ¼ − 1

Δ
ið1 − aRaLÞðXLXRY2Y4 þ ULURY1Y3Þ

×

�
aLμ0

ωY2Y3

k
þ kaR

Y1Y4

ωμ0

�
;

c1 ¼
1

Δ
Δ1ðY2Y3 − Y1Y4Þ: ðA3Þ

In the above equations, ω is the angular frequency, and
Δ, Δ1, Y1 to Y4, XL, XR, UL, UR, aL and aR are given by

Δ ¼ ið1 − aRaLÞðXLXRY2
4 þULURY2

3Þ

þ ðXLUR þ XRULÞ
�
aLμ0

ω

k
þ kaR
ωμ0

�
Y3Y4;

Δ1 ¼ XLUR þ aRaLULXR; ðA4Þ

Y1 ¼
sinðkaÞ
ka

− cosðkaÞ
ka

;

Y2 ¼
1

ka

�
cosðkaÞ

ka
− sinðkaÞ

ðkaÞ2 þ sinðkaÞ
�
;

Y3 ¼
� −i
ðkaÞ2 −

1

ka

�
eika;

Y4 ¼
1

ka

�
i

ðkaÞ2 þ
1

ka
− i

�
eika; ðA5Þ

XR ¼ sinðkRaÞ
ðkRaÞ2

− cosðkRaÞ
kRa

;

XL ¼ sinðkLaÞ
ðkLaÞ2

− cosðkLaÞ
kLa

; ðA6Þ

UR ¼ 1

kRa

�
cosðkRaÞ

kRa
− sinðkRaÞ

ðkRaÞ2
þ sinðkRaÞ

�
;

UL ¼ 1

kLa

�
cosðkLaÞ

kLa
− sinðkLaÞ

ðkLaÞ2
þ sinðkLaÞ

�
; ðA7Þ

aR ¼ −i 1

ωε1
½kRð1 − β2ω2ε1μ1Þ þ βω2ε1μ1�;

aL ¼ −i 1

ωε1
½kLð1 − β2ω2ε1μ1Þ − βω2ε1μ1�: ðA8Þ

In the above equations, ε1 ¼ ε0εs, μ1 ¼ μ0μs are the
sphere’s permittivity and permeability, whereas β is the
phenomenological coefficient related to the chirality
parameter as

β ¼ κ

ω
ffiffiffiffiffiffiffiffiffi
ε1μ1

p : ðA9Þ

Moreover, kR and kL are the chiral sphere’s wave
numbers for right- and left-hand CP waves, respectively,
and given by

kR ¼ ω
ffiffiffiffiffiffiffiffiffi
ε1μ1

p ð1 − βω
ffiffiffiffiffiffiffiffiffi
ε1μ1

p Þ 1

1 − β2ω2ε1μ1
;

kL ¼ ω
ffiffiffiffiffiffiffiffiffi
ε1μ1

p ð1þ βω
ffiffiffiffiffiffiffiffiffi
ε1μ1

p Þ 1

1 − β2ω2ε1μ1
: ðA10Þ

APPENDIX B: DIFFERENTIAL OPTICAL
FORCE EXERTED ON THE TIP

We show here the steps that lead to the approximate
formula in Eq. (8) for the differential exerted force on the
tip in the near-field region of a chiral sample when the tip-
sample system is excited by CP plane waves with opposite
handedness. The expression for the time-averaged optical
force exerted on the achiral tip modeled as two coexisting
electric and magnetic dipoles pt and mt is given in Eq. (3),
where ElocðrtÞ and HlocðrtÞ are the local electric and
magnetic fields (phasors) at the tip position. They are
defined as

ElocðrtÞ ¼ EincðrtÞ þ Escatjs→t;

HlocðrtÞ ¼ HincðrtÞ þHscatjs→t; ðB1Þ

in which Einc and Hinc are the incident (i.e., external)
electric and magnetic fields evaluated at the tip location.
Furthermore, Escatjs→t and Hscatjs→t are the scattered fields
generated by the sample at the tip position. Even though all
the calculations in the paper use all the dynamic terms of
the Green’s function [40], here we approximate the scat-
tered fields by an electric p and a magneticm dipole in the
near-field region by retaining only the stronger term [71]

Escat ≈
eikr

4πε0r3
½3r̂ðr̂ · pÞ − p�;

Hscat ≈
eikr

4πμ0r3
½3r̂ðr̂ ·mÞ −m�; ðB2Þ
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in which r̂ ¼ r=r is the unit vector of the radial direction in
spherical coordinates centered at the source location, r is
the vector from the source to the observation point, and k is
the ambient wave number. Consequently, the scattered
fields due to the sample at the tip position are simply
rewritten as

Escatjs→t ¼ −G
ε0
½ps;xx̂þ ps;yŷ − 2ps;zẑ�;

Hscatjs→t ¼ − G
μ0

½ms;xx̂þms;yŷ − 2ms;zẑ�; ðB3Þ

in which [72]

G ¼ eikjzt−zsj
4πjzt − zsj3

: ðB4Þ

Note that subscripts x, y, and z are representing the
related components in the Cartesian coordinates, and zt and
zs are the tip and sample positions, respectively.
The electric and magnetic dipole moments of the

sample assumed to have isotropic polarizability are calcu-
lated as

ps ¼ αees ElocðzsÞ þ αems HlocðzsÞ;
ms ¼ αme

s ElocðzsÞ þ αmm
s HlocðzsÞ; ðB5Þ

where the corresponding sample polarizabilities αs are
defined in the manuscript. Moreover, the magnetic
dipole moment associated to a current density in a given
volume is defined as m ¼ 1

2
μ0

R
dvr × J, with J and r

being the volumetric current and the position vector in the
same volume, respectively. Next, by using Eqs. (B3) and
(B5), the local fields at the tip location in Eq. (B1) are
found to be

2
64
Eloc
x ðztÞ

Eloc
y ðztÞ

Eloc
z ðztÞ

3
75 ¼

2
64
Einc
x ðztÞ

Einc
y ðztÞ

Einc
z ðztÞ

3
75

− G
ε0

2
64

αees Eloc
x ðzsÞ þ αems Hloc

x ðzsÞ
αees Eloc

y ðzsÞ þ αems Hloc
y ðzsÞ

−2αees Eloc
z ðzsÞ − 2αems Hloc

z ðzsÞ

3
75;
ðB6Þ

2
64
Hloc

x ðztÞ
Hloc

y ðztÞ
Hloc

z ðztÞ

3
75 ¼

2
64
Hinc

x ðztÞ
Hinc

y ðztÞ
Hinc

z ðztÞ

3
75

− G
μ0

2
64

αme
s Eloc

x ðzsÞ þ αmm
s Hloc

x ðzsÞ
αme
s Eloc

y ðzsÞ þ αmm
s Hloc

y ðzsÞ
−2αme

s Eloc
z ðzsÞ − 2αmm

s Hloc
z ðzsÞ

3
75;
ðB7Þ

where the local electric and magnetic fields at the sample
position can be obtained by

ElocðzsÞ ¼ EincðzsÞ þEscatjt→s;

HlocðzsÞ ¼ HincðzsÞ þHscatjt→s; ðB8Þ

in which Escatjt→s and Hscatjt→s are the electric and
magnetic fields scattered by the tip at the sample position
and similar to Eq. (B3) are calculated by

Escatjt→s ¼ −G
ε0
½pt;xx̂þ pt;yŷ − 2pt;zẑ�;

Hscatjt→s ¼ − G
μ0

½mt;xx̂þmt;yŷ − 2mt;zẑ�: ðB9Þ

Since the tip is achiral, the electric and magnetic dipole
moments of the tip read

pt ¼ αeet ElocðztÞ;
mt ¼ αmm

t HlocðztÞ: ðB10Þ

Now, combining Eqs. (B8)–(B10) and considering that
the incident CP plane waves (note that in the numerical
examples in the paper, we assume structures to be illumi-
nated by CP Gaussian beams, whereas here, for the sake of
simplicity, we assume plane waves) lack z-polarized field
components, Eqs. (B6) and (B7) read

�
Eloc
x ðztÞ

Eloc
y ðztÞ

�
¼

�
Einc
x ðztÞ

Einc
y ðztÞ

�
− G
ε0

� αees ðEinc
x ðztÞ − G

ε0
αeet Eloc

x ðztÞÞ þ αems Hinc
x ðztÞ

αees ðEinc
y ðztÞ − G

ε0
αeet Eloc

y ðztÞÞ þ αems Hinc
y ðztÞ

�
; ðB11Þ

and
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�
Hloc

x ðztÞ
Hloc

y ðztÞ

�
¼
�
Hinc

x ðztÞ
Hinc

y ðztÞ

�
− G
μ0

"
αme
s ðEinc

x ðztÞ− G
ε0
αeet Eloc

x ðztÞÞ þ αmm
s Hinc

x ðztÞ
αme
s ðEinc

y ðztÞ− G
ε0
αeet Eloc

y ðztÞÞ þ αmm
s Hinc

y ðztÞ

#
: ðB12Þ

The z component of the local fields at the tip location are not shown above since it is vanishing. In obtaining the
above equations, we use the assumption that at resonance of the chiral sample, the following approximation holds αees αmm

s ≈
αme
s αems [73–76]. This is a good approximation for most dipole scatterers close to their resonance and when both the electric

and magnetic dipole responses originate from the same equation of the motion for charge. Next, by simplifying Eqs. (B11)
and (B12), for the x component of the electric and magnetic fields, we get

Eloc
x ðztÞ ¼

1

1 −G2 αeet
ε0

αees
ε0

��
1 −G

αees
ε0

�
Einc
x ðztÞ − αems

ε0
Hinc

x ðztÞ
�

ðB13Þ

and

Hloc
x ðztÞ ¼

�
−G αme

s

μ0
þ
ð1 −G αees

ε0
ÞG2

1 −G2 αeet
ε0

αees
ε0

αeet
ε0

αme
s

μ0

�
Einc
x ðztÞ þ

�
1 −G

αmm
s

μ0
− G3

1 −G2 αeet
ε0

αees
ε0

αeet
ε0

αme
s

μ0

αems
ε0

�
Hinc

x ðztÞ: ðB14Þ

Similar expressions can be obtained for the y component
of the fields. The incident fields for the CP waves
propagating along the z direction are

Einc ¼ jE0j
ðx̂� iŷÞffiffiffi

2
p eikz;

Hinc ¼ jE0j
η0

ð∓ix̂þ ŷÞffiffiffi
2

p eikz; ðB15Þ

in which the þ and − signs represent right- (upper sign)
and left- (lower sign) handed CP waves, with electric field
magnitude jE0j. By replacing these incident fields in
Eqs. (B13) and (B14), we find the local fields of the tip,
and by inserting the values of the local fields in Eq. (B10),
we obtain the dipole moments. Then, we use Eq. (3) to find
the exerted force on the tip. As was emphasized in the
paper, we neglect the magnetic dipole moment of the tip in
obtaining our approximate formula. Thus, based on Eq. (3),
the differential force is calculated as

ΔF ¼ jE0j2Im
�

αeetffiffiffiffiffiffiffiffiffi
ε0μ0

p
d

�
num
den

�	
; ðB16Þ

with

num ¼ Λ
�
1 − ð1 − ikdÞ αees

4πd3

� ðαems Þ�
4πd3

þ
�
Λ − 3

ðαeet Þ�
2πd3

��
ð1 − ikdÞ ðα

ee
s Þ�

4πd3

�
αems
4πd3

;

den ¼
�
1 − ðαeet Þ�

4πd3
ðαees Þ�
4πd3

�
2
�
1 − αeet

4πd3
αees
4πd3

�
; ðB17Þ

where

Λ ¼ ð3þ 2ikdÞ þ ð3þ 4ikdÞ ðα
ee
t Þ�

4πd3
ðαees Þ�
4πd3

: ðB18Þ

Also notice that in Eqs. (3) and (7) we specify the i-th
component of a representative vector ð∇AÞ · a equal toP

j aj∂iAj (here, i; j ¼ x; y; z in Cartesian coordinates
and ∂i is partial derivative with respect to the i-th spatial
coordinate). Moreover, in the Cartesian coordinates, the
gradient of a representative vector A is defined as

∇A ¼

2
64
∂xAx ∂xAy ∂xAz

∂yAx ∂yAy ∂yAz

∂zAx ∂zAy ∂zAz

3
75:

Next, considering the quasistatic limit by assuming
kd → 0 and neglecting the terms that contain polarizability
power orders higher than the second, Eq. (B16) simplifies
to Eq. (8). When either the tip or the sample is lossless,
Eq. (8) is further simplified to

ΔF ≈ − 3jE0j2
4πd4

ffiffiffiffiffiffiffiffiffi
ε0μ0

p Refαeet gImfðαems Þ�g: ðB19Þ

We recall that αems ¼−αme
s and that under the assumption

of negligible sample losses, αme
s is purely imaginary [39].

APPENDIX C: EQUIVALENT REPRESENTATION
OF EFFECTIVE POLARIZABILITY OF THE TIP

In Sec. IV, we explain how optical activity is transferred
from a chiral sample to an achiral tip thanks to their near-
field coupling. Here, we show the details that lead to
Eq. (13). We first insert Eqs. (11) and (12) into Eq. (10).
Then, based on Eq. (7), the induced force on the tip in the z
direction reads

MOHAMMAD KAMANDI et al. PHYS. REV. APPLIED 8, 064010 (2017)

064010-12



F�
z ¼ jE0j2

2jαeet j2 Re
�
αeet

�
α̂�

∂ðα̂�Þ�
∂z − ikjα̂�j2

��
; ðC1Þ

where the þ and − signs represent right- and left-handed
CP waves, respectively. In Eq. (C1) we define the effective
polarizability parameter α̂� for the right and left CP wave as

α̂� ¼ α̂eet ∓ iα̂emt ; ðC2Þ

where α̂eet and α̂emt are defined in Eqs. (11) and (12).
Therefore, the differential force is calculated as

ΔF ¼ FRCP
z − FLCP

z

¼ jE0j2
2jαeet j2 Re

�
αeet

�
α̂þ

∂ðα̂þÞ�
∂z − α̂− ∂ðα̂−Þ�

∂z
������

z¼zt

:

ðC3Þ

The derivative is taken with respect to the observation z
coordinate (i.e., the tip location). Now, inserting Eq. (C2)
into Eq. (C3) leads to Eq. (13).
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