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In this work, we propose a flexible architecture of microwave resonators with tunable couplings to
perform quantum simulations of problems from the field of molecular chemistry. The architecture builds on
the experience of the D-Wave design, working with nearly harmonic circuits instead of qubits. This
architecture, or modifications of it, can be used to emulate molecular processes such as vibronic transitions.
Furthermore, we discuss several aspects of these emulations, such as dynamical ranges of the physical
parameters, quenching times necessary for diabaticity, and, finally, the possibility of implementing
anharmonic corrections to the force fields by exploiting certain nonlinear features of superconducting
devices.
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I. INTRODUCTION

Among the different controllable quantum systems in the
field of quantum technologies, superconducting circuits
excel at the possibility of establishing interconnected scalable
architectures and tunable long-range couplings. A paradig-
matic example of this possibility is the D-Wave architecture
[1], in which arrays of superconducting flux qubits are
controlledwith various parameters: qubit frequencies, biases,
and coupling strengths between nearest neighbors and
connectivities to other plaquettes [2,3]. All of these advances
were achieved in a recent implementation of adiabatic
quantum optimizers (also known as quantum annealers)
[4]. Concerning the architecture, the focus is currently placed
on improving the quality of qubits, increasing their coherence
times and pushing towards larger system sizes.
In this work, we explore alternative routes where the

capabilities of D-Wave–like superconducting circuits are
leveraged in the context of less demanding applications in
quantum simulation. The key idea is that the D-Wave
circuit can be moved into a regime in which it behaves as a
collection of thousands of resonators with tunable frequen-
cies, couplings, and nonlinearities. It is a powerful platform
that can be used to study a wide variety of models. We show
how it can be used to emulate the molecular force fields that
govern the vibrational dynamics of complex molecules,
with or without anharmonicities.
The problem we have in mind is sketched in Fig. 1,

which depicts a molecule that undergoes a change in its
force field as a consequence of an electronic transition.
Because of the molecular restructuring, the vibrational
modes are displaced, mixed, and squeezed through a
Duschinsky rotation, which makes computing the energy

distribution for these modes after a sudden transition—the
Franck-Condon profile—a challenging problem [5], even
more so if anharmonicities are considered [6].
Here, we show how to map the vibrational structure

of a molecule to a superconducting circuit emulator. This
map allows us to imitate interatomic interactions, emulate
sudden, adiabatic, or intermediate quenches, and experi-
mentally reproduce the Franck-Condon profile in the har-
monic regime—i.e., within a quadratic approximation to the
force field potential—with the possibility hinted at below of
including anharmonic corrections to the force field.
Our proposal is complementary to other applications and

proposals for using superconducting circuits [7] and other

∼

∼

FIG. 1. When a molecule is electronically excited, it experi-
ences a sudden change in its force field. This change leads to an
effective quench which excites the phonon degrees of freedom.
After this quench, the molecule may relax to the new ground state
by releasing its excess energy.
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quantum architectures [8] to obtain answers to different
questions posed in the realm of molecular physics and
quantum chemistry, such as the study of ground-state
properties of certain molecules [9] or transport phenomena
[10]. It has already been shown that cavity arrays with
qubits and boson sampling techniques [5] can provide
information about molecular vibrational spectra and that
they may be implemented using superconducting circuits
[11]. We now propose using the same building blocks in a
direct implementation of the molecular Hamiltonian,
which provides the possibility of taking into account finite
quenching speeds (beyond the adiabatic and Franck-
Condon approximations), and the effects of other, possibly
time-dependent, fields.
This work is structured in three parts. We begin in Sec. II

by introducing the particular problem that we intend to
emulate: the computation of the Franck-Condon profile [5]
that describes the distribution of energies in the vibrational
degrees of freedom of a molecule after a sudden change of
its force field. In Sec. III, we discuss, from a theoretical
point of view, which operations and protocols are needed
to simulate the force field and to reproduce the Franck-
Condon profile. We produce mathematically rigorous
bounds for a possible physical implementation of the
emulator, including preparation, quenching times, and
measurement protocols. Finally, Sec. IV provides one
possible physical implementation of the emulator using a
multiply connected architecture of tunable microwave
resonators, together with some qubits for measurement
purposes. This section leverages on our understanding of
such architectures from the realm of circuit-QED and
quantum annealers, and it shows the feasibility of imple-
menting hundreds of vibrational modes together with
detailed controls and measurement schemes. We conclude
this work with a discussion of possible avenues where
these simulators may provide alternative physical insights,
such as the study of nonlinear terms in the molecular force
field (see, e.g., Ref. [6]), or applications to other computa-
tional problems, such as spin models with long-range
interactions [11,12].

II. A MOLECULAR PROBLEM:
FRANCK-CONDON PROFILE

When a photoinduced electronic transition takes place in
a molecule, it experiences vibrational transitions along with
the electronic transition (see, e.g., Refs. [13–15]). The
molecular process is usually described in terms of the Born-
Oppenheimer potential energy surface Vðx1;…; xN ;ΘÞ of
the electronic configuration jΘi, which is a function of the
atomic positions fxig. Here, the state of the molecule is
described by a vibronic wave function jΨi ⊗ jΘi, with
separable vibrational (jΨi) and electronic (jΘi) compo-
nents. For a given electronic configuration jΘi, the dynam-
ics of the nuclei in the molecule can be approximated as a
set of coupled harmonic oscillators,

HΘ ¼
X
j

1

2mj
p2j þ

1

2

X
jk

ðxj − vjÞTÂðΘÞ
jk ðxk − vkÞ: ð1Þ

Here, vj represents the equilibrium positions of the jth atom

and ÂðΘÞ is the quadratic force constant matrix (Hessian).
mj and pj are, respectively, the mass and the momentum
corresponding to the jth atom. A Hamiltonian of this form
describing the mechanical vibrations of the atoms in a
molecule also has an implicit physical symmetry, which are
the translational and rotational invariances associated with
the rigid motion of the molecule.
With the additional assumption (the Condon approxi-

mation) of considering the electronic transition moment
dð0;fÞ ¼ hΘfj

P
jerjjΘ0i (where the vectors rj are the

electronic positions) to be independent of the nuclear
positions xj, what we are describing here is a sudden
electronic transition from an initial vibronic state
jΨ0i ⊗ jΘ0i to a final state jΨfi ⊗ jΘfi. As a consequence
of the dipole moment dð0;fÞ being constant, the transition
amplitudes for the nuclear wave function hΨfjΨ0i charac-
terize the transition profile.
After the electronic transition, the nuclei experience a

quantum quench, abruptly experiencing a different force
field with a different Hamiltonian [still of the form of
Eq. (1)]. The molecule undergoes a structural deformation
as the initial wave function jΨ0i evolves on a new potential
energy surface. As the final nuclear Hamiltonian HΘf

can also be approximated by a quadratic interaction
Hamiltonian of the form of Eq. (1), it will also have
occupation-number eigenstates jni and eigenenergies
En ¼ P

jωjnj. Consequently, the state of the system will
evolve as

jΨðtÞi ¼ e−iðHΘfþEelÞtjΨ0i
¼

X
n

hnjΨ0ie−iðEnþEelÞtjni; ð2Þ

where Eel is the adiabatic electronic transition energy; this
offset energy can be safely set to zero in our description
of the transition probability distribution. The probability
distribution PðEÞ associated with finding the above non-
equilibrium states in a given energy manifold is called the
Franck-Condon profile [16]:

PðEÞ ¼
X
n

δðE − EnÞjhnjΨ0ij2: ð3Þ

The problem with classically reproducing the Franck-
Condon profile, the main physical observable pertaining
these transitions that can be obtained experimentally, is
linked to two different layers of difficulty. The first one
consists of the fact that reconstructing PðEÞ involves
sampling subsets of instances with specific population
numbers and is thereby related to the problem of boson
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sampling, which is conjectured to be challenging [5,17,18].
More precisely, the original boson sampling problem [19]
can appear in the current molecular picture by making
all normal-mode frequencies approximately the same,
preparing the initial Fock states and studying the evolution
under an arbitrarily complex change of the force field. The
second difficulty lies in the relationship between PðEÞ and
the integer partition problem. Simply put, a given energy
E ¼ P

jωjnj may be approximated by many different sets
of phonon occupation numbers, and reconstructing the full
probability distribution involves counting every such pos-
sible configuration and calculating all of the possible
overlaps in Eq. (3) [5]. Arguably, the two problems
combined make the classical estimation of PðEÞ difficult
under general circumstances.

III. QUANTUM EMULATION PROTOCOL

In this section, we analyze the steps necessary for
implementing a complete emulation of the molecular
dynamics during a quantum quench of its vibrational
structure, followed by a characterization of the resulting
states and a computation of the Franck-Condon profile.
This is a formal section that introduces the required
protocols for the emulation: mathematical operations;
preparation, control, and measurement of a particular
experimental setup; and, finally, interpretation of the
results. This discussion sets up the requirements that have
to be matched by the physical implementation presented
in Sec. IV.
It is convenient, for practical reasons, to work with

Hamiltonians of the form of Eq. (1) with full-rank coupling
matrices ÂðΘÞ. In order to reduce to zero the dimensionality
of the kernel of the coupling matrices, which exists because
of the implicit translational and rotational invariance of
AðΘÞ, we only need to make the substitution

ÂðΘÞ → ÂðΘÞ þ
X
j

λ2jνjν
T
j ; ð4Þ

where the quantities λ2j are parameters whose associated
frequencies are distinguishable from the physical frequen-
cies of the vibrational model, and the vectors fνjg form a
basis of its null space. Since the Duschinsky rotations that
map different coupling matrices to one another do not affect
their kernels, these contributions to the Hamiltonian do not
affect the outcome of the experiment, but they effectively
remove all zero-mode frequencies from the model and
stabilize the following protocols and experiments.
Our protocol is defined as a series of prerequisites,

some preprocessing phases, some experimental phases,
and, finally, a data-gathering phase.
Protocol 1 (force-field approach).—Let us assume a

molecular transition problem defined in terms of the
following steps.

Step 1: A set of oscillator masses that do not change
throughout the experiment and which form the matrix
Mjk ¼ mjδjk,
Step 2: The initial and final configurations of the

vibrational modes defined in terms of the coupling matrices
and displacements, fÂð0Þ; vð0Þg and fÂðfÞ; vðfÞg,
Step 3: The eigenfrequencies associated with these

models, fωð0Þ
n g and fωðfÞ

n g, upper bounded by ωmax, and
an initial state of the molecule, which may be a thermal or a
ground state, ρð0Þ. Let us assume that we have a quantum
device, the emulator, described by a set of coupled
harmonic oscillators,

HE ¼ 1

2
qTĈ−1qþ 1

2
ϕTB̂ϕ − ϕTV; ð5Þ

with canonical variables ½ϕj; qk� ¼ iℏδjk, and with fully
adjustable drivings, Vj, frequencies, and couplings, jBijj ∈
½0; Bmax�. By comparing Eqs. (1) and (5), we can map the
quantum simulation parameters as in the following steps.
Step 1: Compute the following auxiliary rescaled matri-

ces and vectors:

B̂ð0;fÞ ¼ κ2Ĉ1=2M̂−ð1=2ÞÂð0;fÞM̂−ð1=2ÞĈ1=2; ð6Þ

Vð0;fÞ ¼ κ3=2Ĉ1=2M̂−ð1=2ÞÂð0;fÞv; ð7Þ

with the possible choice κ ¼ Bmax=ωmax.
Step 2: Prepare the emulator with the couplings B and

drivings V given by the previous calculation,

B̂start ¼ B̂ð0Þ; Vstart ¼ Vð0Þ − VðfÞ: ð8Þ

Step 3: Prepare the initial state in this emulator, which
may be either a ground state (j0;…; 0i) or a (Gaussian)
thermal state.
Step 4: Abruptly switch, during an appropriate time Tsw,

to the final configuration,

B̂end ¼ B̂ðfÞ; Vend ¼ 0: ð9Þ

Step 5: Measure the total energy stored in the entire
resonator array, E.
Step 6: Based on the previous measurement, gather

statistics and reconstruct PðEÞ, including the uncertainties
in the estimation of the probability.
As mentioned before, we will discuss the practical

aspects of this protocol in a later section, where we explain
how to implement the different steps—for instance, model
(5) or step 5—using a particular architecture. Before that,
however, we need to explain the theoretical considerations
behind the protocol, its steps, and the reasoning behind its
design.
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A. Model scaling

Our first remark is that a molecule and a superconducting
emulator do not share the same energy scale: In general, the
energies of a superconducting implementation (roughly in
the megahertz-to-gigahertz range) are much smaller than
the vibrational energies of a molecule (approximately in the
terahertz or mid-IR range). This difference implies that, for
a proper emulation, all of the parameters in the Hamiltonian
have to be rescaled accordingly in a way that takes into
account the allowed frequency ranges of the experiment,
both from the point of view of the measurement bandwidth
of the emulator and from the constraints on the temper-
atures that can be reached in the emulator.
Step 1 of the protocol accomplishes the task of properly

designing the emulator parameters in whatever chosen
platform. As discussed in Appendix A, the transformation
in Eq. (6) is an identity that simply changes the length
of the canonical variables. This transformation produces a
Hamiltonian whose physics is similar, but in which the
frequencies have been rescaled from ωn to Ωn ¼ κωn. All
of the other observables may be similarly reconstructed:

molecule ↔ emulator

p ¼ 1ffiffiffi
κ

p M̂1=2Ĉ−ð1=2Þq;

x ¼ ffiffiffi
κ

p
M̂−ð1=2ÞĈ1=2ϕ: ð10Þ

Finally, it is important to clarify that the choice of scaling
in step 1 is not unique. There may be others that are
motivated not by the size of couplings but by the maximum
achievable frequencies, the setup constraints, etc.

B. Independent resonators and measurement

Our second remark is that we have engineered steps 3
and 4 in Protocol 1 to move from generic initial (B̂start) to
final (B̂end) coupling matrices and, finally, to measure the
total energy contained in the resonator array. This pro-
cedure is indeed possible, as we argue in Sec. IV, yet, in
many circumstances, it would be more advantageous to end
up at a configuration such that every normal mode is
associated with an independent resonator through its
variables fqj;ϕjg. This is a particularly easy thing to
accomplish when the “mass”matrix Ĉ in the emulator (5) is
diagonal. This independence between resonators is
achieved, we can provide means to inquire the populations
of these independent resonators individually—for instance,
by coupling qubits or other detectors to each resonator, as
illustrated in Fig. 2—thereby obtaining information not just
on spectroscopic properties but also on entanglement
properties and correlations between modes, or full
Wigner function representations.
These techniques are discussed in Sec. IV D, requiring

only a slight modification of the protocol.

Protocol 2 (normal-mode approach).—This protocol
reproduces the assumptions and steps in Protocol 1 but
uses the following steps instead.
Step 10: Compute the following auxiliary rescaled

matrices and vectors:

Bð0;fÞ ¼ κ2Ĉ1=2M̂−ð1=2ÞÂð0;fÞM̂−ð1=2ÞĈ1=2; ð11Þ

Vð0;fÞ ¼ κ3=2Ĉ1=2M̂−ð1=2ÞÂð0;fÞv; ð12Þ

with a possible choice of κ ¼ Ωmax=ωmax.
Diagonalize the target configuration B̂ðfÞ ¼ ÔΩðfÞÔT

in order to find the final rescaled eigenfrequencies,

ΩðfÞ
j ¼ κωðfÞ

j , and the orthogonal transformation Ô.
Step 20: Prepare the emulator with the parameters

B̂start ¼ ÔTB̂ð0ÞÔ; Vstart ¼ ÔTðVð0Þ − VðfÞÞ: ð13Þ

Step 40: Abruptly switch, at an appropriate time Tsw, to
the final configuration of the uncoupled resonators,

B̂end ¼ Ω̂ðfÞ; Vend ¼ 0: ð14Þ

Step 50: Measure the number of phonons in each of the
decoupled resonators, nj, by reconstructing the energy,

E ¼
X
j

ℏωðfÞ
j nj: ð15Þ

C. Quench times and errors

Our final remark is that step 4 need not be instantaneous
to succeed—indeed, there exists nothing instantaneous in
real experimental setups, and real quenches always involve

FIG. 2. Schematic representation of a scalable architecture of
superconducting resonators (the black tubes) connected by
tunable interactions at their intersections (the red boxes), and
with tunable inductors to change their frequency (the top boxes).
Each resonator may or may not be coupled to an additional qubit
(the circle) for preparation and measurement purposes.
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a finite amount of time Tsw (see Sec. IV B). Fortunately, we
can approximately solve the dynamics of the emulator state
during the quench time. Using time-dependent perturbation
theory, we prove analytically in Appendix B that there
exists an upper bound to Tsw such that any quench faster
than this time will produce a final state that is approx-
imately unperturbed and as close to the ideal case Tsw → 0
as we wish.
To be more precise, we have proven the following.
Proposition 1.—If we adjust the quench time as

Tsw ¼ ϵ ×O

�
min

�
1

Ωmax
;

2

jĈ−ð1=2ÞVstartj

��
; ð16Þ

the final state will approximate the ideal quench ðTsw → 0Þ
up to errors OðϵÞ, in (i) the first and second momenta,
(ii) the total energy, and (iii) the fidelity of the state.
This proposition indicates that, by choosing a quench-

ing time Tsw that is 1=ϵ times faster than the bound given
by Eq. (16), the relative errors on the fidelity and other
observables of the final state of the system after the
quench can be bounded to be, at most, on the order of 1=ϵ.
Notice that the switching is constrained not only by the
fastest time scale in the Hamiltonian but also by the initial
displacement of the vibrational modes. Our intuition is
that, when the minima of the initial and final configu-
rations are far apart, the Wigner function of the quenched
state will start far from the origin and will change very
rapidly in phase space, with a velocity that is approx-
imately the displacement times ω.
In order to avoid relevant changes in the quantum state

during the quench time, we need Tsw to scale as the inverse
of the average number of photons stored in the resonator in
the quenched state, which is the physical interpretation
of jĈ−ð1=2ÞVstartj. This is the reason why the null space is
forcibly removed in Eq. (4): Modes in the null space of
the vibrational Hamiltonian, which correspond to the rigid
degrees of freedom (translational and rotational) of the
molecule, would have a marginally low frequency in a
realistic emulation of a superconducting architecture. As a
consequence, these modes could host a large population
of photons. This scenario is undesirable, as it would
decrease the switching times Tsw necessary for approaching
the ideal quench, as these photons could leak into the
cavities that represent vibrational modes through imper-
fections in the switching off of the tunable couplings.

IV. PHYSICAL IMPLEMENTATION

We have introduced the emulation protocol in a formal
way. We now discuss how every stage of the emulation,
from the initial preparation to the measurement, can be
implemented by using superconducting circuits.

A. Tunable resonator array

The basic ingredient in our emulation protocol is
the possibility of implementing the model (5) with the
tunable parameters B̂ and V. Our suggestion consists in
using superconducting microwave resonators for this task.
A possible architecture for such an ensemble of resonators
is shown in Fig. 2, where we graphically intertwine nine
tunable resonators that cross over each other. Note that
these resonators interact with each other at their crossing
points either directly or through circuits implementing an
adjustable mutual inductance.
There exist multiple proposals for implementing both

tunable resonators and tunable couplings between them,
which rely on different variations of superconducting
quantum-interference devices (SQUIDs) for both the tuning
[20,21] and the coupling [22]. We believe, however, that a
promising approach is to revisit the D-Wave architecture
of flux qubits to implement these types of setups.
Specifically, D-Wave qubits, when brought back close to
zero flux bias, are nothing but tunable SQUIDs in which the
plasma frequency can be adjusted with external magnetic
fields. Moreover, there exist robust variations of the SQUID
setup that have been proposed and tested with such qubits
[2,3], for the purposes of tuning both frequencies and
couplings. In contrast to the qubit regime, our demands for
fidelity and dephasing are much more relaxed. The need
for less-coupled elements, as well as ongoing progress in
the design of controls for superconducting circuits, may
significantly improve the switching times for frequencies
and couplings, which in the D-Wave architecture are
very long.
Irrespective of the architecture that is finally used, the

effective lumped element circuit of the resonator array can
always be written in the linear form as

H ¼ 1

2
qTĈ−1qþ 1

2
ϕTL̂−1ϕþ ϕTL̂−1

extϕext; ð17Þ

where Ĉ and L̂ are, respectively, the capacitance and
inductance matrices, and the last term is the inductive
energy associated with the coupling with external currents.
The terms in the matrix Ĉ come from the local capacitances
of each resonator, Cjj, as well as the mutual capacitances
between neighbors, Cj≠k ≪ Cjj. The inductance matrix
contains both the diagonal terms that we use to control the
frequency of each resonator, ðL̂−1Þjj, and the mutual

inductances between different resonators, ðL̂−1Þj≠k.
In this setup, the matrices Ĉ and L̂ and the vector

I ¼ L̂−1
extϕext map directly to the equivalent objects Ĉ, B̂,

and V in Eq. (5). All of the inductive elements, L̂, and
currents, I, are susceptible to external control when we
place tunable elements, such as SQUIDs, either at the ends
of the resonators or in the intersections (see Fig. 2).
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By using these elements, we can prepare the desired
matrices B̂ ∼ L̂−1 and drivings V.
Note that our formalism for the quantum quenches

considers the possibility of having a capacitance matrix
with nonlocal interactions, ðĈ−1Þjk ≠ 0. As discussed
before, the only moment at which this possibility matters
is at the final stages of Protocol 2, when we attempt to make
the matrix B̂final almost diagonal (see step 40). If Ĉ−1 is
almost diagonal, too, it turns out that we have N truly
decoupled resonators that can be measured independently
using the variant of step 50. However, if there is a residual
mutual capacitance Cj≠k, the final resonators will be
weakly coupled, and there is the possibility of cross talk
when, for instance, we place qubits close to resonance to
measure the number of photons (see Fig. 2). Such an effect
can be remedied by choosing a different B̂final that truly
makes the oscillators decouple while the desired final
spectrum of the frequencies is preserved.

B. Parameters, frequencies, and drivings

As mentioned in the prerequisites of the protocol, we
have to take into account the fact that we may not
implement arbitrarily large or small resonator frequencies.
In practice, the emulator will work with a spectrum of
harmonic eigenfrequencies that are rescaled with respect to
the molecular eigenenergies,

Ωð0;fÞ
n ¼ κ × ωð0;fÞ

n : ð18Þ

We have to choose the emulator scaling κ such that the
values Ωn fit within experimental constraints. For instance,
the lower frequency limit is typically imposed by the
temperature of the superconducting chip, which will be
of the order of tens of mK. This means that, ideally, Ωn ≥
Ωmin ∼ 200 MHz if we want to start from the ground state
of the system, or at least a low-populated state in the least-
energetic modes. The upper bound, on the other hand, is
given by the Josephson plasma frequencies of the
various junctions in the circuitry providing the adjustable
frequencies and couplings, reasonably assuming Ωn ≤
Ωmax ∼ 20 GHz for state-of-the-art experiments. In this
case, to ensure diabaticity, we have to expect the switching
of couplings and frequencies to take place at a rate
1=Tsw ≫ 20 GHz, which seems to be a feasible figure,
as shown by circuit QED experiments [20].
It is interesting to note that, after the quenching window

(bounded by Tsw), the simulation itself is essentially
finished and all that remains to be done is to measure
the number of photons the cavities contain. Even short
coherence times of tens of nanoseconds, such as those
attained in certain quantum annealing architectures com-
prising a large number of qubits [1], would be sufficient to
guarantee the correct reproduction of a diabatic quench,
which is the only part of the simulation in which state

coherence plays a role. This relaxation on the demands for
state coherence may be useful for experimentalists trying to
achieve the parameters required to realize a simulation.
Once the range of allowed frequencies is known, we

have to adjust the experimental parameters to fit within this
region. Considering the specific pair of coupling matrices
Âð0Þ and ÂðfÞ which is going to be implemented during a

simulation, we extract their associated spectra, fωð0;fÞ
n g. We

may now simply take ωmax ¼ maxðfωð0;fÞ
n gÞ and apply a

frequency rescaling,

κ ¼ Ωmax=ωmax: ð19Þ

Using this scaling, we have a dynamical range

ωmax

ωmin
<

Ωmax

Ωmin
∼ 100; ð20Þ

which safely lays within the working conditions of most
experiments with superconducting circuits. This dynamical
range is sufficient for simulating most real molecules,
whose typical vibrational bandwidths are typically
limited to wave numbers in the range 300–3000 cm−1

(1013–1014 Hz) [23–26]. This limitation physically stems
from the notion that atoms are coordinated with only
so many neighbors and have very weak interactions with
distant components of a molecule, and it is reflected in the
fact that the Duschinsky rotations are almost diagonal for
most molecules (see Fig. 2 in Ref. [27]).
Finally, the λj parameters introduced in Eq. (4) to prevent

an overpopulation of photons in modes with marginally
low frequencies (as discussed at the end of Sec. III C) have
to be chosen in such a way that, after the rescaling, their
frequencies lie in this dynamical range and are distinguish-
able from the frequencies associated with physical vibra-
tional modes.

C. State preparation

If the resonator frequencies are engineered according to
the requirements laid out in the previous subsection and the
dynamical range of the simulated molecule permits, it is
possible to prepare the initial state of the resonators in an
almost-zero-temperature state. This initial state can be
achieved by simply waiting for a sufficiently long time
until the temperature given by the cryostat sinks into the
circuit. At temperatures Tcryo < ℏΩmin=KB, the number of
photonic excitations is negligible. Microwave-induced
cooling techniques [28,29] may also be considered in flux
qubit architectures for zero-temperature simulations requir-
ing the inclusion of modes with frequencies lying below the
cryostatic range (below 2 GHz for a 20-mK refrigerator) or
for faster state preparation [30].
However, strictly zero-temperature simulations are not

required. Should we wish to prepare a thermal state, it can
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also be achieved in two possible ways. One is to lower the
frequencies of the array so that the effective temperature of
the cryostat populates the resonator. In other words, we
choose κ differently, so that

κ ¼ Tmolecule

Tcryo
⇔

ℏΩ0

KBTcryo
¼ ℏω0

KBTmolecule
: ð21Þ

The range of temperatures available for our simulator are
still within a range of computational hardness. Assuming
a molecule with a typical bandwidth of 1012–1014 Hz
and a circuit operating up to 20 GHz at 20 mK, the circuit
would be simulating a molecule with Tmolecule ∼ 100 K,
which is a moderate temperature with a small occupa-
tion per mode. This would still be a classically hard
simulation: Low occupation numbers in many—but the
least energetic—modes would still require the use of
integral-based methods, precluding the use of other
approximate techniques [31].
Another possibility would be to couple the resonator

array to a source of incoherent microwave radiation with a
thermal distribution at the desired effective temperature.
Such drivings, which can be obtained from simple resis-
tances, have already been demonstrated in the literature and
are routinely used for calibrating tomographic setups for
quantum microwaves [32,33].

D. Measurement

The final point of the protocol, after having performed
the emulation of the quantum quench, is to extract from
the superconducting cavities that emulate the vibrational
modes the information necessary to reconstruct the
Franck-Condon profile. A variety of strategies may be
used for the measurement stages, depending on the
physical observables that we intend to characterize. As
far as the simulation scheme is concerned, there is not a
fundamental reason to select one possibility over the
others.
One possible such approach consists of performing a

quantum nondemolition (QND) measurement of the num-
ber of photons in each of the resonators by using the
ancillary qubits depicted in Fig. 2. In the dispersive
regime, where qubits are far off resonant from the reso-
nators, qubits undergo a photon number-dependent energy
splitting [34,35],

Δn;j ¼ Δ0;j þ ð2nj þ 1Þ g
2
j

δj
; ð22Þ

where Δ0;j is the bare energy gap of the jth qubit, gj is the
coupling to the jth resonator and δj ¼ Δ0;j −Ωj is the
detuning. The qubits associated with the translational and
rotational degrees of freedom may be discarded by keeping
them uncoupled from their respective cavities.

Driving each qubit at a different frequency Δn;j, we
detect a Stark shift ξ0;j ¼ g2j=δj on the frequency ωr of a
readout cavity [36,37]

~ωr
j ¼ ωr þ ξ0;jhσzji; ð23Þ

which depends on the qubit response to the driving field. If
the driving matches the qubit frequencyΔn;j, then hσzji ¼ 0;
otherwise, hσzji ¼ −1. By monitoring transmission through
the readout cavity, it is possible to infer the number of
photons nj in the jth tunable resonator. When the qubit is
driven at the frequency Δn;j, we measure a cavity frequency
~ωr
j ¼ ωr, and ~ωr

j ¼ ωr − ξ0;j otherwise.
The maximum number of photons that can be resolved

using this technique is given by 2ξ0;j=γj, where γj is the
decay rate of the jth tunable resonator. Using realistic
values of circuit QED experiments, we get that nmax ≃ 6
[35]. This figure is well above the expected number of
phonons that populate the vibrational modes of a molecule
in spectroscopic experiments (nvib ≃ 3) [5].

V. ANHARMONICITY

One of the most interesting features of the superconduct-
ing architecture is the possibility of emulating molecular
systems with full control of nonlinear terms. As sketched
in Fig. 1, general force field potentials are not exactly
quadratic near their global minima. A better approximation
would be a quartic Taylor expansion around the minimum

Vðx0 þ δxÞ≃ c2δx2 þ c3δx3 þ c4δx4 þOðδx5Þ; ð24Þ

where cn ¼ ∂n
xVðx0Þ=n!. Introducing cubic or quartic terms

in classical simulations of molecular quenches is extremely
difficult, with molecules having a small number of com-
ponents already exhausting computational capabilities.
This exhaustion takes place because the states involved
are no longer Gaussian and cannot be efficiently approxi-
mated by first- and second-order moments (see, e.g.,
Ref. [6]). However, adding such nonlinearities to the
superconducting setup from Fig. 2 is rather straightforward
and should be the subject of future work.
As an example, in this section, we discuss how replacing

a simple LC resonator with the SQUID setup in Fig. 3
allows us to achieve an effective nonlinearity with reason-
able parameters. We shall work with the inductive energy
around the minimum of

VðϕÞ ¼ EJðΦsÞ cos ½ðϕ −ΦÞ=φ0� þ
1

2L
ϕ2; ð25Þ

which contains the static contribution of the linear inductor,
L, the effective Josephson energy of the SQUID, EJ, and
the external fluxes trapped in the loops, Φs and Φ. In order
to prove universality up to fourth order, we only have to
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find the energy minima of VðϕÞ and verify that it can be
expanded like Eq. (24) with any possible ratio of c3=c2
and c4=c2.
To achieve these ratios, let us focus on the limit in which

the parabolic term ϕ2=2L becomes the dominant contri-
bution, as this can always be achieved by replacing the
inductor with a larger junction. The minimum energy
configuration may be obtained by expanding around
ϕ ¼ 0, which yields the solution ϕmin ≃Φ=ð1þ LJ=LÞ,
where LJðΦsÞ ¼ φ2

0=EJðΦsÞ is the effective Josephson
inductance. Notice that the Taylor expansion around the
energy minimum starts at the second order, with
∂2
ϕV ∼ 1=L. The cubic and quartic corrections are found

to be

c3
c2

≃ 1

1þ LJ=L
Φ
φ2
0

; ð26Þ

c4
c2

≃ −
L
LJ

1

φ2
0

: ð27Þ

Since LJ ∝ cosðΦsÞ can be changed in sign and magni-
tude independently fromΦ, we have it that c3=c2 and c4=c2
may be tuned separately in order to approximate anhar-
monic potentials up to order O½ðϕ − ϕminÞ5�.
The flexibility of this circuit is exemplified in Fig. 3

for different values of the SQUID inductance and inner
flux. For Φ ¼ 0 and L=LJ ¼ 0, the model is essentially
quadratic, and the circuit may be used just like a tunable
resonator. However, as we increase the strength of the
SQUID, the cubic and quartic terms become dominant and
the potential becomes asymmetric, closely resembling the
usual Morse potentials.
This idea of anharmonic oscillators can be extended to a

multimode circuit and also to the coupling terms between
different resonators in Eq. (5). While scaling up this design
to many modes becomes complicated and requires a careful
crafting of the different fluxes, the fact is that, as mentioned

before, a single-purpose emulator capable of reproducing
molecules with a few anharmonic modes would already
surpass the computational capabilities of existing classical
algorithms.
As for the other considerations in this work, the addition

of weak anharmonicities does not significantly modify the
discussion on the quench times or the measurements. In the
first case, we might have to verify that the quench time
is shorter than the inverse of the anharmonic terms,
Tsw < 1=cnjĈ−ð1=2ÞVjn=2, extending the previous bounds.
However, as, in general, c3;4 ≫ c2, we expect that the
introduction of nonlinearities will not impose further
constraints in the quantum quench’s dynamics. In the
case of the measurements, we may resort to spectroscopic
means to interrogate the resonator energies, as described in
Appendix C.

VI. DISCUSSION

A. Classical complexity and efficiency

Before discussing the variety of problems that can be
embedded in our quantum simulation scheme and the
resulting efficiency, it is illustrative to discuss the current
state of the art in Franck-Condon–profile calculations. The
main notion concerning the classical approaches to the
problem of simulating vibronic transitions is that resources
scaling exponentially with problem size and bandwidth
are required. This scaling stems from the fact that, in order
to reproduce the Franck-Condon profile, it is necessary to
compute as many integrals as there are ways of distributing
M excitations over N normal modes [27]:

No:of integrals ¼
�
N þM − 1

M

�
: ð28Þ

The largest problems analyzed in the relevant literature
typically deal with extended molecules of simplified
geometries with up to 200 atoms [38]. Even in these
situations, approximations that drop contributions to the
Franck-Condon profile become a necessity. Still, however,
the scalings of memory requirements and computation
times in these approaches remain unfavorable with problem
size and allowed energies per mode [16,39]. The situation
worsens very rapidly when including anharmonic correc-
tions to the force field [15].
This is a very similar situation to the one that arises in the

context of the classical simulation of the boson sampling
problem with initial Fock states [5,40].

B. Quantum simulability: Size

Two different issues have to be discussed separately
when studying the feasibility of reproducing Franck-
Condon profiles in our quantum architecture: (i) the variety
of realistic problems that can be simulated, and (ii) the

(a)
(b)

FIG. 3. (a) Superconducting circuit formed by a couple of
Josephson junctions in a SQUID configuration and an associated
linear inductance. (b) Energy curves of the circuit potential in
Eq. (25), for ðL=LJ;Φ=φ0Þ ¼ ð0; 0Þ; ð0.5; 0Þ; ð0.7;−π=2Þ, and
ð0.9;−π=4Þ, from bottom to top. Curves have been shifted
arbitrarily upwards for better visibility.
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resources consumed by the problems that can be imple-
mented in the architecture.
The first point is subtle: Because of the way that

resonators are set to interact with each other, the maximum
achievable coupling strength of a cavity connected to Z
other cavity modes scales, at most, as Z−1. This limitation
implies that an architecture with a connectivity of
order Z will have a corresponding maximum bandwidth
ωmax=ωmin1=Z, which would seem to restrict the size
of the molecules that can be studied using our proposal.
However, as discussed in Sec. IV B, real molecules also
exhibit a limited bandwidth, which is due to the fact that
atoms in molecules are coordinated with few neighboring
atoms and interact very weakly with distant regions of
the system, with both factors contributing favorably to
our design.
Note also that existing coupling mechanisms, such as

Josephson junctions and SQUIDs, add very large pre-
factors to the coupling terms [22,41], so that significant
coordination numbers Z are available before the 1=Z
scaling kicks in.
Thus, a realistic superconducting architecture for repro-

ducing Franck-Condon profiles of large molecules would
make use of a large number of resonators (N ≫ Z), with a
coordination number Z large enough for embedding a large
variety of molecules. For example, carbon atoms in organic
molecules may have, at most, four nearest neighbors, which
limits the number of higher-order neighbors that may be
significantly coupled to them. Typically, from a cursory
inspection of the available literature, a value of Z ∼ 10
seems to be more than sufficient [27].

C. Quantum efficiency: Time

The efficiency of our quantum simulation approach is
limited mainly by three factors that are, in principle,
independent of problem size: (i) the time necessary for
the preparation of the initial state, (ii) the time necessary for
the measurement of the state after the quenching, and (iii) the
number of repetitions required to gather the necessary
statistics for reconstructing the Franck-Condon profile.
As discussed in Sec. IV C, there are two main alter-

natives for preparing the initial state of the superconducting
array: spontaneous relaxation of the photons in the cavity
states and microwave-induced active cooling techniques.
The former are simple to implement physically, while
the latter allow the depletion of modes with frequencies
below the cryostatic range [28,29] and are faster, with
recent experiments having achieved preparation times on
the order of tens of nanoseconds [30].
Since energy decay lifetimes scale inversely with mode

frequency, the lowest possible frequency of approximately
200 MHz (see Sec. IV B) has to be considered in order to
obtain a conservative estimation of a state preparation time
by spontaneous relaxation. For the figure of 200 MHz and
quality factors of Q ∼ 104, the energy decay rate is on the

order of 10 μs. This figure is insufficient for a realistic,
conservative estimation of the preparation time, as it refers
to a time at which (at zero temperature) the cavity will have
lost a fraction (1 − e−1 ∼ 0.63) of its initial stored energy.
It is prudent to wait for a longer time, about 100 μs, for
the cavities to thermalize.
For the measurement strategy presented in Sec. IV D,

the smallest among the Stark shifts determines the time
scale τm ¼ ðminjjξ0;jjÞ−1 at which this measurement
can be performed. As we are in the dispersive regime
gj ¼ χδj, for χ ≪ 1 and with δj being the detuning, then
τm ¼ 2πðχ2minjfδjgÞ−1. Choosing qubit frequencies well
below the dynamical range of the resonator frequencies Ωj,
the minimum possible detuning is given by the lower
limit of approximately 200 MHz to the dynamical range.
Picking χ ∼ 10−2 as a reasonably small dispersive coupling
parameter, we obtain an estimation for the measurement
time of τm ∼ 50 μs.
Typical quenching times are on a much faster time

scale than the state preparation and measurement times, as
the maximum working frequency of the superconducting
cavities, which ranges between 200 MHz and 20 GHz (as
discussed in Sec. IV B), gives an upper bound to the
quenching times [see Eq. (16)]. The quenching, then, will
take on the order of 0.1 ns at most, thus having a negligible
bearing on the simulation efficiency as the other two time
scales supersede it for reasonable Q factors. This fact
permits the use of cavities with lower quality factors that
are leakier and allow for quicker state preparation.
Finally, the number of sampling repetitions NR required

to reconstruct the Franck-Condon profile with a given
precision ηFC can be found to be, in a worst-case scenario,
NR ≃ 1=η2FC [5].
Taking into account all of the previous considerations,

a useful comparison can be drawn between the typical
running times of classical algorithms and the time it
would take for a superconducting simulation architecture
to gather the necessary statistics. Choosing a target pre-
cision ηFC ∼ 10−4, of the same order as achievable
precisions of current classical algorithms, a number of
sampling repetitions of NR ∼ 108 is obtained. Picking a
very conservative upper bound ðpreparationþ quenchþ
measurementÞ ∼ 1 ms for the time it takes to run a single
simulation, we determine that the total time necessary to
reconstruct a worst-case scenario Franck-Condon profile
would be about 104 s. This estimation for the necessary
simulation time is on the same order of magnitude as
the typical running times of classical approaches with
approximations [16,27,39,42].

D. An example: Formic acid

As a practical example of the application of this emulation
framework, we present the case of the S0 → S1 vibronic
transition between two different vibrational configurations
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of the formic acid molecule (HCOOH), and we show how
the parameters for emulating a vibronic transition in a
superconducting architecture may be picked.
The particular case of this vibronic transition in the

formic acid molecule is a paradigmatic example of an
extreme case involving different high-energy vibrational
modes that have significant overlaps between them
during the transition. A consequence of these overlaps is
that, due to the resulting excess of energy in the vibrational
modes, the molecule can break down into either CO2 þ H2

or COþ H2O after the vibronic transition. Having consid-
ered these relevant details of this particular transition, the
largest normalized value of the ratio Ajk=ωj is 0.12. There
exist proposals to achieve comparable tunable couplings in
transmission-line resonators and flux qubits; in more
general, less extreme scenarios than that of the formic
acid, lower coupling rates should be sufficient.

The data for the force constants Að0;fÞ
jk and atomic

positions jδvjj in both configurations have been extracted
from Ref. [16]. Every physical parameter that characte-
rizes the two vibrational models (1) for the two different
vibrational configurations of the molecule finds its
respective counterpart in the superconducting emulator
scheme (5).

Molecular parameters Superconducting emulator

Mjj 1–16 amu 0.5–8 pF Cjj

Að0;fÞ
jk

6.1 × 10−3–101 eV=Å2 2.37 × 10−4–3.83 nH−1
Bð0;fÞ
jk

ℏωj 62–467 meV 1.33–10 GHz Ωj=2π
jδvjj 0.32–7.8 pm 1.27–116 nA jδVjj

These parameters have been obtained by choosing a
maximum working frequency for the resonators in the
emulator of 10 GHz, which determines the frequency
rescaling factor κ ¼ Ωmax=ωmax, and a choice of cavity
capacitances consistent with the atomic masses in the
molecule. The mutual inductances Bjk and drivings Vj

can be obtained from these previous parameters and the
formic acid parameters using Eqs. (6) and (7).
In order to reproduce the Franck-Condon profile,

the quenching time Tsw between the two different
configurations has to be short enough so that the
Franck-Condon approximation (see Sec. II) still applies.
As discussed in Sec. III C, the state of the system
remains unaffected at the end of the quench if Tsw is
shorter than the bound (16), which depends only on the
emulation parameters.
We back up the aforementioned discussion with

numerical simulations for different switching times of
a realistic quenching process between these two vibra-
tional configurations of the formic acid molecule. In the
simulations, we reproduce a quench between the two
different quadratic models considered (which we call
here H1 and H2), using a linear switching profile

HðtÞ ¼ ð1 − t=TswÞH1 þ t=TswH2. Picking a complete
and orthogonal set of initial conditions for the atomic
positions and momenta, we run simulations of the time
evolution of the system governed by Hamilton’s equa-
tions. The observed changes in the vector norms shown
in Fig. 4 are sufficiently small and scale linearly with
TswΩmax (see Appendix B), so the deviation from the
original state of the system may be bounded as stated in
Proposition 1.

E. Summary

In this work, we provide a complete framework for
the quantum emulation of a molecular force field using an
array of tunable microwave resonators which leverage the
D-Wave design (see Fig. 2). We derive precise protocols
for gathering information about molecular transitions,
particularly the Franck-Condon spectra, using such a
platform—including a detailed discussion of all steps,
from the tuning of the emulator to the measurement
protocol. Finally, we provide evidence that this architec-
ture may be even more useful when working beyond the
quadratic regime.
Our work is an example of another family of useful

problems that can be implemented in a superconducting
circuit setup. It would be experimentally relevant and
interesting to pursue the design of single-purpose circuits
for highly anharmonic molecules with few atoms. Existing
blueprints for the D-Wave architecture, as well as ongoing
efforts for higher-fidelity quantum annealers with flux
qubits, could be leveraged for this task, with the added
benefit of offering the possibility of using faster active
cooling techniques for state preparation.

FIG. 4. Scaling of vector norm differences during a quantum
quench of duration Tsw in the formic acid molecule, estimated
from the exact time evolution of the system described by
Hamilton’s equations from a complete and orthogonal set of
initial conditions. It is observed that the mean value of these
differences (the solid line) increases linearly with Tsw, which is
consistent with the obtained bounds (see Appendix B). The
variance from the mean of this set of norm differences (the dashed
lines) is shown around the mean value and is found to be small for
short times, TswΩmax ≪ 1.
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APPENDIX A: RESCALING OF HAMILTONIANS

Let us assume that we want to simulate a quadratic
model

H ¼ 1

2
pTM̂−1pþ 1

2
ðx − vÞTÂijðx − vÞ ðA1Þ

with canonical variables ½xi; pj� ¼ iℏδij, using a family of
tunable Hamiltonians

HE ¼ 1

2
qTĈ−1qþ 1

2
ϕTB̂ϕ − ϕTV ðA2Þ

with other canonical variables, ½ϕi; qj� ¼ iℏδij, and differ-
ent energy scales. We now show that both models can be
mapped to each other through a suitable change of scales.
To do so, let us write the transformation

q ¼ ÛTp; ϕ ¼ Û−1x; ðA3Þ

which preserves the commutation relations

½ϕi; qj� ¼
X
m;n

ðÛ−1ÞimUnj½xm; pn� ¼ iℏδij: ðA4Þ

This leads to the model

HE¼
1

2
pTÛĈ−1ÛTpþ1

2
ϕTðÛ−1ÞTB̂Û−1ϕþ−xTðÛ−1ÞTV:

ðA5Þ

In order for H and HE to be equivalent, we simply
need HE ¼ κH þ E0, with some constants κ and E0. This
assumption leads to the condition

κM̂−1¼ ÛĈ−1ÛT; B̂¼ κÛTÂÛ; V¼ κÛTÂv: ðA6Þ

Using the fact that Ĉ and M̂ are symmetric matrices,
we deduce

ÛT ¼ ffiffiffi
κ

p
Ĉ1=2M̂−ð1=2Þ; ðÛ−1ÞT ¼ M̂1=2Ĉ−ð1=2Þffiffiffi

κ
p ; ðA7Þ

Û ¼ ffiffiffi
κ

p
M̂−ð1=2ÞĈ1=2; Û−1 ¼ Ĉ−ð1=2ÞM̂1=2ffiffiffi

κ
p ; ðA8Þ

and obtain the suitable oscillator parameters

B̂ ¼ κ2Ĉ1=2M̂−ð1=2ÞÂM̂−ð1=2ÞĈ1=2; ðA9Þ

V ¼ κ3=2Ĉ1=2M̂−ð1=2ÞÂv: ðA10Þ

At this point, we have absolute freedom to choose κ. We
can select

κ ¼ Bmax

ωmax
; ðA11Þ

where ωmax is the largest eigenfrequency of the normal
modes in H, and Bmax is the largest dynamical range
of the eigenfrequencies and couplings in B̂; that is,
Bmax ¼ maxkljBklj. We assume that there are no restrictions
on the strength of V.
Finally, notice that the mapping of Hamiltonians is

accompanied by a mapping of physical observables which
becomes Eq. (10) once our choice of Û is made.

APPENDIX B: SWITCHING TIMES AND
DIABATIC CONDITION

We can give an upper bound to the time Tsw required to
switch Hamiltonians and still preserve the state of the
system (2) with sufficient fidelity. Without loss of general-
ity, we assume a linear interpolation between the initial and
final couplings, which translates into a linear interpolation
between Hamiltonians,

HEðtÞ ¼
�
1 −

t
Tsw

�
HE;start þ

t
Tsw

HE;final

¼ 1

2
qTC−1qþ t

Tsw
ϕTBfinalϕ

þ
�
1 −

t
Tsw

�
ðϕTBstart;ijϕ − ϕTVstartÞ: ðB1Þ

Our goal consists of making Tsw short enough that the
state remains almost unperturbed. Since we are interested in
the total energy only, it suffices for us to verify that the
Heisenberg equations for ϕjðtÞ and qjðtÞ are as close to
stationary as possible.
In order to give a proper scale for the proximity of

observables and states, we group the canonical operators

RT ¼ ðX1;…; XN; P1;…; PNÞ; ðB2Þ
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defined by

ϕ ¼ Ĉ−ð1=2ÞX; q ¼ Ĉ1=2P; ðB3Þ

with the resulting Hamiltonian

HEðtÞ ¼
1

2
RTD̂ðtÞR − RTWðtÞ;

D̂ðtÞ ¼
�
F̂ðtÞ 0

0 1

�
;

F̂ðtÞ ¼ Ĉ−ð1=2Þ
��

1 −
t

Tsw

�
B̂start þ

t
Tsw

B̂end

�
Ĉ−ð1=2Þ;

WðtÞ ¼
�
1 −

t
Tsw

�
Ĉ−ð1=2ÞVstart: ðB4Þ

The evolution equations for the canonical variables
become

dR
dt

¼ Ĵ½D̂ðtÞRþWðtÞ�; ðB5Þ

where Ĵ is the matrix of commutators Jjk ¼ ½Rj; Rk�,

Ĵ ¼
�

0 i1

−i1 0

�
: ðB6Þ

Our goal is to ensure that RðTÞ − Rð0Þ is as small as
possible. More precisely, we will ensure the following.
Proposition 2.—In our protocol, let us denote by

Ωmax the largest frequency of the initial or final oscillator
configuration. Then, if we switch couplings and frequen-
cies over time,

Tsw ¼ ϵ ×O

�
min

�
1

Ωmax
;

2

jĈ−ð1=2ÞVstartj

��
; ðB7Þ

we can ensure that the canonical observables suffer only
small corrections,

RðTswÞ ∼ Rswð0Þ × ½1þOðϵÞ� þOðϵÞ: ðB8Þ

Proof of Proposition 2.—The formal solution to the
Heisenberg dynamics of our observables is given by

RðTÞ ¼ ÛðT; 0ÞRð0Þ þ
Z

T

0

dtÛðT; tÞWðtÞ; ðB9Þ

with the orthogonal operator given by

d
dt

Ûðt; t0Þ ¼ Ĵ D̂ðtÞÛðt; t0Þ; Ûðt0; t0Þ ¼ 1: ðB10Þ

The second term in Eq. (B9), which we call Rdrive, can be
easily bounded by

jRdrivej ≤
Tsw

2
jĈ−ð1=2ÞVstartj; ðB11Þ

from which it is obtained that

Tsw ¼ O

�
2ϵ

jĈ−ð1=2ÞVstartj

�
⇒ jRdrivej ¼ OðϵÞ: ðB12Þ

We focus now on ÛðtÞ and on how it deviates from
the identity. Our bound for this term relies on the Magnus
expansion of the time evolution orthogonal operator

Ûðt; 0Þ ¼ eΩ̂ðt;0Þ: ðB13Þ

The matrix function Ω̂ðt; 0Þ is constructed as the series
expansion Ω̂ðt; 0Þ ¼ P

jΩ̂jðt; 0Þ, which is called the
Magnus expansion. The contributions to this series are
obtained recursively from the first term Ω̂1ðt; 0Þ ¼R
t
0 dτB̂ðτÞ. The Magnus expansion for Ω̂ðt; 0Þ is absolutely
convergent [43] if

Z
t

0

dτ∥Ĵ D̂ðτÞ∥ <
1

2

Z
2π

0

dx

�
2þ x

2

�
1 − cot

x
2

��
−1
;

ðB14Þ

where the rhs integral of Eq. (B14) is computed numeri-
cally. For the specific switching profile (B4), this bound
can be approximated as

Tsw
∥Ĵ D̂ð0Þ∥þ ∥Ĵ D̂ðTswÞ∥

2
< 1: ðB15Þ

We can now use the fact that ∥Ĵ D̂ ∥ ¼ ∥D̂∥ and that the
spectrum of D̂ðtÞ gives us the instantaneous eigenfrequen-
cies of the resonator array, ΩnðtÞ. We may thus write

Tsw max fΩð0Þ
n ;ΩðfÞ

n g ≕ TswΩmax < 1 ðB16Þ

using the eigenfrequencies of the initial and final problems.
If this bound is satisfied, the Magnus expansion may be
truncated at first order to estimate that the time evolution
during the quenching window differs from the identity as

∥ÛðTswÞ − I∥ ≤ OðTswΩmaxÞ: ðB17Þ

The condition for good fidelity follows from Eq. (B17):

Tsw ¼ ϵ ×O

�
1

Ωmax

�
: ðB18Þ

This criterion is sufficient to guarantee that the evolution
during the switching time does not significantly alter the
final energy of the quenched state. If the initial state is
Gaussian, which is the case for the ground state of the
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oscillator or any thermal state, its evolution under the
quenching Hamiltonian will preserve this property. We also
know that Gaussian states are fully characterized by the
first and second momenta of the canonical operators,

rðtÞ ≔ hRðtÞi; ΓjkðtÞ ≔ hfRjðtÞ; RkðtÞgi: ðB19Þ

Any other expectation value, including the energy and
the fidelity of the state relative to the ideal reference, can
be computed using these quantities. The bounds from
Proposition 2 imply that all moments are well approxi-
mated by our choice of quench times,

rðTswÞ ¼ rideal þOðϵÞ; ðB20Þ

ΓðTswÞ ¼ Γideal þOðϵÞ: ðB21Þ

We therefore conclude that the final energy distribution
and other properties will be well approximated after the
quench, as stated in Proposition 2.

APPENDIX C: ALTERNATIVE
MEASUREMENT SCHEME

An alternative QND measurement scheme using a
setup similar to the one discussed in the main text
would consist of the measurement qubits being pre-
pared in the Greenberger-Horne-Zeilinger (GHZ) state
1ffiffi
2

p ðj00…0i þ j11…1iÞ. For Δj ≪ ωj, switching on the

off-resonant coupling between the qubits and the cavities
during a window of time τ introduces a photon-number-
dependent phase factor

ϕ ¼
XN
j¼1

g2j
Ωj

nj ðC1Þ

into the state of the qubits, which now becomes
1ffiffi
2

p ðe−iϕτj00…0i þ eiϕτj11…1iÞ. If the couplings are tuned
such that they correspond to a small (but known) fraction
χ ≪ 1 of the frequency of the mode to which each qubit is
coupled, gj ¼ χΩj (in order to remain in the dissipative
limit), then this phase becomes the total energy of the
system up to the multiplicative factor χ:

ϕ ¼ χ
XN
j¼1

Ωjnj ¼ χE=ℏ: ðC2Þ

Applying the inverse GHZ gate leads to the state

jψi ¼ cos χEτ=ℏj00…0i − i sin χEτ=ℏj11…1i: ðC3Þ

Making use of a qubit readout scheme such as the one
discussed in the previous subsection, the qubit (we need
to measure only one of them, as they are in an entangled

state) is found at the excited state with probability P1ðτÞ
as a function of the interaction time τ. This probability
corresponds to the probability of the simulation finishing at
a certain energy PðEÞ through the formula

P1ðτÞ ¼
Z

dEPðEÞj sin χEτ=ℏj2; ðC4Þ

from which we obtain, by applying the Fourier cosine
transformation,

PðEÞ ¼ −
4χ

πℏ

Z
τc

0

dτ cos 2χEτ=ℏP1ðτÞ: ðC5Þ

By repeating many instances of the same simulation
for different interaction times τ, the excitation probability
P1ðτÞ is obtained, from which it is possible to obtain
the probability PðEÞ, which is directly connected to the
Franck-Condon profile. The Fourier integral is truncated by
a cutoff τc ¼ 2π=Δω that is given by the accuracyΔω, with
which we seek to reproduce the spectra.
This measurement approach requires a different number

of repetitions from the previous one. For a given target
precision for the probability of excitation ΔP1, the number
of repetitions necessary to characterize P1ðtÞ at a given
instant t is 1=ðΔP1Þ2. Choosing a time resolution Δt,
the total time necessary to gather sufficient statistics to
characterize P1ðtÞ in the interval ½0; τm� is

τm ≃ 1

ðΔP1Þ2
τ2c
2Δt

: ðC6Þ
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