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Increasing the maximum cooling effect of a Peltier cooler can be achieved through material and device
design. The use of inhomogeneous, functionally graded materials may be adopted in order to increase
maximum cooling without improvement of the ZT (figure of merit); however, these systems are usually
based on the assumption that the local optimization of the ZT is the suitable criterion to increase
thermoelectric performance. We solve the heat equation in a graded material and perform both analytical
and numerical analysis of a graded Peltier cooler. We find a local criterion that we use to assess the possible
improvement of graded materials for thermoelectric cooling. A fair improvement of the cooling effect
(up to 36%) is predicted for semiconductor materials, and the best graded system for cooling is described.
The influence of the equation of state of the electronic gas of the material is discussed, and the difference in
term of entropy production between the graded and the classical system is also described.
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I. INTRODUCTION

Thermoelectric materials are used to promote energy
harvesting and build cooling devices using direct thermo-
electric conversion with no moving parts. Different param-
eters can be used to evaluate the performance of a
thermoelectric system. For cooling applications, an impor-
tant parameter is the maximum cooling temperature. A
thermoelectric system made of homogeneous materials can
impose a maximum cooling limited by its figure of merit
(ZT) and equal to ΔT ¼ ZT2

c=2. The figure of merit is
defined as ZTc ¼ α2Tc=ðκρÞ, where α is the Seebeck
coefficient, κ the thermal conductivity, ρ the electrical
resistivity, and Tc the temperature of the cold side.
In thermoelectric systems based on the constant properties

model (CPM), the Peltier effect is localized at the interface
and the Joule effect is homogeneously spread across the
device. Inhomogeneity leads to the Peltier-Thomson or
extrinsic Peltier effect within the material and gives rise to
inhomogeneous Joule heating. In a real device, the temper-
ature dependence of the thermoelectric material properties
leads to such inhomogeneities. The CPM is, therefore,
realistic only for small temperature differences. However,
the simplicity of such a system allows it to be easily used
as comparison with more realistic systems. Resolution of
inhomogeneous thermoelectric systems is complex and
numerical computations of segmented systems with

temperature-dependence properties were performed in the
1960s [1]. At the same time, material conditions for a
segmented device to improve thermoelectric performance
were investigated [2]. In addition to the segmented device,
the graded devicewas investigated with analytical resolution
in the 1960s for linear variation of the Seebeck coefficient
and a constant figure of merit [3]. Graded and segmented
thermoelectric devices are sufficiently promising to be
patented [4]. With improved computer capabilities, numeri-
cal research on optimal solution for segmented [5–7] and
graded [8] systems were performed during the 1990s.
The performance of a thermoelectric system depends on

the current density going through the material. In a seg-
mented device, the current that optimizes each segment
might be different. The compatibility approach (“u ¼ s”) is
used to optimize a thermoelectric system through the concept
of reduced current (u equals the electrical flux divided by
the heat flux) [9]. The optimization is obtained when u is
equal to s, which depends on the material properties.
The efficiency of a thermoelectric generator (TEG) and
the coefficient of performance of a thermoelectric cooler
(TEC) has been investigated using this approach for seg-
mented devices [9–12] and graded devices [13–17]. The
reduced current is the local version of the Prandtl number [18].
On the experimental side, segmented thermoelectric

generators based on Bi2Te3 materials have been designed
and measured [19,20]. These works lead to a 15% improve-
ment of the generator efficiency.*etienne.thiebaut@u-psud.fr
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However, unlike graded devices, segmented devices pose
the disadvantage that their contact resistances can reduce
the performance of the system [21]. The fabrication of
graded material can be achieved, for example, by alloying
silicon and germanium [22].
The compatibility approach has proven to be a powerful

tool to optimize the efficiency of a TEG and the coefficient
of performance of a TEC; however, it has been shown that
optimizing the maximum temperature difference requires
another approach, one that is discussed in Ref. [14]. The
temperature difference and the efficiency are different
optimization targets.
The maximum temperature difference that a thermoelec-

tric cooler can impose is a key parameter of the thermo-
electric performance of a device. This parameter has been
investigated through different approaches.
A hypothetical material where ZT stays constant as the

Seebeck coefficient varies due to doping has been inves-
tigated by numerical [23] and analytical means [24].
Numerical calculations of the maximum temperature differ-
ence based on experimental material properties [25,26]
yield theoretical improvements of 27% for Bi2Te3 materials
and 35% for silicon.
In this paper, we provide an analytical solution for a

graded thermoelectric system, maximizing the temperature
difference in the case of a general expression of the Seebeck
coefficient as well as the electric conductivity as functions
of the doping level. The analytical solution is studied by
analytical and numerical means in the case of a simple
semiconductor model.
In Sec. II, we present an analytical analysis of a graded

material in a thermoelectric cooler. The optimization of the
temperature maximum is based on the work initiated by
Bian and Shakouri [24]. We show a local criterion that can
be established to deduce the best graded material.
In Sec. III, the relation between the Seebeck coefficient

and the electric conductivity is discussed as a consequence
of the equation of state of the material in use. A graded
system can be manufactured through different methods
(doped semiconductors, alloy) andmaterials (silicon, oxides,
classic thermoelectric materials, polymers). Each method or
material leads to a different equation of state relating the
Seebeck coefficient to the electrical conductivity.
As most good thermoelectrics are semiconductors, a good

way to obtain a graded material should be to use a graded
doped semiconductor. In Sec. IV, we apply the local criterion
for a simple thermoelectric model of a semiconductor in
order to evaluate the doping level as a function of the position
and to calculate the improvement of the cooling effect.
From our optimization, the doping level maximizing the

cooling is a linear profile.We analyze the influence of a linear
doping level in a semiconductor. Under these conditions, the
cooling as a function of the Seebeck coefficient at the cold
side and the Seebeck coefficient at the hot side is plotted and
discussed.

In Sec. V, to evaluate the validity of the analytical
solution, the system is numerically computed and
differences between numerical and analytical results are
presented. However, the results validate the trend arising
from the analytical solution. An evaluation of the entropy
sources is performed based on the numerical results.

II. ANALYTICAL OPTIMIZATION OF A GRADED
THERMOELECTRIC MATERIAL

The heat equation in a one-dimensional graded thermo-
electric system in static regime includes three terms—heat
conduction, the Thomson effect, and the Joule effect,
respectively:

0 ¼ ∂
∂x

�
κ(x; TðxÞ) ∂T∂x ðxÞ

�

− JTðxÞ ∂α∂x ½x; TðxÞ� þ ρ½x; TðxÞ�J2: ð1Þ

Equation (1) in the general situation cannot be solved
analytically. If we assume that the thermal conductivity is
constant, the material properties are independent from
temperature variations, and the temperature stays close
to T0 [JTðxÞ½ð∂αÞ=∂x�ðxÞ ¼ JT0½ð∂αÞ=∂x�ðxÞ], we obtain

0 ¼ κ
∂2T
∂x2 ðxÞ − JT0

∂α
∂x ðxÞ þ ρðxÞJ2: ð2Þ

The system that is considered is composed of one n
thermoelectric material from x ¼ −L to x ¼ 0 and one p
thermoelectric material from x ¼ 0 to x ¼ L. At the
position x ¼ −L and x ¼ L, the system is in contact with
a thermostat. This is a symmetric system for the thermal
conductivity (κ) and the electrical resistivity (ρ), and it is
antisymmetric for the Seebeck coefficient (α). This system
models a Peltier cooler where the cold side (x ¼ 0) is at the
interface between the n and the p thermoelectric element.
By integrating Eq. (2) twice, the maximal temperature

can be computed and the current density can be optimized
as shown in Ref. [24] to obtain the maximum temperature
difference:

ΔT ¼ T2
0

4κ

½R L
0 αðvÞdv�2R

L
0

R
v
0 ρðuÞdudv ¼ A

B
T2
0

4κ
: ð3Þ

Equation (3) was obtained and analyzed in Ref. [24], in
which it was shown that a graded system can improve the
maximum cooling a Peltier cooler can reach:

B ¼
Z

L

0

Z
v

0

ρðuÞdudv; ð4Þ

A ¼
�Z

L

0

αðvÞdv
�

2

: ð5Þ

The temperature difference depends on the function of
the Seebeck coefficient [αðxÞ] as a function of the position

E. THIÉBAUT et al. PHYS. REV. APPLIED 8, 064003 (2017)

064003-2



(x) and on the function of the electrical resistivity [ρðxÞ] as
a function of the position. The maximization of ΔT leads to
finding a local criterion by solving Eq. (6), where the
functional derivative of ΔT by αðxÞ has to be considered.
The local criterion obtained takes the form of a condition on
½ð∂ρÞ=∂α�ðxÞ where ρðαÞ is material dependent:

∂ΔT
∂αðxÞ ¼ 0; ð6Þ

A
∂B

∂αðxÞ ¼ B
∂A

∂αðxÞ ; ð7Þ

∂B
∂αðxÞ ¼

Z
L

0

Z
v

0

∂ρðuÞ
∂αðxÞ dudv; ð8Þ

∂A
∂αðxÞ ¼ 2

�Z
L

0

∂αðvÞ
∂αðxÞ dv

��Z
L

0

αðvÞdv
�
: ð9Þ

So if x > v, x is not in the ½0; v� interval:
Z

v

0

∂ρðuÞ
∂αðxÞ du ¼ 0: ð10Þ

If x < v, x is in the ½0; v� interval:
Z

v

0

∂ρðuÞ
∂αðxÞ du ¼ ∂ρðxÞ

∂αðxÞ
Z

L

0

δxðuÞdu; ð11Þ

∂B
∂αðxÞ ¼ ðL − xÞ ∂ρ∂α ðxÞ

Z
L

0

δxðuÞdu; ð12Þ

∂A
∂αðxÞ ¼ 2

�Z
L

0

δxðuÞdu
��Z

L

0

αðvÞdv
�
; ð13Þ

with δx being the Dirac δ function centered on x. Using
Eqs. (7), (12) and (13), we get

∂ρ
∂α ðxÞ ¼

1

1 − x
L

∂ρ
∂α ð0Þ: ð14Þ

Equation (14) gives a local criterion of an optimized graded
thermoelectric cooler.

III. THE EQUATION OF STATE

From Eq. (14), we deduce that the optimization strongly
relies on the relation between the Seebeck coefficient and
the electronic conductivity. This relation depends on the
equation of state of the electron gas that is considered.
As an example, we use a nondegenerated Lorentz-gas
equation of state to evaluate the maximum cooling in a
semiconductor; however, other equations of state (Price
relation for a semiconductor [27], exciton [28], oxides [29],
nanomaterial [30], polymers [31]) might be used, yielding
different improvements of the maximum cooling.

In Ref. [24] the considered materials have a ZT inde-
pendent of the carrier concentration (and of the electrical
conductivity). For any material, the ZT parameter depends
on the carrier concentration; this will impact the maximum
cooling temperature.
A numerical investigation with experimental proper-

ties of Bi2Te3 yields a 27% increase [26], and a 35%
increase is predicted with silicon [25]. For a comparison
between the semiconductor model we investigate and the
constant ZT material that Bian and Shakouri used [25],
we plot the figure of merit (in Fig. 1) and the Seebeck
coefficient (in Fig. 2) as functions of the electric
conductivity. One consequence drawn from this work
is that an upper limit is established for the possible
cooling temperature.

Ω

FIG. 1. The figure of merit as a function of the electric
conductivity for a semiconductor (the solid line) and for a
hypothetical constant ZT material (the dashed line). The maxi-
mum ZT of the semiconductor is equal to the ZT of the constant
ZT material, which means that the maximum temperature differ-
ence will be the same for a homogeneous material.

Ω

FIG. 2. The Seebeck coefficient as a function of the electric
conductivity for a semiconductor (the solid line) and for
a constant ZT material model (the dashed line). At any electrical
conductivity, the Seebeck coefficient is higher in the case
of a constant ZT material model having equality with the
semiconductor model for a Seebeck value of 2kB=e, which
corresponds to the value where the maximum ZT is reached
for the semiconductor model. For low carrier density (low electric
conductivity) in a real semiconductor, the Seebeck coefficient
reaches a maximum. This effect is not present in our simple
model.
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IV. APPLICATION FOR A SEMICONDUCTOR

For the sake of simplicity, we apply the previous
development to a nondegenerated Lorentz gas. It is possible
to apply this relation to more-complex systems; however,
the model we choose is a simple model for the thermo-
electric properties of a semiconductor. The electrical
conductivity and the Seebeck coefficient are functions of
the doping n,

σ ¼ neμ; ð15Þ

where μ denotes the electron mobility and e the elementary
charge:

α ¼ −
kB
e
ln

�
n

Neff

�
: ð16Þ

Using Eqs. (15) and (16), we obtain a relation between
the electrical resistivity and the Seebeck coefficient, with
Neff denoting the effective density of states (as defined in
Ref. [32]). This model is valid for a nondegenerated
semiconductor,

ρ ¼ ρ0 exp

�
eα
kB

�
: ð17Þ

From Eq. (17) and the local criterion [Eq. (14)], we
obtain the resistivity and the Seebeck coefficient as
functions of the position x,

ρðxÞ ¼ ρð0Þ 1

1 − x
L

; ð18Þ

αðxÞ ¼ αð0Þ þ kB
e
ln

�
1

1 − x
L

�
: ð19Þ

The obtained solution diverges at the hot side for both the
electrical resistivity and the Seebeck coefficient. The
electrical conductivity is a linear function of the position
and takes the value zero on the hot side. This solution gives
a hypothetical solution. However, for more-realistic sit-
uations, we investigate solutions where the electrical
conductivity is a linear function of the position and is
not equal to zero on the hot side.
Using Eqs. (18) and (19), we obtain Eq. (20), a solution

for ΔT that depends on the properties of the material at the
position 0:

ΔT ¼ T2
0

4κρ0

½αð0Þ þ kB
e �2

expðeαð0ÞkB
Þ
: ð20Þ

The maximization of Eq. (20) gives

αð0Þ ¼ kB
e
; ð21Þ

which is the traditional prefactor value of any Seebeck
expression.
From Eqs. (20) and (21), the maximal temperature

difference in a graded thermoelectric semiconductor can
be computed as

ΔTgraded ¼
T2
0

κρ0

ðkBe Þ2
expð1Þ : ð22Þ

A comparison can be made between the graded system
and a homogeneous system. The homogeneous case gives a
temperature difference of

ΔThomogeneous ¼
T2
0

4κρ0

α2

expðeαkBÞ
: ð23Þ

The Seebeck coefficient that gives the maximum temper-
ature in Eq. (23) is

αhomogeneous ¼ 2
kB
e
: ð24Þ

The graded system gives a theoretical 36% increase with
respect to a classical system. This analytical calculation is
coherent with numerical calculations based on experimen-
tal material properties [25,26] that yield a theoretical rise of
27% for Bi2Te3 and 35% for Si. The analytical solution
diverges at the position L, which corresponds to the hot
side of the system. Based on Eqs. (2), (18), and (19), we
compute the temperature as a function of the position in the
optimal graded case,

ΔTðxÞ ¼ T2
0ðkBe Þ2x

κρ0 expð1ÞL
: ð25Þ

Equation (25) shows that the temperature is a linear
function of the position. At any position, the Peltier effect
due to the graded material compensates for the Joule effect
exactly. In this situation, the effective heat generation in the
graded material is zero, and all of the heat sources are
localized at the interfaces of the graded material.
FromEq. (18),wededuce that the electrical conductivity is

a linear function of the positionwhich corresponds [based on
Eq. (15)] to a graded material where the doping level is a
linear function of the position. For further analysis, we study
the maximum cooling of a graded material with a linear
doping level. This material will have a doping level of nh on
the hot side andnc on the cold side, and the doping level is the
linear function of the position given by Eq. (26),

nðxÞ ¼ nc þ ðnh − ncÞ
x
L
: ð26Þ

The ratio c can be defined as c ¼ nh=nc, and this
coefficient describes the amplitude of the doping gradient.
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The value c ¼ 1 corresponds to a classical system with
zero gradient. The electrical resistivity and the Seebeck
coefficient can be written as functions of these values on the
cold side (x ¼ 0) and c,

ρðxÞ ¼ ρð0Þ 1

1 − x
L ð1 − cÞ ; ð27Þ

αðxÞ ¼ αð0Þ þ kB
e
ln

�
1

1 − x
L ð1 − cÞ

�
; ð28Þ

The Seebeck coefficient on the hot side is

αðLÞ ¼ αð0Þ − kB
e
lnðcÞ: ð29Þ

From Eqs. (27), (28), (29), (18), and (3), we can derive
the temperature difference as a function of the Seebeck
coefficient on the cold side and of the Seebeck coefficient
on the hot side. In Fig. 3, we can see that maximum cooling
is obtained when αc ¼ kB=e and αh is as large as possible.
For a real semiconductor, the optimal profile deviates

from our solution on the cold side (due to the decrease in
mobility at high carrier density) and on the hot side due to
the saturation of the Seebeck coefficient (from bipolar and
intrinsic conduction). In Fig. 4, the graded system is
obtained for c ¼ 0.1, which corresponds to a variation of
carrier concentration between the hot and cold sides of a
factor 10. For this variation of carrier concentration, a clear
and fair improvement of the difference of temperature is
obtained. These results highlight that there is no need for an
important gradient, and therefore that deviation from the
model at low and high carrier concentration will lead to
only small consequences for the optimal profile.

V. NUMERICAL SOLUTION FOR A GRADED
THERMOELECTRIC SYSTEM

A numerical resolution is used to confirm the analytical
results without the approximations done for the analytical
solution. Thenumerical solutionof a gradedmaterial is obtain
with the Dynamiques couplées (DYCO) solver, a numerical
solver for coupled equations. This solver is based on a nodal
approach, and we use it to solve the Onsager relations in a
thermoelectric material. In this solver, a Millman approach
and the conservation of the flux are used. A description of the
theoretical background of the DYCO solver can be found in
Chap. 3 of Ref. [33]. Classical systems and graded systems
are solved analytically and numerically under the same
conditions and results and are summarized in Table I.
For the sake of comparison between the analytical

solution and the numerical solution, we choose κ ¼ 1,
10, and 100 WK−1m−1, ρ0 ¼ 10−5 Ωm, and c ¼ 0.1.

FIG. 3. Plot of the temperature difference as a function of the
Seebeck coefficient at the cold side and the Seebeck coefficient at
the hot side. κ ¼ 10 WK−1 m−1 and ρ ¼ 10−5 Ωm. This plot
corresponds to a semiconductor with a maximum ZT of 0.012.
Only the cases where the temperature obtained is superior to the
homogeneous optimal case are displayed. In this figure, we can
notice that there is no particular need for a very high Seebeck
coefficient on the hot side to obtain a fair improvement of the
temperature difference.

(a)

(b)

(c)

Ω

FIG. 4. For a Seebeck coefficient on the cold side of kB=e
where c ¼ 0.1, we plot (a) the electrical resistivity, (b) the
Seebeck coefficient, and (c) the temperature as functions of
the position for the classical system (the solid line) and the graded
system (the dashed line). The analytical and numerical solutions
are compared. The numerical solution for the classical system
(the graded solution) is plotted with crosses (stars).
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The analytical solution deviates from the numerical
solution for high-ZT materials, which are able to impose
a large temperature difference. This result is coherent with
the approximation made to obtain an analytical solution
(we suppose that the temperature stays close to the temper-
ature of the hot side). Numerical solutions confirm that a
graded system improves the maximum temperature that can
be obtained.
The entropy flux can be evaluated from the solution of

the temperature [34]. This approach can be used to evaluate
the different sources of entropy in our system. In order to
properly evaluate the entropy sources, a solution obtained
with no hypothesis is needed. We use the computed
numerical solution to perform this evaluation.
From Ref. [34], the entropy flux is given by

Js ¼ αJ − κ

�∂T
∂x
T

�
: ð30Þ

As we can separate the transport of heat from the
convection and conduction [18], the entropy flux can be
separated in convection [the first term of Eq. (30)] and
conduction [the second term of Eq. (30)].
The variation of the entropy flux is

νf ¼
∂Js
∂x ¼ J

∂α
∂x − κ

∂
�∂T∂x
T

�
∂x : ð31Þ

In a stationary condition, the produced entropy (νc) is
equal to the variation of the entropy flux (νf). If we
consider the heat equation [Eq. (1)], the entropy produced
is given in Eq. (34). The entropy produced is composed of
two terms, a term related to the Joule heating and a term
related to the thermal gradient:

νc ¼ νf; ð32Þ

νc ¼ J
∂α
∂x − κ

∂2T
∂x2 þ κ

ð∂T∂xÞ2
T2

; ð33Þ

νc ¼
ρJ2

T
þ κ

ð∂T∂xÞ2
T2

: ð34Þ

In Fig. 5, we show that the produced entropy is lower on
the cold side in the inhomogeneous case. This lower

entropy production is mainly due to the lower Joule heating
on the cold side in the inhomogeneous case.
The average entropy produced by the Joule effect

is 122 kWK−1 m−3 for the homogeneous case and
140 kWK−1m−3 for the inhomogeneous case. The aver-
age entropy produced by the thermal gradient effect is
0.45 kWK−1m−3 for the homogeneous case and
0.56 kWK−1m−3 for the inhomogeneous case. For both
sources of entropy, the total entropy produced is higher in
the inhomogeneous case.
The total entropy produced by the system is rejected in

the thermostat on both hot sides. It can be obtained by
integrating νc over the entire device:

Vc ¼
Z

L

−L

�
ρJ2

T
þ κ

ð∂T∂xÞ2
T2

�
dx; ð35Þ

TABLE I. In this table, we summarize results obtained with the resolution of graded and classical materials with
both numeric and analytical resolution. κ ¼ 1, 10, and 100 corresponds to ZT ¼ 0.12, 0.012, and 0.0012,
respectively.

Temperature (K) Homogeneous system Inhomogeneous system

Solution Analytical Numeric Analytical Numeric

κ ¼ 1 WK−1 m−1 18.1 15.58 22.6 19.6
κ ¼ 10 WK−1 m−1 1.81 1.75 2.26 2.19
κ ¼ 100 WK−1 m−1 0.181 0.177 0.226 0.22

(a)

(b)

FIG. 5. Plot of the entropy produced between the hot side
(x ¼ −1 mm) and the cold side (x ¼ 0). The entropy produced
(a) by Joule heating is higher than the entropy produced (b) by the
thermal gradient. For both entropy sources, the entropy produced is
higher on the hot side for the inhomogeneous (dashed line) case and
higher on the cold side for the homogeneous case (the solid line).
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Vc ¼ J½αðLÞ − αð−LÞ� − κ

�∂T
∂x ðLÞ
TðLÞ −

∂T
∂x ð−LÞ
Tð−LÞ

�
: ð36Þ

From Fig. 5, we observe that the produced entropy is due
mainly to the Joule heating. In the graded system, the
produced entropy is higher on the hot side due to higher
Joule heating.
The graded case allows higher performance for the

thermoelectric cooler at the cost of higher entropy pro-
duction. The improved performance is obtained through a
redistribution of the entropy production. The graded system
has a lower entropy production on the cold side at the cost
of higher total entropy production.

VI. CONCLUSION

We analyze a functionally-graded-material-based Peltier
cooler by both analytical and numerical means. Both yield
an improvement of the temperature difference through the
use of graded materials. The analytical solution of the heat
equation shows that a local criterion can be found in order
to maximize the temperature difference. This criterion is
used within an analytical model of a thermoelectric semi-
conductor. This work shows that it should be possible to
improve by 36% the maximum temperature with an
optimized graded semiconductor, which corresponds to a
cooling down of −88 K, as compared to only −65 K for a
homogeneous material [35]. This improvement is equiv-
alent to other theoretical evaluations based on real material
properties [25,26].
The improvement of the temperature difference through

graded materials has been confirmed with numerical
calculations and shows that the hypothesis used for the
analytical analysis yields an overestimation of the cooling
effect. The overestimation of the cooling effect is due
to the approximation made [JTðxÞ½ð∂αÞ=ð∂xÞ�ðxÞ ¼
JT0½ð∂αÞ=∂x�ðxÞ], which leads to an overestimation of
the Thomson-Peltier effect since the temperature is lower
than T0.
The redistribution of the Joule and Peltier effects

increases the maximum cooling. In the ideal case, the
sum of the Peltier cooling due to the graded material and
the Joule heating is zero. In this situation, the temperature
displays a linear profile and the maximum cooling is
reached. This improvement highly depends on the variation
of the material properties with the doping, so other types of
material might give higher possible improvements. An
entropy-creation analysis through numerical computation
shows that the Joule effect is the main source of entropy and
that the entropy creation is lower on the cold side in the
optimized graded case. The graded system forces the
entropy production to be localized on the hot side, which
increases the maximum cooling at the cost of a higher total
entropy production (leading to a lower efficiency).
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