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The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the
charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo
simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the
charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created
using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of
the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies
with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the
mobility and the electric-field dependence relative to a neat material. These reductions are found to be
further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the
electric-field dependence to the tortuosity can explain the different experimental relationships previously
reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing
charge transport in organic solar cells.

DOI: 10.1103/PhysRevApplied.8.054043

I. INTRODUCTION

Extensive development efforts on organic photovoltaics
(OPVs) over the last two decades have generated major
performance improvements. To achieve high performance,
most OPVs use a bulk heterojunction (BHJ) blend of
electron-donating and electron-accepting materials to
enhance the conversion of photogenerated excitons into
free charge carriers. Because of the small exciton diffusion
length in most organic semiconductors, optimized BHJ
structures have nanoscale, donor-rich and acceptor-rich
domains that form a complex interpenetrating network that
enhances exciton harvesting, charge separation, and charge
transport, while minimizing recombination losses. It has
become very clear that morphological control is one of the
most important issues for creating efficientOPVs [1], but the
details about specifically which morphological features are
needed and their precise roles are still being investigated.
It is well established that the charge-carrier mobilities

should be high so that charge carriers are extracted from the
active layer before recombination can occur [2–4], but a
detailed understanding of the fundamental relationships
between the BHJ morphology and the resulting mobilities
is still needed. Ideally, charge carriers would have a direct
pathway to their respective electrodes that is parallel to
the electric-field vector, but real morphologies can have
convoluted transport pathways that slow down charge

extraction. In several BHJ blends, the electron and/or hole
mobility can be significantly decreased compared to the
neat material [3,5–9]. Whether this drop is due to dis-
ruptions in crystallinity or due to the formation of poor
charge-transport pathways is not usually clear. However,
Proctor et al. concluded that, in at least two small molecule-
fullerene blends, poor domain connectivity can explain the
reduced hole mobility [9], and Foster et al. also deduced
that connectivity problems explain the low electron mobil-
ity in PTB7:PCBM blends [8]. Concerns about this issue
were the major driving force for the proposed “ideal”
vertically aligned pillar morphology that was heavily
pursued a decade ago [10].
While it is challenging to experimentally characterize

the charge-transport pathways in a BHJ morphology,
transmission-electron-microscope (TEM) tomography tech-
niques have been a powerful tool for imaging the complex
three-dimensional structure [11–15]. Using these tech-
niques, a number of studies have qualitatively assessed
the transport pathways and have found that processing
conditions can have a significant impact [14,16,17]. For a
more quantitative analysis, Wodo et al. have utilized the
tortuosity descriptor to characterize the transport pathways
in model morphologies [18]. Tortuosity quantitatively indi-
cates how convoluted a transport pathway is relative to the
shortest straight path. Using this descriptor,Wodo et al. then
showed how tortuosity histograms can be determined from
TEM tomography measurements and demonstrated how
processing conditions can impact the tortuosity [19]. The
effect of tortuosity on transport has often been studied in
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percolation theory and in the context of transport through
porous media [20–22], but the concept has rarely been
explored in the OPV field [17–19,23,24].
The complex morphology is also difficult to simulate

with atomistic detail, so simplified models such as the
Ising-based model are commonly used [24–26]. One of
the few simulation techniques that is able to incorporate the
nanoscale morphological details and simulate charge trans-
port is the kinetic Monte Carlo (KMC) method. Using
this technique, researchers have investigated a wide range
of important fundamental structure-property relationships
in OPVs [27–29]. With specific regard to charge trans-
port, KMC simulations with model BHJ morphologies
have revealed significantly lower mobilities than in a neat
material due to the morphology [30–32]. Several studies
have also shown that the electric-field dependence of the
mobility changes from positive to negative when compar-
ing neat and BHJ films [32–34].
Experimentally, in many amorphous molecularly doped

polymers [35–40] and in neat organic semiconductors that
are disordered [36,41–44] and even semicrystalline [45,46],
a mobility with a positive field dependence that follows the
Poole-Frenkel model has been regularly observed, as long
as significant positional disorder is not present [37,47,48].
However, in BHJ blend films, a mobility with a negative
field dependence has been frequently observed [49–56],
while some blends still exhibit a positive field dependence
[57–61] or even no field dependence [62,63]. While dif-
ferences between mobility measurement techniques and
conditions among these studies could play a role in
explaining the differences in the observed field depend-
ence, the previously discussed simulation results suggest
that morphological details play an important and poten-
tially dominant role. Overall, there is still an urgent need to
understand how the details of the BHJ phase morphology
affect charge transport.
In this study, we demonstrate the use of anisotropic

interaction energies with the Ising-based morphology
model to create well-controlled, model BHJ morphologies
with charge-transport pathways that have varying degrees
of tortuosity. Then, using KMC charge-transport simula-
tions on these model morphologies and neat films, we show
that the electric-field dependence of the charge-carrier
mobility in a BHJ blend is highly affected by the tortuosity.
This development can explain apparent discrepancies
between a variety of different experimental and theoretical
studies and illuminates an important fundamental physical
structure–property relationship that could be used to
accelerate materials optimization for organic solar cells.

II. METHODS

A. Morphology model

To probe how tortuosity affects charge transport and
isolate tortuosity effects from other factors, we implement a

simple, well-controlled Ising-based morphology model. In
previous experimental work, Moon et al. have shown that
in some materials, domains can be anisotropically oriented
in the film, and they have shown that charge extraction is
slower when domains are elongated in the plane of the film
[64]. Drawing inspiration from this concept, we have
extended the Ising_OPV v2.0 morphology model [65] by
implementing controllable anisotropic phase separation in
Ising_OPV v3.0 [66]. The standard Ising-based model uses an
interaction energy (J) to modulate the driving force for
phase separation [24], but by modifying the interaction
energy in one direction, domain growth during phase
separation becomes anisotropic.
To tune the tortuosity in a controlled manner, an addi-

tional directional dependent interaction energy (ΔJz) in
the z direction is added to the interaction energy equation
used in the bond formation algorithm [24]. As a result, the
energy change for swapping two neighboring sites is

Δϵ ¼ −ΔN1J − ΔN2

Jffiffiffi
2

p − ΔN1;zΔJz; ð1Þ

where ΔN1 is the change in the number of total first-
nearest-neighbor like-like bonds, ΔN2 is the change in the
number of total second-nearest-neighbor like-like bonds,
and ΔN1;z is the change in the number of first-nearest-
neighbor like-like bonds in the z direction. The number of
like-like bonds is the sum of donor-donor and acceptor-
acceptor bonds. This additional interaction energy in the z
direction causes preferential growth in the x-y plane, and so
we define the anisotropic driving force

ΔJxy ¼ −ΔJz: ð2Þ

With a positive value of ΔJxy, there is preferential domain
growth in the x-y plane, and with a negative value, there is
preferential domain growth in the z direction. To character-
ize the resulting anisotropy of the domain mesostructure,
we define the domain anisotropy (γ)

γ ¼ 2ξz
ξx þ ξy

; ð3Þ

where ξx, ξy, and ξz are the correlation lengths in the x, y,
and z directions, respectively.
All morphologies are created with a 50∶50 blend ratio,

and the duration of the phase-separation process is varied
to obtain a range of domain sizes following previously
developed methods [24,67]. The resulting morphologies
consist of a bicontinuous, well-connected network of pure
domains, and the pair-pair correlation method is used
to characterize the average domain size (d) [24,68]. The
characteristic tortuosity (τ) of each morphology is defined
as the average geometric tortuosity [22].
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τ ¼ hτgi ¼
hLgi
L

: ð4Þ

To calculate this descriptor, Dijkstra’s algorithm is used to
determine the shortest pathways through each phase from
each corresponding point on the top of the lattice to the
bottom (Lg) [69]. This shortest path through the film is then
divided by the lattice height (L) to yield the geometric
tortuosity for that specific pathway, and this is repeated
to produce a tortuosity distribution. The tortuosity distri-
bution is approximately Gaussian, and from it, the
average tortuosity is determined. With a 50∶50 blend ratio,
the donor and acceptor phases have the same average
tortuosity.
For the charge-transport simulations, seven morphology

sets (MS1, MS2, MS3, MS4, MS5, MS6, MS7) are
generated using the Ising_OPV v3.0 software tool [66]. For
each set, 96 independent morphologies are generated on a
lattice with final dimensions of 200 × 200 × 240, which
avoid finite lattice size effects. More detailed information
about the morphology generation and characterization is
shown in the Supplemental Material [70].

B. Charge transport

To determine the impact that the tortuosity has on charge
transport, time-of-flight KMC simulations are performed
on a 3D lattice with a thickness (L) of 240 sites and a lattice
constant (a) of 1 nm. Energetic disorder is included using
an uncorrelated Gaussian density of states (DOS) defined
by a standard deviation (σ). Some materials have been
argued to be best described by a correlated Gaussian
disorder model, which explains the Poole-Frenkel behavior
observed even at low electric-field strengths [71,72].
However, we assume that the fundamental effect of
tortuosity on charge-transport behavior will be very similar
regardless of whether the disorder is correlated or not.
Simulations are done in the low-charge-carrier density
regime (1 × 10−7 a−3 ¼ 1 × 1014 cm−3) at which the
mobility with a Gaussian DOS is independent of the carrier
density [73–76]. Under these conditions, the charge carriers
are sufficiently thermalized before extraction, and the
natural logarithm of the zero-field mobility is proportional
to 1=T2 as expected at equilibrium [76,77].
In each time-of-flight simulation, a single hole is

randomly placed on a donor site at the top surface of
the lattice and then allowed to undergo Miller-Abrahams
hopping transport under the influence of an applied electric
field (F) at a specified temperature (T), with the hopping
rate defined [78]:

Rij ¼ ν0 expð−2γdijÞfBðΔEijÞ; ð5Þ

where ν0 is the attempt to hop frequency, γ is the charge
localization parameter, dij is the distance between sites, and

fBðΔEijÞ ¼
�
exp ð−ΔEij=kTÞ ΔEij > 0

1 ΔEij ≤ 0
: ð6Þ

ΔEij is the change in potential energy for the proposed
charge hop,

ΔEij ¼ Ei − Ej þ ΔEC;ij − Fdz; ð7Þ

where Ei and Ej are the initial and final site energies,
ΔEC;ij is the change in Coulomb potential that would occur
for hopping from site i to site j, and dz is the z-direction
component of the hopping vector. However, in this study
Coulomb interactions are not included since only one
charge is simulated at a time.
Hole hopping is restricted to donor sites and is

calculated for sites up to 3 nm away from the starting
site. To simplify the simulations, image charge inter-
actions with the electrodes are not included. Once the hole
reaches the bottom surface, it is removed from the lattice,
the transit time (ttr) is recorded, and the entire process is
repeated. After 20 charges are collected, the energetic
disorder of the lattice is reassigned randomly from the
Gaussian density-of-states distribution. This process is
repeated for 1000 holes on each of the 96 morphologies
in each morphology set, and the final mean mobility is
determined based on the 96 000 total charge-transport
runs. Additional KMC simulation details are provided in
the Supplemental Material [70].
In organic semiconductors, it can be misleading to

describe the charge-carrier mobility as a single character-
istic average value due to a broad distribution of transport
rates [79]. Because of a typically highly skewed distri-
bution, the specific definition of the average is critical
[80]. Many previous KMC charge-transport simulations
calculate the mobility using the average transit time.
However, with this method, even a small fraction of
carriers with a very long transit time can have a major
impact, causing the calculated mobility to greatly under-
estimate the transport velocity of the majority of the
charge carriers. Furthermore, common experimental
mobility measurement techniques that rely on a meas-
urement of the current are more sensitive to the faster
carriers, and a better alternative is to calculate the mean
mobility using the average of the inverse of the transit
time [80],

μm ¼ L
F

�
1

ttr

�
: ð8Þ

The mean mobility represents the behavior of most
charge carriers and can be more directly compared with
experimental results.
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III. RESULTS AND DISCUSSION

A. Morphology model

Awide range of tests are done to characterize the growth
kinetics and resulting structure of the anisotropic bulk
heterojunction morphologies. As a visual example of the
resultingmorphologies, Fig. 1 shows cross-sectional images
of the y-z plane from individual morphologies created with
varying ΔJxy values but with an equal domain size of 8 nm.
Relative to the isotropic morphology shown in Fig. 1(b),
Fig. 1(a) shows in-plane elongation of the domains in the y
direction, and in Fig. 1(c), elongation can be seen in the
out-of-plane, z direction. Despite the visual appearance of
islands in the cross-sectional images, the phases are very
well connected, and the vast majority of the apparent islands
continue through the plane of the image and connectwith the
overall bicontinuous phase structure.
More quantitatively, Fig. 2 shows how the domain

anisotropy evolves as the domains grow in size during
the phase-separation process and how this anisotropy
affects the tortuosity. A domain anisotropy value of 1
indicates an isotropic morphology, which has relatively
direct charge-transport pathways and a relatively low
tortuosity. With increased preference for domain growth
in the x-y plane, the domain anisotropy values are less than
one and the tortuosity increases significantly as the trans-
port pathways become more convoluted. At a domain size
of 8 nm, there is a relatively broad spread of tortuosity
values depending on the anisotropic driving force value
used, and these conditions are used to generate more
complete morphology sets for charge-transport simula-
tions. Several morphology sets are also constructed using
a scaling technique [24] to yield domain sizes of 16 nm
with the same tortuosity. Table I shows the important final
characteristics of the seven morphology sets (MS1, MS2,
MS3, MS4, MS5, MS6, MS7). The uncertainty values
reported in the table represent the standard deviation of the
characteristics determined for each of the 96 individual
morphologies in each set. Additional characterization of
these sets is shown in the Supplemental Material [70].

B. Charge transport

To provide a reference point for understanding the
impact that the BHJ structure and tortuosity has on charge
transport, we first simulate and analyze transport in a neat
material. For transport in neat films, expanding on the
traditional Gaussian disorder model [77], Novikov et al.
showed that the electric-field dependence of the mobility
can be described with a normalized unitless electric field
[81]. Later, Pasveer et al. showed that the mobility can also
be normalized to a unitless parameter [74]. In this nor-
malized form, the mobility can be expressed as a function
of the effective disorder (σ̂), where σ̂ ¼ σ=kT. Based on
these concepts, we have performed a similar analysis. For

FIG. 1. Cross-sectional images (y-z plane) of morphologies with 8-nm average domain size. (a) an anisotropic morphology with
horizontally elongated domains created with ΔJxy ¼ 0.1 giving τ ¼ 1.15, (b) an isotropic morphology created with ΔJxy ¼ 0 giving
τ ¼ 1.07, and (c) an anisotropic morphology with vertically aligned domains created with ΔJxy ¼ −0.05 giving τ ¼ 1.05.
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tortuosity of the charge-transport pathways.
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the neat film simulation results shown in Fig. 3 (left), the
mobility in the intermediate, field-activated regime can be
approximated as

μneat
μ0

¼ c1 exp ½−c2σ̂2� exp
"
ðc3σ̂2 þ c4Þ

ffiffiffiffiffiffi
F
F0

s #
; ð9Þ

where μ0 ¼ a2ν0e=σ and F0 ¼ σ=ea. When
ðF=F0Þ1=2 < 0.6, the mobility begins to plateau as
expected with an uncorrelated Gaussian DOS [48], and
the mobility begins to saturate when F > σ=ea [81]. The
behavior in these regimes is not dominated by field-
activated hopping and is therefore not well represented
by Eq. (9). Detailed fitting and analysis results for the
neat material simulations are shown in the Supplemental
Material [70].
Moving on to the BHJ blends, the results shown in Fig. 3

demonstrate that this normalization scheme also works for
describing the mobility in BHJ blends and that the mobility
in a given blend still depends on the effective disorder. The
closed symbols are from simulations with a fixed energetic
disorder and varying temperature, and the open symbols are
from simulations with a fixed temperature and varying
energetic disorder. In all cases, both the open and closed
symbols in Fig. 3 overlay each other, thereby validating the

use of the effective disorder. After testing morphologies
with 8- and 16-nm domains, we find little-to-no domain-
size dependence. Instead, we find that the mobility is very
sensitive to the tortuosity, exhibiting two distinct changes
in the transport behavior. As tortuosity increases, the
overall magnitude of the mobility is greatly reduced, and
there is a dramatic decrease in the electric-field depend-
ence. However, we emphasize that our results show that a
negative field dependence is not an inherent property of
BHJ blends, but instead depends on a combination of the
tortuosity, energetic disorder, and temperature. This finding
likely explains why both a positive and a negative field
dependence have been observed in experimental studies on
different BHJ blend systems [49–63].
To focus on the impact of the tortuosity apart from the

details of the mobility behavior in the neat material, the
deviation from the neat mobility can be described by
adding two additional terms to Eq. (9),

μBHJ
μ0

¼ μneat
μ0

fðσ̂; τÞ exp
"
gðσ̂; τÞ

ffiffiffiffiffiffi
F
F0

s #
; ð10Þ

where fðσ̂; τÞ represents the reduction in the magnitude
of the zero-field mobility, and gðσ̂; τÞ captures the change
in the slope of the field dependence relative to the neat
material. After fitting Eq. (10) to all blend simulations with
varying tortuosity, energetic disorder, temperature, and
domain size, Fig. 4 shows how f and g depend on the
tortuosity and the effective disorder. We find that when the
effective disorder is low, tortuosity can significantly reduce
the zero-field mobility but has very little impact on the field
dependence. Conversely, with larger effective disorder,
where there is field-activated hopping, the tortuosity has
almost no impact on the zero-field mobility and causes a
strong reduction in the field dependence. More detailed
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FIG. 3. Electric-field dependence of the normalized mobility in a neat film (left), a medium tortuosity blend (middle), and a high
tortuosity blend (right) for different temperatures and energetic disorder values.

TABLE I. Morphology set information.

Set ΔJxy Domain size, d (nm) Tortuosity, τ

MS1 −0.05 8.02� 0.02 1.05� 0.01
MS2 0.05 8.00� 0.02 1.10� 0.01
MS3 0.10 8.06� 0.03 1.15� 0.02
MS4 0.20 7.92� 0.02 1.24� 0.03
MS5 −0.05 15.85� 0.08 1.05� 0.01
MS6 0.05 15.81� 0.09 1.11� 0.02
MS7 0.10 16.0� 0.1 1.15� 0.03
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fitting results for both neat and blend films are shown in the
Supplemental Material [70].
Overall, the largest impact of tortuosity is a major

reduction in the electric-field dependence of the mobility.
Similar to how positional disorder has been shown
to reduce the field dependence in molecularly doped
systems [37,47,48], convoluted charge-transport pathways
force charges to move perpendicular to the electric-field
vector in order to continue traveling through the film,
which causes the mobility to decrease. While this general
phenomenon has been explained before in the context
of BHJ blends [32], we show here that this effect varies
in magnitude depending on the tortuosity of the
morphology.
Taking advantage of this phenomenon, we propose that

a combination of electric-field and temperature-dependent
mobility measurements could be used to answer several
important questions relevant for optimizing BHJ blends
for organic solar cells. By extrapolating field-dependent
mobility measurements to zero field and then plotting the
zero-field mobility as a function of the temperature, one
could calculate the energetic disorder (σ) using Eq. (9).
The zero-field mobility is only weakly affected by
tortuosity, as evidenced by the small change in f values
in Fig. 4 for realistic disorder values of σ=kT > 2, but
strongly depends on the energetic disorder. Using the
calculated energetic disorder (σ), one could then plot the
normalized mobility (μ=μ0) against the normalized field
(F=F0) similar to Fig. 3 and also calculate the effective
disorder (σ=kT) for each temperature. From this normal-
ized data set, first, one could identify whether energetic

disorder or tortuosity is the dominant factor limiting
the mobility. Films limited by energetic disorder should
exhibit a positive field dependence at room temperature,
while films limited by tortuosity should exhibit a negative
field dependence that remains negative even at low
temperatures. Second, one could use this procedure to
compare films prepared using different fabrication con-
ditions to distinguish how a particular processing method
changes the energetic disorder and the tortuosity. Relative
tortuosity changes between samples could be determined
by comparing the field dependence of the normalized
mobility from curves with equivalent effective disorder
(σ=kT). As observed in Fig. 3, for a given effective
disorder, the field dependence (slope) is highly sensitive
to the tortuosity.

IV. CONCLUSIONS

Overall, given the strong impact that tortuosity has on
the electric-field dependence of the charge-carrier mobility
observed in our simulations, we predict that the tortuosity
will be a dominant factor that modifies the field dependence
in a BHJ film relative to the neat material. This can explain
why experimental studies over the years have reported
positive and negative field dependence in blends of differ-
ent materials. Given this strong relationship and the
major challenges in quantifying the tortuosity using
three-dimensional imaging techniques, there is great poten-
tial to use detailed mobility measurements to probe the
quality of the charge-transport pathways. Based on these
theoretical results, we propose that a combination of field-
and temperature-dependent mobility measurements could
be used to provide a detailed assessment of the factors
limiting the charge-transport in BHJ films. With this
knowledge, one could make more precise recommenda-
tions for modifying the materials chemistry or film fab-
rication conditions in order to accelerate the development
and optimization of materials for organic solar cells. In
addition, the fundamental relationships between tortuosity
and charge transport developed here may also be impactful
in other applications where transport through nanostruc-
tured materials plays a key role.
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