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We present detailed analytical modeling and in-depth investigation of wide-angle reflect-mode
metagrating beam splitters. These recently introduced ultrathin devices are capable of implementing
intricate diffraction engineering functionalities with only a single meta-atom per macroperiod, making
them considerably simpler to synthesize than conventional metasurfaces. We extend recent work and focus
on electrically polarizable metagratings, comprised of loaded conducting wires in front of a perfect electric
conductor, excited by transverse-electric polarized fields, which are more practical for planar fabrication.
The derivation further relates the metagrating performance parameters to the individual meta-atom load,
facilitating an efficient semianalytical synthesis scheme to determine the required conductor geometry for
achieving optimal beam splitting. Subsequently, we utilize the model to analyze the effects of realistic
conductor losses, reactance deviations, and frequency shifts on the device performance, and reveal that
metagratings feature preferable working points, in which the sensitivity to these nonidealities is rather low.
The analytical relations shed light on the physical origin of this phenomenon, associating it with
fundamental interference processes taking place in the device. These results, verified via full-wave
simulations of realistic physical structures, yield a set of efficient engineering tools, as well as profound
physical intuition, for devising future metagrating devices, with immense potential for microwave,
terahertz, and optical beam-manipulation applications.
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I. INTRODUCTION

Metasurfaces have demonstrated in the past few years an
exceptional ability to implement a myriad of electromag-
netic functionalities, forming highly efficient ultrathin
devices for engineered beam refraction [1–4], reflection
[5–9], focusing [10,11], polarization manipulation [12–16],
controlled absorption [17–19], cloaking [20–22], and
advanced radiation-pattern molding [23–28], to name a
few. These devices are typically designed by prescribing
suitable continuous metasurface constituents (macroscopic
design), implementing a desirable field transformation via
the corresponding generalized sheet transition conditions
[29–32]. Subsequently, the continuous design specifica-
tions are discretized into subwavelength unit-cell sizes and
are realized using appropriate polarizable particles (micro-
scopic design).
While numerous efficient semianalytical macroscopic

design methods have been developed in recent years
(see, e.g., Refs. [4,7,8,14,33,34]), allowing conceptual
implementation of advanced field transformations via
metasurfaces, translating the latter into physical structures
remains a significant challenge. Most of the microscopic
design schemes rely on full-wave numerical simulations
to associate a given subwavelength structure with its

equivalent meta-atom constituents, yielding a lookup table
that is utilized for general metasurface realization.
However, whether in microwave or optical frequencies,
bianisotropic metasurfaces, typically necessary for com-
plex beam manipulation, require simultaneous tuning of
multiple degrees of freedom at the meta-atomic level
[4,12,14,15,35–39]; relying on full-wave optimization to
engineer each and every meta-atom quickly becomes
unreasonable, especially for generally inhomogeneous
metasurfaces (see, e.g., Refs. [7,9,25]).
Very recently, several authors have revisited the problem

of perfect reflection, aiming at fully coupling a plane wave
incoming from a given angle to a reflected plane wave
propagating towards a desirable (nonspecular) direction,
based on diffraction grating principles [40–50]. This prob-
lem, which was recently shown to be quite challenging to
solve using metasurfaces [7–9,51,52], turned out to be fully
solvable with periodic structures, having only a single or a
few subwavelength meta-atoms in each macroperiod (the
dimensions of which are comparable to the wavelength). In
contrast to metasurfaces that implement the same function-
ality,which are composed of numerous differentmeta-atoms
in a macroperiod, these so-called metagratings require the
design of only a single polarizable particle to achieve an
optimal 100% conversion from incident to reflected waves;
thus, they substantially overcome the aforementioned
microscopic design challenge associated with metasurfaces.*epsteina@ee.technion.ac.il
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This complexity reduction is facilitated by the fact that
metagratings aim at canceling a finite number of spurious
propagating diffraction modes, whereas the metasurfaces
implement a prescribed field transformation, which does
not allow any undesirable diffraction mode (either propa-
gating or evanescent) to be excited [53]. Although this
destructive-interference mechanism by which efficient
diffraction engineering can be achieved has been known
about for many years from the field of dielectric gratings
(see, e.g., Refs. [54–56]), a rigorous scheme to determine
the optimal grating geometry was absent, and designs
were mainly based on physical intuition and numerical
optimization.
In a recent paper, Ra’di et al. [44] developed a rigorous

analytical methodology to design metagratings for perfect
engineered reflection, based on a periodic array of identical
subwavelength particles situated in free space, backed by a
perfect electric conductor (PEC). Formulating the fields as a
superposition of the fields scattered in the absence of the
particle array and the fields generated by the array itself, the
authors found conditions on the required array-PEC sepa-
ration distance and the effective grid impedance (the ratio
between the external field applied on a meta-atom and the
current through it, dictated by the meta-atom geometry) that
will guarantee that (1) the specular reflection will destruc-
tively interfere with the corresponding Floquet-Bloch (FB)
harmonics radiated by the particle array; and (2) all of the
incident power will be coupled to a different (prescribed) FB
mode. This formulation facilitated perfect reflection via a
single-element periodic structure; once the distance between
the particle grid and the PEC was determined for given
angles of incidence and reflection, the physical structure of
the meta-atom was achieved via a simple parametric sweep.
Furthermore, it was demonstrated therein that using meta-
atoms with more degrees of freedom (e.g., bianisotropic
ones), extends the applicability of such metagratings to

additional scenarios (see also Ref. [45], where the additional
degrees of freedoms are provided by considering multiple
dielectric meta-atoms per macroperiod).
Recognizing the potential of these alternative devices for

advanced beam manipulation, we present in this paper a
thorough investigation of their fundamental properties. In
contrast to Ref. [44], which utilized magnetically polar-
izable particles excited by transverse-magnetic (TM) fields,
we treat herein electrically polarizable metagratings, excited
by transverse-electric (TE) fields (Fig. 1). Focusing on
electrically polarizable particles in the form of loaded
conductive wires has two merits. First, such structures are
more practical froma realization point of view, as they can be
naturally integrated into planar devices, as was vastly
demonstrated for microwave, terahertz, and optical meta-
surfaces (see, e.g., Refs. [12,15,24,57–59]). Second, it
allows well-established analytical models [30,60,61] to be
harnessed for the formulation of efficient and insightful
synthesis and analysis schemes.
Indeed, we utilize these models to derive a detailed

semianalytical design methodology for reflective metagrat-
ings; for simplicity, we focus on perfect wide-angle beam
splitting [Fig. 1(a)], a functionality that was found to be
challenging for metasurfaces [8,32], and was mentioned in
passing in Ref. [44]. Our derivation goes one step beyond
Ref. [44], deriving analytical expressions for the required
individual-wire load impedances. For the capacitive loads
suitable for the beam-splitting functionality, we show that
this detailed formulation enables analytical determination of
the physical dimensions of the required printed-capacitor
copper traces, requiring only a single numerical simulation
at the frequency of operation.
In addition, we use the detailed analytical model to

examine the metagrating performance as a function of load
impedance and operating frequency; the model can readily
accommodate realistic copper traces with finite conductivity,

FIG. 1. Physical configuration of the PEC-backed electrically polarizable beam-splitting metagratings. (a) Side view of a Λ-periodic
metagrating separated by h from the PEC, designed to eliminate specular reflection. (b) Top view of the metagrating. The distributed
impedance per unit length ~Z is formed by finite loads repeating every L along the x axis. (c) Trimetric view of a single electrically
polarizable loaded element [marked by a dashed rectangle in (b)]. The trace width, separation, and thickness are given by w, s, and t,
respectively; the load impedance is controlled by the capacitor width W (denoted in red).
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allowing us to shed light on the role of losses. Our analysis
reveals that the metagrating features preferable working
points, where the sensitivity to load reactance deviations
is low, losses are less pronounced, and the bandwidth is
relatively large. These operating conditions are directly
linked to fundamental interference processes taking place
in the device, as pointed out by the analytical formulation.
These results yield physical insight as well as efficient

and intuitive engineering tools for synthesis and analysis of
future metagratings, laying the groundwork for practical
realization of these devices and extension of their range of
applications.

II. THEORY

A. Formulation

We consider a 2D configuration (∂=∂x ¼ 0) excited
by TE-polarized fields (Ez ¼ Ey ¼ Hx ¼ 0), in which a
Λ-periodic array of loaded conducting wires is situated at
z ¼ −h below a PEC, occupying the plane z ¼ 0
[Fig. 1(a)]. The half plane z < 0 is filled with a (passive
lossless) homogeneous medium with permittivity ϵ and
permeability μ, defining the wave number k ¼ ω

ffiffiffiffiffi
μϵ

p
and

the wave impedance η ¼ ffiffiffiffiffiffiffiffi
μ=ϵ

p
for time-harmonic fields

ejωt. The wires are of width w ≪ λ, Λ and thickness t ≪ w,
where λ ¼ 2π=k is the wavelength at the operating fre-
quency f ¼ ω=ð2πÞ, and are assumed to be uniformly
loaded by a distributed impedance per unit length of ~Z
[Figs. 1(b) and 1(c)]. In practice, this distributed impedance is
implemented by lumped loads, repeating in a periodic fashion
along the x axis with a deep-subwavelength period L.
As denoted, our goal is to find the array-PEC distance h

and the load impedance ~Z that yield full and equal coupling
of a normally incident plane wave into two plane waves,
reflected towards �θout. We start by formulating the total
fields in the problem,which can bewritten as a superposition
of the fields in the absence of the wire array, and the fields
generated due to the (yet to be determined) current I induced
on the wires by these external fields. Each of these sets of
fields should comply with the boundary conditions at the
PEC, namely,Exðy; zÞjz→0− ¼ 0. Consequently, the external
fields are composed of normally incident and normally
reflected plane waves

Eext
x ðy; zÞ ¼ Einðe−jkz − ejkzÞ; ð1Þ

where Ein is the given excitation amplitude. The fields
produced by the metagrating are a sum of an infinite array of
electric line sources at positions ðy; zÞ ¼ ðnΛ;−hÞ, n ∈ Z,
and their image sources, symmetrically positioned at
ðy; zÞ ¼ ðnΛ; hÞ, carrying the same currents with a π phase
difference. Because of the periodic configuration and the
symmetric excitation, the induced currents I are identical
for all of the wires [30], and the corresponding fields are
given by

Ewire
x ðy;zÞ¼−

kη
4
I
X∞
n¼−∞

8><
>:
Hð2Þ

0

h
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy−nΛÞ2þðzþhÞ2

p i

−Hð2Þ
0

h
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy−nΛÞ2þðz−hÞ2

p i
9>=
>;;

ð2Þ

where Hð2Þ
0 ðΩÞ is the zeroth-order Hankel function of the

second kind.
To evaluate the fields generated by the wires at z ≠ −h,

we utilize the Poisson formula [30], stating that, for a given
function fðlÞ,

X∞
n¼−∞

fðnΛÞ ¼
X∞

m¼−∞

Z
∞

−∞

dl
Λ
fðlÞe−jð2πm=ΛÞl: ð3Þ

Using Eq. (3) with fðlÞ ¼ Hð2Þ
0 ½k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − lÞ2 þ ðz� hÞ2

p
�,

and considering that the Fourier transform of the Hankel
function is given by [see Eqs. (5.4.33) and (5.4.35) in
Ref. [62] ]

Z
∞

−∞
dlHð2Þ

0 ½k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − lÞ2 þ ðz� hÞ2

q
�e−jktl

¼ 2
e−jktye−jβjz�hj

β
; ð4Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2t

p
and Imfβg ≤ 0, Eq. (2) can be

written as [30]

Ewire
x ðy;zÞ¼−

kη
2Λ

I
X∞

m¼−∞
e−jð2πm=ΛÞy e

−jβmjzþhj−ejβmðz−hÞ

βm
;

ð5Þ

where βm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ð2πm=ΛÞ2

p
and Imfβmg ≤ 0. We can

now observe that the interaction of the external fields with
the periodic wire array gives rise to a series of scattered FB
harmonics, where themth term of the summation in Eq. (5)
corresponds to the mth FB mode.
The total electric fields are thus given by

Etot
x ðy; zÞ ¼ Eext

x ðy; zÞ þ Ewire
x ðy; zÞ, and the tangential

magnetic fields can be readily derived from them
via Maxwell’s equations for this TE case, reading
Hyðy; zÞ ¼ −ð1=jkηÞð∂=∂zÞExðy; zÞ.
In the framework of our detailed analysis, we strive to tie

the physical structure of the meta-atom (loaded wire) to the
design requirements. To this end, we recall that the relation
between the total fields at the wire position and the induced
currents is given by the distributed impedance ~Z via Ohm’s
law, Etot

x ðy; zÞjðy;zÞ→ð0;−hÞ ¼ ~ZI [30]. In order to write this
expression explicitly, due to the divergence of the Hankel
function at ðy; zÞ → ð0;−hÞ, we have to refine our approxi-
mation of the current-carrying wire as a line source of
infinitesimal radius, and take into account the actual wire
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dimensions [Fig. 1(c)]. As t ≪ w ≪ λ, we can use the flat-
wire model in Ref. [30], treating the wire as a conducting
cylinder of effective radius reff ¼ w=4. Consequently,
using Eqs. (1) and (2) we can write Ohm’s law as

~ZI ¼ 2jEin sinðkhÞ

− kη
4
IHð2Þ

0 ðkreffÞ − kη
4
I
X∞
n¼−∞
n≠0

Hð2Þ
0 ðkjnΛjÞ

þ kη
4
I
X∞
n¼−∞

Hð2Þ
0

h
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnΛÞ2 þ ð2hÞ2

q i
; ð6Þ

from which the current induced by the applied fields
can be evaluated for a given ~Z. Alternatively, Eq. (6)
can be used to assess the required ~Z value to obtain a certain
induced current.
Subsequently, we follow Ref. [30] to develop Eq. (6) into

a more useful format, expressing the required ~Z value to
yield a prescribed Ein=I ratio (to be derived in Secs. II B
and II C). In particular, as w ≪ λ, the second term on the
right-hand side (rhs) of Eq. (6) can be approximated by the
asymptotic expression of the Hankel function for small
arguments [see Eq. (9.1.8) in Ref. [63] ]; the third term can
be expanded using Eq. (8.522) in Ref. [64]; for the fourth
term, we can again apply the Poisson formula [Eqs. (3) and
(4)]. These transformations lead to

~Z ¼ 2j
Ein

I
sinðkhÞ

−
η

2Λ
ð1 − e−2jkhÞ þ j

kη
2π

log
2πreff
Λ

− kη
X∞
m¼1

�
1 − e−2jβmh

Λβm
− j

1

2πm

�
; ð7Þ

in which the infinite summation converges very well.

B. Eliminating specular reflection

As shown in Ref. [44], with the available degrees of
freedom, namely, h and ~Z, we can eliminate only a single
FB mode. Thus, to successfully couple all of the incident
power to the FB modes propagating towards �θout, these
have to be the only FB modes (other than the fundamental
specular reflection) that are propagating. This requirement
imposes two constraints on our design. First, the angles
�θout should correspond to the �1 propagating FB modes;
following Eq. (5), this implies that

2π

Λ
¼ k sin θout ⇒ Λ ¼ λ

sin θout
: ð8Þ

Second, all of the other higher-order FB modes (jmj ≥ 2)
should be evanescent, implying, from Eqs. (5) and (8), that

2
2π

Λ
> k ⇒ θout > 30°: ð9Þ

Let us apply these constraints on the field expressions
and write the total fields Etot;<

x below the metagrating
(z < −h) using Eqs. (1) and (5). These fields read

Etot;<
x ðy; zÞ ¼ Eine−jkz − Einejkz − j

ηI
Λ
sinðkhÞejkz

− j
ηI
Λ
sinðkh cos θoutÞ

cos θout
ejkz cos θoute−jky sin θout

− j
ηI
Λ
sinðkh cos θoutÞ

cos θout
ejkz cos θoutejky sin θout

− j
ηI
Λ

X∞
m¼−∞
jmj≥2

k sinhðαmhÞ
αm

eαmze−jð2πm=ΛÞy;

ð10Þ

where we use βm ≜ −jαm (αm ≥ 0, ∀jmj ≥ 2) in the
terms corresponding to the evanescent modes according
to Eq. (9).
From Eq. (10), it is quite clear that our only means to

eliminate the specular reflection (the second term on the
rhs) is to form destructive interference with the fundamental
FB mode of the wire-generated fields (the third term on
the rhs) [44]. Consequently, we are required to tune the
physical configuration of Fig. 1(c) such that

Ein

I
¼ −j

η

Λ
sin ðkhÞ: ð11Þ

C. Perfect beam splitting

Oncewehave eliminated specular reflections viaEq. (11),
we should guarantee that all of the incident power indeed
couples to the two plane waves propagating towards
�θout (i.e., the �1 FB modes). Although these are the only
propagating modes that are left [Eq. (10)], the incident
power could be partially absorbed by the metagrating,
reducing the device performance; in this subsection, we
derive the condition to avoid this undesirable absorption.
In order to ensure that all the incident power is coupled to

the two reflected beams, we merely need to require that the
net real power crossing a certain plane z ¼ zp < −h
vanishes; this means that the real power incident upon
the metagrating is reflected in its entirely. The �1 FB
modes are the only propagating modes that remain after the
elimination of specular reflection, which implies that all of
the reflected power is coupled to these modes; due to the
problem symmetry, the same amount of power is coupled to
each of these plane waves.
The overall real power crossing the plane z ¼ zp < −h

in one period is defined as

ARIEL EPSTEIN and OSHRI RABINOVICH PHYS. REV. APPLIED 8, 054037 (2017)

054037-4



Ptot
z ðzÞ ¼ 1

2

Z
Λ=2

−Λ=2
dyRefExðy; zÞH�

yðy; zÞg: ð12Þ

Because of the problem periodicity, it is sufficient to
show that the real power integrated over a single period
indeed vanishes to guarantee full coupling, as discussed
above. Subsequently, the perfect beam-splitting condition
Ptot
z ðzpÞ¼0 can bewritten explicitly by substituting Eq. (10)

(and its z derivative, corresponding to the tangentialmagnetic
fields) into Eq. (12), integrating, and equating to zero. This
yields a second condition on the metagrating parameters,
namely,

Im

�
Ein

I

�
sin ðkhÞ þ η

2Λ
sin2ðkhÞ

¼ −
η

Λ cos θout
sin2ðkh cos θoutÞ: ð13Þ

Note that as we consider a passive lossless medium
fϵ; μg ∈ R, the perfect beam-splitting condition is inde-
pendent of the choice of zp.
Substituting the specular reflection elimination condition

Eq. (11) into Eq. (13), still considering a passive lossless
medium fk; ηg ∈ R, yields

E ≜ cos θoutsin2ðkhÞ − 2sin2ðkh cos θoutÞ ¼ 0; ð14Þ

which is a nonlinear equation from which the required
wire-PEC separation distance h can be numerically or
graphically evaluated, setting our first degree of freedom
(in general, for given kh and θout values, the parameter E
quantifies the deviation from the perfect beam-splitting
condition). Compared to the analogous Eq. (4) of Ref. [44],
we can observe that the interference terms (trigonometric
functions with arguments kh and kh cos θout) now feature
sines instead of cosines (due to image-theory differences
between TE- and TM-polarized sources), and the prefactors
correspond to the wave impedances of the various propa-
gating modes (note that we have three distinct propagating
FB modes here).
After fixing h following Eq. (14), Eqs. (11) and (13) can

be substituted into Eq. (7) to obtain an explicit expression
for the distributed impedance ~Z, reading

~Z ¼ −j
η

Λ

�
sin ð2khÞ

2
þ sin ð2kh cos θoutÞ

cos θout

�

þ j
kη
2π

�
1þ log

2πreff
Λ

�

− j
η

Λ

X∞
m¼2

�
kð1 − e−2αmhÞ

αm
−

kΛ
2πm

�
; ð15Þ

setting our second degree of freedom.
The benefits of providing direct access to the individual

wire load in our synthesis scheme are apparent already

from a brief look at Eq. (15). It can be readily verified that
the rhs of the equation is purely imaginary; this indicates
that, in order to have full coupling of the incident plane
wave into the two symmetrical diffraction modes, the wire
should be loaded by a purely reactive impedance. This
outcome is consistent with our previous observation that
only losses could prevent perfect beam splitting once the
specular reflection elimination condition of Eq. (11) is
satisfied, and thus should, ideally, be avoided.

III. RESULTS AND DISCUSSION

A. Synthesis

We first use the developed formalism to demonstrate an
efficient way for synthesizing perfect metagrating beam
splitters. To this end, for a given desirable θout, we find (via
a simple numerical MATLAB code) the separation distance h
that minimizes the value of E [Eq. (14)]. The optimal wire-
PEC distance is presented in Fig. 2 as a function of the
splitting angle, where we choose the smallest h value
satisfying Eq. (14) for each θout. This is a universal curve,
which is valid for all operating frequencies (note that h is
expressed in wavelength units). Therefore, wemay conclude
that it is feasible to implement all of the possible beam
splitters with metagrating devices whose thickness is less
than the operating wavelength. Being a nonlinear equation,
Eq. (14) features several solution branches (several different
h values may solve it for a given θout); a transition between
two such branches can be observed at around θout ¼ 60° in
Fig. 2, where the minimal array-PEC separation satisfying
Eq. (14) is different for θout → 60°− and θout → 60°þ.
Subsequently, to evaluate the required distributed imped-

ance (the other degree of freedom we need to set), we
substitute these optimal h values (Fig. 2) into Eq. (15),
considering the suitable metagrating period Λ for each

0.1
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FIG. 2. Required wire-PEC separation as a function of the
splitting angle, obtained from Eq. (14).
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splitting angle [Eq. (8)]. For a fixed conductor width w
[Fig. 1(c)], typically limited by manufacturing constraints,
this design curve does depend on the operation frequency
due to the expression in the second row of Eq. (15) [recall
that reff ¼ w=4]. Thus, to proceed with our device synthe-
sis, we need to fix w and consider specific operating
frequencies.
Throughout this paper, we consider the printed-capacitor

geometry presented in Fig. 1(c) for implementing the
distributed load (the reasons for choosing a distributed
capacitance will become apparent shortly). The trace width
and trace separation are fixed to w ¼ s ¼ 3 mil ¼ 76.2 μm
[Fig. 1(c)], following typical fabrication tolerances [24,65].
This structure repeats itself periodically every L ¼ λ=10
along the x axis, forming an approximately homogeneous
distributed capacitance. The equivalent impedance per unit
length ~Z of this formation can thus be tuned by modifying
the capacitor width W, which is approximately linearly
proportional to the capacitance [66].
Using this geometry, we plot in Fig. 3(a) the required

distributed reactance X̃ ≜ Imf ~Zg as a function of the
splitting angle for the operating frequency f ¼ 10 GHz
(λ ≈ 30 mm), obtained from Eq. (15) and the results of
Fig. 2 (we recall that the structure is infinite along the x
dimension; thus, ~Z and X̃ are distributed impedances, given
in units of impedance per unit length ½η=λ�). As can be
observed, the required reactance is negative for all consid-
ered θout values; thus, a capacitive loading is required,
given by C ¼ −1=ð2πfLX̃Þ, which explains the chosen
meta-atom geometry [Fig. 1(c)].
The last step in obtaining a detailed physical realization

involves assessing the required capacitor width W that
implements the prescribed quasistatic capacitance C. To
this end, we can use certain analytical approximations for the
capacitance of coplanar strips; however, as these approx-
imations do not usually consider residual capacitance formed
due to thevertical lines connecting the printed capacitors (i.e.,
thewire itself), a frequency-dependent correction factorKcorr
should be incorporated into these formulas. Fortunately, as
the capacitance is predominantly proportional to the capaci-
tor width W, once this correction factor is assessed via full-
wave simulations for one working point, it can be used to
generate other designs as long as the operation frequency
remains the same. Specifically, we follow Eq. (7.64) in
Ref. [67], which, for our case of w ¼ s, yields the following
approximation for the required capacitor width:

W ≈ 2.85KcorrC ½mil=fF�: ð16Þ

We use a commercial finite-element solver, ANSYS HFSS,
to compare the analytical predictions (Sec. II) with full-
wave simulations of the metagrating realization. For a given
θout, the simulation domain consists of a PEC at z ¼ 0 and a
loaded-wire meta-atom [Fig. 1(c)] at the corresponding
z ¼ −h (Fig. 2), placed inside a 2D master-slave periodic

boundary conditions [Λ periodic along the y axis and L
periodic along the x axis, see Figs. 1(a) and 1(b)], excited
by a Floquet port at z ¼ −2λ. The standard value of
σ ¼ 58 × 106 S=m is used to simulate realistic copper
conductivity, further enhancing the fidelity of the simu-
lation results.
First, to evaluate Kcorr at f ¼ 10 GHz, we consider

the configuration corresponding to θout ¼ 80° (chosen
arbitrarily), and we sweep the capacitor width around
the value predicted by Eq. (16) without correction
(Kcorr ¼ 1) to find the actual optimal W value, which
yields the highest power coupling to the�1 FB modes. The
ratio between the uncorrected and the optimal W values
forms the required correction factor, which is found to be
Kcorr ¼ 0.83 (at 10 GHz).
Next, we use this value with Eq. (16) and the prescribed

distributed impedance [Fig. 3(a)] to predict the required

FIG. 3. Load design specifications, as a function of the splitting
angle, for metagratings operating at f ¼ 10 GHz. (a) Required
distributed reactance X̃ ¼ Imf ~Zg, evaluated from Eq. (15).
(b) Corresponding capacitor width W [Fig. 1(c)], comparing
predictions via Eq. (16) (blue solid line) to actual optimal values
obtained from full-wave simulations (red circles).
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capacitor width for all other θout values; Fig. 3(b) presents
the required W values (blue solid line) obtained in this
manner. Subsequently, for representative split angles in the
range θout ¼ 35° to θout ¼ 89°, we sweep W in full-wave
simulations around the predicted value to find the actual
optimal capacitor width; these optima are denoted by red
circles in Fig. 3(b). As can be observed, excellent agreement
between the semianalytical predictions [Eq. (16)] and the
optimal values is obtained. These results point out another
advantage of the detailed analyticalmodel used in this paper,
namely, its ability to provide a very good prediction of the
optimal physical dimensions of the meta-atom geometry.
Figure 4 presents the field distributions obtained from

the analytical predictions [Eqs. (1), (5), (11), and (14)] and
from full-wave simulations with the realistic metagrating
elements of Fig. 1(c) and the optimal capacitor widths of
Fig. 3(b), for several representative split angles. These plots
reflect excellent agreement between the analytical theory
and the simulated actual devices, except for small regions
around the meta-atoms (denoted by dotted white circles of
diameter 0.1λ), where the uniformly loaded singular wire
model used in the analytical calculations fails to account for
the finite-size copper trace geometry used in simulations.
A closer look reveals that, although the predicted

and simulated field interference patterns match almost

perfectly, the absolute field amplitudes in the simulated
results are lower than the predicted ones (note that the same
color-bar scale is used). While for most considered designs
these deviations are rather minor, for certain split angles,
e.g., for θout ¼ 60.5° [Figs. 4(e) and 4(f)], the differences
are quite significant. This reduction in field amplitude is
related to conductor losses, which are taken into account in
the simulated realistic design, but have thus far been
ignored in the analytical model.
Indeed, as can be observed in Table I, summarizing the

design specifications and simulated performance parame-
ters for metagrating beam splitters with various split angles
(including those presented in Fig. 4), certain values of θout
are more prone to losses than others. While a high splitting
efficiency is obtained for most working points, with more
than 2 × 45% of the incident power coupled symmetrically
to the �1 FB modes, losses increase when θout → 30°,
θout → 60°, and θout → 90°. Interestingly, the losses do
not increase monotonically with the split angle, which
implies that the performance reduction in metagratings is
not related to impedance mismatch, as in the case of
Huygens’ metasurfaces [4,7,9,33,53,68], but rather driven
by a different mechanism that is yet to be investigated.
Overall, Table I verifies that the simple single-element
periodic metagratings can indeed reach very high splitting

FIG. 4. Electric-field distributions jRefExðy; zÞgj for beam-splitting metagratings operating at f ¼ 10 GHz, excited from below with
a normally incident plane wave. (a),(c),(e),(g),(i) Analytical predictions following Eqs. (1) and (5) are compared to (b),(d),(f),(h),(j)
results of full-wave simulations of the realistic loaded wires of Fig. 1(c) with the optimal values of Fig. 3(b). A single period
Λ ¼ λ= sin θout is shown, for metagratings designed following Eqs. (14) and (15) for various splitting angles: (a),(b) θout ¼ 40°, (c),(d)
θout ¼ 50°, (e),(f) θout ¼ 60.5°, (g),(h) θout ¼ 70°, and (i),(j) θout ¼ 80°. Dashed horizontal white lines denote the plane z ¼ −h of
Eq. (14), and a dotted white circle denotes a 0.1λ-diameter region around the metagrating element, within which analytical predictions
for uniformly loaded singular wires are expected to deviate from full-wave simulations of realistic copper traces.
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efficiencies even for extreme split angles, limited only by
losses (note that specular reflection is practically negligible
for all cases).
To further demonstrate the versatility of our synthesis

scheme and analytical model, as well as to verify the
observations made after Table I, we apply the prescribed
methodology to design beam splitters at another frequency,
f ¼ 20 GHz. Based on the required wire-PEC separation
distances of Fig. 2, which, as denoted, are frequency
invariant, we invoke Eqs. (15) and (16) once more to
obtain the physical dimensions of the required meta-atoms
[Fig. 1(c)]. The results are given in Fig. 5, where we use the
same procedure as before to evaluate the correction factor
to be used in Eq. (16). It is found that, for f ¼ 20 GHz, this
value is Kcorr ¼ 0.89, with which the predictions for the
optimalW [blue solid line in Fig. 5(b)] are obtained. As can
be seen in Fig. 5(b), the simple relation of Eq. (16) can still
be used to obtain good predictions for the required
capacitor width at f ¼ 20 GHz. Although some of the
actual optimal dimensions (the red circles) deviate slightly
more from the prediction compared to the designs operating
at f ¼ 10 GHz [Fig. 3(b)], the deviation at these points is
not very large (approximately 10%). Thus, the analytical
relations yield a very good starting-point value which can
be readily tuned to the optimum via a short paramet-
ric sweep.
Table II summarizes the design specifications and

simulated scattering performance of metagrating beam
splitters operating at f ¼ 20 GHz, corresponding to the
optimal actual design points presented in Fig. 5(b). The
field distributions are practically identical to the ones
presented in Fig. 4 (not shown), with some minor
differences in the simulated results stemming from different
effective losses at the two frequencies. Indeed, Table II
reverifies that a highly effective suppression of specular
reflection can be obtained via the proposed structure,
corresponding to a near-unity splitting efficiency, limited
only by conductor losses.
Two interesting observations can be made upon compari-

son with the analogous designs at f ¼ 10 GHz, character-
ized in Fig. 4 and Table I. First, losses at f ¼ 20 GHz are
smaller by about 20% than the ones recorded for metagrat-
ings operating at f ¼ 10 GHz, for each of the considered
split angles. Second, similar to Table I, the losses are more

pronouncedwhen the split angle approaches certain working
points, namely,when θout→ 30°, θout → 60°, and θout → 90°.
Fortunately, the detailed analytical model presented in
Sec. II is highly suitable for an in-depth analysis of this
intriguing loss dependency, as we discuss in the following
subsection.

TABLE I. Design specifications and simulated performance of beam-splitting metagratings operating at f ¼ 10 GHz (corresponding
to Figs. 3 and 4).

θout 35° 40° 45° 50° 55° 60.5° 65° 70° 80° 89°

Λ ½λ� 1.743 1.556 1.414 1.305 1.221 1.149 1.103 1.064 1.016 1.0002
h ½λ� 0.562 0.586 0.616 0.656 0.718 0.039 0.123 0.176 0.272 0.418
W [mil] 179.6 193.5 207.0 225.3 252.0 201.8 158.1 144.0 129.0 105.0
Splitting efficiency 2×40.5% 2×44.9% 2×47.0% 2×48.1% 2×48.6% 2×35.5% 2×48.0% 2×48.9% 2×49.1% 2×46.7%
Specular reflection 1.4% 0.1% 0.2% 0.3% 0.3% 2.5% 0.2% 0.0% 0.1% 0.2%
Losses 17.6% 10.1% 5.8% 3.5% 2.5% 26.5% 3.8% 2.2% 1.7% 6.4%

FIG. 5. Load design specifications, as a function of the splitting
angle, for metagratings operating at f ¼ 20 GHz. (a) Required
distributed reactance X̃ ¼ Imf ~Zg, evaluated from Eq. (15).
(b) Corresponding capacitor width W [Fig. 1(c)] comparing
predictions via Eq. (16) (blue solid line) with actual optimal
values obtained from full-wave simulations (red circles).

ARIEL EPSTEIN and OSHRI RABINOVICH PHYS. REV. APPLIED 8, 054037 (2017)

054037-8



B. Analysis

Our aim in this section is to analyze the performance of
the beam-splitting metagratings synthesized in Sec. III A,
when possible realistic deviations from the ideal design
occur. More specifically, we would like to examine the
dependency of the coupling efficiencies and Ohmic absorp-
tion in potential losses and load reactance inaccuracies, and
probe the frequency response of these devices. As our
detailed analytical model (Sec. II) directly links the design
parameters to the device performance, we utilize it to
explore these relations.
We begin by formally defining the various performance

parameters to be investigated: the splitting efficiency ηsplit is
the fraction of incident power coupled to the �1 modes
(combined); the specular reflection efficiency ηspec is the
fraction coupled to specular reflection; and the losses ηloss
are the fraction absorbed in the conducting wires.
Decomposing the real power crossing a certain plane
z < −h [Eq. (12)] into the corresponding modes, identified
via their spatial dependency [Eq. (10)], we can write

ηsplit ¼ 2 ×
1

cos θout

�
η sin ðkh cos θoutÞ

Λ

�
2
���� I
Ein

����
2

ηspec ¼
����1þ j

η sin ðkhÞ
Λ

I
Ein

����
2

ηloss ¼ 1 − ηsplit − ηspec; ð17Þ

where the dependency in the load impedance, not neces-
sarily coinciding with the ideal value, enters via the fraction
I=Ein and Ohm’s law [Eq. (7)].
Let us thus consider a general distributed load impedance

~Z0, not necessarily the purely reactive optimal one ~Z,
derived in Eq. (15). Thus, we can write any given load
impedance as Z̃0 ¼ Z̃ þ δR̃þ jδX̃, where δR̃ ∈ R corre-
sponds to the distributed load (conductor) resistance,
responsible for losses in the system, and δX̃ ∈ R is the
deviation from the optimal distributed reactance defined by
Eq. (15) (e.g., due to manufacturing inaccuracies or a
polychromatic excitation).
Recalling that, for the devices under consideration, the

wire-PEC separation h satisfies Eq. (14), Eq. (7) can be

inverted to yield I=Ein for a given (arbitrary) distributed
load impedance Z̃0, reading

I
Ein

¼ 2j sin ðkhÞ
R̃g þ δR̃þ jδX̃

; ð18Þ

where the effective grid resistance R̃g is defined as

R̃g ¼
2η sin2 ðkhÞ

Λ
¼ 2η

λ
sin θout sin2 ðkhÞ; ð19Þ

corresponding to the ratio between the external fields at the
wire position in the absence of the wire array [Eq. (1)] and
the current induced in the wires [Eq. (11)].
Using Eq. (18), the coupling efficiencies of Eq. (17) can

be explicitly written as a function of the given distributed
load impedance Z̃0, namely,

ηsplit ¼
1

ð1þ δR̃
R̃g
Þ2 þ ðδX̃

R̃g
Þ2 ;

ηspec ¼
ðδR̃
R̃g
Þ2 þ ðδX̃

R̃g
Þ2

ð1þ δR̃
R̃g
Þ2 þ ðδX̃

R̃g
Þ2 ;

ηloss ¼ 2

δR̃
R̃g

ð1þ δR̃
R̃g
Þ2 þ ðδX̃

R̃g
Þ2 : ð20Þ

It can be easily verified that at the ideal optimal design
point, i.e., δR̃ ¼ δX̃ ¼ 0, the coupling efficiencies are
ηsplit ¼ 1 and ηspec ¼ ηloss ¼ 0, which is consistent with
the derivation in Sec. II.

1. Conductor loss

To examine the effect of conductor losses on the
metagrating performance, we assume that the load react-
ance is tuned to the optimal value (δX̃ ¼ 0), and investigate
the coupling efficiencies of Eq. (20) as a function of the
load distributed resistance δR̃. It can be easily observed that
the splitting efficiency gets its maximum for the lossless
case δR̃=R̃g ¼ 0 and monotonically decreases with increas-
ing losses δR̃=R̃g > 0. For small losses, δR̃=R̃g ≪ 2, this
decrease is mainly due to the increase in absorption. Thus,

TABLE II. Design specifications and simulated performance of beam-splitting metagratings operating at f ¼ 20 GHz (corresponding
to Fig. 5).

θout 35° 40° 45° 50° 55° 60.5° 65° 70° 80° 89°

Λ ½λ� 1.743 1.556 1.414 1.305 1.221 1.149 1.103 1.064 1.016 1.0002
h ½λ� 0.562 0.586 0.616 0.656 0.718 0.039 0.123 0.176 0.272 0.418
W ½mil� 109.1 117.8 126.0 136.5 153.0 123.0 93.8 85.5 76.5 61.5
Splitting efficiency 2×42.3% 2×45.8% 2×47.6% 2×48.6% 2×49.0% 2×37.8% 2×48.5% 2×49.1% 2×49.3% 2×47.4%
Specular reflection 0.8% 0.2% 0.1% 0.0% 0.0% 1.7% 0.0% 0.0% 0.1% 0.2%
Losses 14.6% 8.2% 4.7% 2.8% 2.0% 22.7% 3.0% 1.8% 1.3% 5.0%
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the device performance deteriorates to 90% of its maximal
splitting efficiency approximately when 10% of the inci-
dent power is lost to absorption; quantitatively, this happens
when

ηloss ¼ 10% ⇒ δR̃90% ¼ 0.056R̃g: ð21Þ
This is a very important result: it indicates that, for small

values of the effective grid resistance R̃g, even a very small
distributed wire resistance δR̃ can result in a significant
amount of losses. From another perspective, for given
(constant) conductor losses, the overall absorption
increases inversely proportional to R̃g. In fact, for such a
small wire resistance, δR̃=R̃g ≪ 1, ηloss of Eq. (20) can be
approximated by

ηloss ≈ 2
δR̃

R̃g
: ð22Þ

Thus, as revealed by Eq. (19), the working points in
which the losses would be most pronounced are the ones
where the product sin θout sin2 ðkhÞ is minimal, i.e., when
h → νλ=2, ν ∈ Z. Therefore, considering the wire-PEC
separation dictated by Fig. 2, we should expect increased
losses at θout → 60°, where sin ðkhÞ exactly vanishes, and
around θout → 30° and θout → 90°, where sin ðkhÞ
approaches zero. Indeed, this prediction is consistent with
our former observations; cf. Tables I and II.
The extent of losses, however, is not identical for all of

these design points; this is due to the fact that the exact
value of R̃g around its minima also depends on sin θout, not
only on the roots of sin ðkhÞ [Eq. (19)]. This dependency
is not negligible, as can be seen in Fig. 6, presenting R̃g as
a function of the design parameters corresponding to θout.
For a given value of δR̃, this plot predicts, for instance,
that the losses approaching θout ¼ 30° will be comparable
with the ones when approaching θout ¼ 60°, but signifi-
cantly larger than the losses very close to θout ¼ 90°.
On the other hand, Fig. 6 also points out the best
working points, where the devices are the least sensitive
to parasitic losses; these working points are indicated by
the maxima of R̃g, occurring at around θout ≈ 57° and
θout ≈ 78°. These observations, which are frequency
invariant, are consistent with the simulated results pre-
sented in Tables I and II.
It is not mere coincidence that losses in these

structures are inversely proportional to sin θout sin2 ðkhÞ
for a given δR̃ value [Eq. (22)]; in fact, this trend stems
from a fundamental physical process taking place in
these metagrating configurations. Owing to interference
between the current-carrying wires and their images
[Eq. (5)], induced by the PEC at z ¼ 0, the field
amplitude of the fundamental FB mode follows
Ewire
x jfund ¼ −jðη=λÞI sin θout sin ðkhÞ [Eq. (10)]. As we

recall from Sec. II B, this amplitude is required to meet

a certain level, Ein, in order to completely eliminate
specular reflections [Eq. (11)].
When sin ðkhÞ → 0, the phase accumulated along the

distance 2kh is a multiple of 2π; due to the π phase shift
introduced by the PEC reflection, the source and image
fields tend to cancel each other out at z ¼ −h [Eq. (10)].
Thus, in order to compensate for this destructive interfer-
ence, the design scheme tunes the metagrating configura-
tion so as to induce very large currents on the wires to still
be able to generate the fields required to eliminate specular
reflection. Hence, even the slightest amount of conductor
losses would result in a significant power dissipation at
these working points, due to the high currents involved.
On the other hand, at operating conditions for which
constructive interference takes place at z ¼ −h, less current
will be required, and the device is less susceptible to losses.
Formally, we can evaluate the fraction of absorbed power

as the ratio between the power dissipated per period due to
induced currents flowing through resistive load and the
incident power density, reading [Eq. (11)]

ηloss ¼
1
2

jIj2δR̃
Λ

1
2
jEinj2
η

¼ δR̃
η
λ sin θoutsin

2ðkhÞ ¼ 2
δR̃

R̃g
; ð23Þ

exactly as we estimated in Eq. (22). Indeed, the high
currents developing on the wires at the points of destructive
image-source interference, i.e., when the denominator is
vanishing, are responsible for the observed prominent
losses. Note that we use the nominal ratio jI=Einj given
by Eq. (11) to assess ηloss here. For this reason, Eqs. (22)
and (23) are valid only for small losses where δR̃=R̃g ≪ 1;
for more significant conductor losses, the induced current
deviates from Eq. (11) and the exact expressions in Eq. (20)
should be used.

FIG. 6. Effective grid resistance as a function of the metagrating
configuration corresponding to various output angles θout,
following Eq. (19) with h of Eq. (14) and Fig. 2.
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Before concluding this subsection, we demonstrate how
the analytical relation between ηloss and δR̃ can be har-
nessed to assess the distributed load resistance of the actual
design. To this end, we plot in Fig. 7 the predicted
absorption as a function of the distributed conductor loss
δR̃ for the various metagrating beam splitters considered in
Sec. III A, calculated using Eq. (20). For each considered
split angle θout, corresponding to a different metagrating
configuration (different R̃g values), we denote by circles
the losses ηloss recorded in full-wave simulations: in
Fig. 7(a) for the f ¼ 10 GHz metagratings, with the values

documented in Table I, and in Fig. 7(b) for the f ¼ 20 GHz
metagratings, as presented in Table II.
The δR̃ values corresponding to these points represent

the distributed load resistance that would, according to
the theory [Eq. (20)], yield the observed absorption. As the
conductor loss per unit length is determined mainly by
the wire width w and operating frequency (through the
skin depth δskin), with a minor dependency on the capacitor
width W, we should expect a more-or-less constant δR̃
for each one of the plots Figs. 7(a) and 7(b). Indeed,
Fig. 7(a) evaluates the conductor loss at f ¼ 10 GHz
to be δR̃ ¼ ð18.3� 1.2Þ × 10−3 ½η=λ�; at f ¼ 20 GHz,
the values extracted from Fig. 7(b) correspond to
δR̃ ¼ ð14.5� 1.2Þ × 10−3 ½η=λ�. As, from Eqs. (22) and
(23), the absorption is approximately proportional to δR̃ for
a given θout, the approximately 20% difference between the
estimated δR̃ values should translate into about a 20%
difference in ηloss at the different operating frequencies,
which is consistent with the results recorded in Tables I
and II.
We compare these assessments to the analytical approxi-

mation for conductor resistance in Eq. (4.11) of Ref. [66],
treating, once more, the flat w-wide wire [Fig. 1(c)] as a
rounded conductor with an effective radius of reff ¼ w=4
[30]. These considerations lead to the following approxi-
mated expression for the distributed load resistance:

δR̃ ≈
1

2πreffσδskin
; ð24Þ

where the copper conductivity σ is the same as the
one used in the simulations (Sec. III A), and the skin
depth is given by δskin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2πfμ0σÞ

p
; the vacuum

permeability is μ0 ¼ 4π × 10−7 H=m. For the given
conductor width w ¼ 3 mil ¼ 76.2 μm, this approximation
yields δR̃ ¼ 17.3 × 10−3 ½η=λ� at f ¼ 10 GHz, and
δR̃ ¼ 12.3 × 10−3 ½η=λ� at f ¼ 20 GHz, which is in rea-
sonable agreement with the average values evaluated based
on Fig. 7.
These results demonstrate the physical insight and

quantitative tools provided by the detailed analytical model,
directly relating the actual meta-atom geometry and con-
stituents to the overall device losses. These relations
indicate how the beam-splitter absorption can be tuned
by a suitable modification of the copper features, within the
limitations posed by the metagrating configuration corre-
sponding to the desired split angle.

2. Reactance deviation and frequency response

Next, we examine the effect of small deviations from the
optimal reactance value [Eq. (15)] on the metagrating
performance. In terms of the expressions for the coupling
efficiencies defined in Eq. (20), we consider a metagrating
with given (constant) conductor losses δR̃, and we analyze
the splitting efficiency ηsplit as a function of the reactance

FIG. 7. Absorbed power fraction ηloss as a function of distrib-
uted conductor resistance δR̃, calculated from Eq. (20) for
different metagrating designs, corresponding to split angles
of θout ¼ 35° (blue solid line), θout ¼ 40° (green solid line),
θout ¼ 45° (red solid line), θout ¼ 50° (black solid line),
θout ¼ 55° (magenta solid line), θout ¼ 60.5° (blue dashed line),
θout ¼ 65° (green dashed line), θout ¼ 70° (red dashed line),
θout ¼ 80° (black dashed line), and θout ¼ 89° (magenta dashed
line). Circles denote actual losses recorded in full-wave simu-
lations of the various designs at (a) f ¼ 10 GHz (Table I) and
(b) f ¼ 20 GHz (Table II).
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deviation δX̃ ≠ 0. First, we observe that, regardless of the
wire resistance, the maximal splitting efficiency is achieved
for δX̃ ¼ 0; in other words, the value of the optimal
reactance remains the one given by Eq. (15), independently
of the losses in the system. This is notable, as, in many
devices, the introduction of losses requires recalculation of
the optimal reactive components (e.g., as in metasurfaces
based on cascaded impedance sheets [14]).
As before, we quantify the device sensitivity to deviation

from the optimal set of parameters by calculating the
reactance deviation δX̃90%, for which the splitting effi-
ciency decreases to 90% of its maximal value for a given
small distributed resistance δR̃=R̃g ≪ 1. Using Eq. (20), we
evaluate this value as

ηsplit ¼ 90% ηsplitjδX̃¼0
⇒ jδX̃90%j ≈

1

3
R̃g: ð25Þ

This result indicates that the device performance is most
sensitive to load reactance deviations for working points in
which sin θout sin2 ðkhÞ is minimal [Eq. (19)]. Although this
proportionality to R̃g is very similar to the one discussed in
Sec. III B 1 in the context of losses, we wish to offer here a
somewhat different perspective to elucidate the origin of
this dependency as it applies to reactance deviations. As
discussed in the previous subsection, the wire-generated
fields experience image-source interference affecting the
ability to cancel specular reflection for a given induced
current, following Ewire

x jfund ¼ −jðη=λÞI sin θout sin ðkhÞ
[Eq. (10)]. Similarly, the incident and reflected fields
also undergo the same interference effects, such
that the total external field applied on the wires is
Eext
x jz¼−h ¼ 2jEin sin ðkhÞ [Eq. (1)]. Effectively, this is

the field that excites the current in the (passive) polarizable
loaded wires, so as to generate the desirable scattering
phenomena.
Therefore, when sin ðkhÞ → 0, both the external fields

and the wire-generated fields destructively interfere at the
metagrating plane z ¼ −h. In other words, for a given
incident field amplitude Ein, the external field at the
metagrating plane Eext

x jz¼−h is very small; thus, it is very
challenging to excite significant current in the passive
loaded wires. On the other hand, for a given induced current
I, the amplitude of the zeroth-order FB harmonics Ewire

x jfund
is also very small; thus, very high current is necessary to
generate the fields required to eliminate specular reflection.
Overall, around these destructive interference working

points, enormous current is generated by vanishingly small
exciting fields, by design. Consequently, the loaded wires
effectively implement a transadmittance amplification sys-
tem with an extremely high gain. Therefore, any small
deviation from the design specifications, equivalent to a
shift in the effective “gain,” causes substantial discrepan-
cies in the induced currents with respect to the required
ones; subsequently, a rapid deterioration in the splitting

efficiency is expected around these working points.
According to the detailed analytical model, the severity
of this double destructive-interference effect can be
quantified by the product of these two factors, namely,
I=Eext

x jz¼−h ¼ 1=½2ðη=λÞ sin θout sin2 ðkhÞ� ¼ 1=R̃g, eluci-
dating the dependency observed in Eq. (25).
We can use Eq. (25) in conjunction with Eq. (16) to

estimate the maximal allowed deviation in the capacitor
width that would still retain ηsplit above 90% of its
maximum. The fractional capacitor-width deviation toler-
ance, ΔW=W, predicted correspondingly, is presented in
Fig. 8 as a function of the split angle, for the metagratings
synthesized in Sec. III A; for brevity, results are shown only
for the designs operating at f ¼ 20 GHz. Simultaneously,
we have extracted from full-wave simulations the actual
tolerances obtained for the corresponding physical realiza-
tions [Fig. 1(c)]; these are denoted as red circles in Fig. 8.
The good agreement between the predicted and simulated
values serves as another verification of the analytical
model, demonstrating its efficacy in assessing the perfor-
mance of a given design in terms of the detailed meta-atom
geometrical parameters. Note that the working points in
which slightly larger discrepancies occur are the ones for
which the analytical model incurs slight errors in predicting
the optimal capacitor width to begin with [Fig. 5(b)].
A comparison of Figs. 8 and 6 indicates that, as implied

by Eq. (25), the tolerance for inaccuracy in the load
reactance closely follows the trend of R̃g. Specifically,
the most sensitive working points occur for θout → 30°,
θout→60°, and θout→90°, where R̃g approaches its minima,
and the highest tolerance is recorded around θout ≈ 58° and

FIG. 8. Fractional capacitor-width tolerance, as a function of
the splitting angle, for metagratings operating at f ¼ 20 GHz; the
deviation range ΔW is defined so as to guarantee ηsplit ≥ 90%.
Predictions based on Eqs. (25) and (16) (blue solid lines) are
compared to the actual tolerances extracted from full-wave
simulations of the physical structure (red circles).
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θout ≈ 77°, very close to the maxima of R̃g. Nevertheless, a
closer examination reveals that the position of the global
maximum in the two figures is different. This is due to the
fact that the fractional capacitor-width tolerance is depen-
dent also on the nominal value of W, corresponding to the
nominal reactance at each of the working points (Fig. 5);
however, these nominal values are not taken into account in
Eq. (25). Therefore, while the general trends should be very
similar, some quantitative differences are expected.
The same physical considerations lead us to hypothesize

that the tolerance for change in the operating frequency
should also follow a trend similar to that of R̃g. As
discussed after Eq. (25), at the points where the double
destructive interference occur, the metagrating exhibits an
extreme sensitivity to deviations from the nominal design
parameters due to the astronomical by-design induced-
current-to-applied-field ratio. Correspondingly, around
these working points, we would expect the smallest opera-
tional bandwidth.
Evaluating the 90% splitting-efficiency bandwidth in

closed form is more complicated, as frequency variations
modify the effective splitting angle following Eq. (8), as well
as cause deviations from the relation Eq. (15) between the
load impedance and the metagrating geometry; while lin-
earization of the frequency response is possible, the ana-
lytical expressions are cumbersome and yield little physical
intuition. On the other hand, the bandwidth can be implicitly
evaluated from the analytical model in a straightforward
manner, allowing us to probe our hypothesis.
To this end, we calculate the scattered fields for

metagratings designed at f ¼ 20 GHz [i.e., with fixed h,
W, and Λ values, extracted, respectively, from Figs. 2 and 5
and Eq. (8)], excited by normally incident plane waves at
different frequencies. As the distributed reactance at
f ¼ 20 GHz is known and is capacitive [Fig. 5(a)], the
load reactance as a function of frequency can be readily
deduced by considering the typical inverse proportional
dependency in frequency. Hence, the problem at hand
reduces to the one of scattering off a given loaded wire
array in front of a PEC, for which the fields below the
metagrating are given by Eq. (10), with the induced current
I evaluated via Eq. (7). The fraction of the incident power
coupled to the various FB modes can be subsequently
assessed from Eq. (17). Note that, when deriving these
equations, we did not make any assumptions regarding the
values of the metagrating parameters, making them appli-
cable to the desirable calculation.
The fractional 90% splitting-efficiency bandwidth cal-

culated correspondingly from the analytical model is
presented in Fig. 9 (blue solid line), along with the
bandwidths extracted from the simulated metagrating
geometries (red circles), as a function of the various split
angles. The predicted and actual frequency bandwidths
agree remarkably, demonstrating the high accuracy of the
formulation when applied to realistic physical structures.

We note that, within the frequency range indicated by
Δf, the splitting efficiency remains very high, although the
actual split angle varies with frequency [Eq. (8)]. Towards
the edges of the split-angle interval (30° and 90°), fre-
quency changes may drive the �1 FB modes towards the
evanescent spectrum or allow higher FB modes to be
excited, which also limits the achievable bandwidths. These
bandwidths may not seem very impressive at first sight;
however, one should bear in mind that they refer to 90%
performance bandwidths, not to the typical 50% (or 3-dB)
performance points. Hence, the values plotted in Fig. 9
actually correspond to a rather moderate frequency
response (at least away from the plot minima), which is
consistent with the observations made in Ref. [44]. For
reference, we note that the simulated 3-dB fractional
bandwidth of the metagrating under consideration reaches
almost 45% for θout ¼ 70°.
Importantly, the evaluated fractional bandwidths confirm

our hypothesis, as their trend clearly follows the one of the
effective grid resistance [Fig. 6]. Indeed, the working points
in which the image-source interference causes high currents
to be induced in response to very small applied fields
(θout → 30°, θout → 60°, and θout → 90°) exhibit the small-
est bandwidths due to the high sensitivity to small varia-
tions in the design parameters [see the discussion after
Eq. (25)]. On the other hand, away from these points of
destructive interference, the device performance is quite
stable with respect to moderate frequency variations, up to
the inevitable change in the split angle (note that when θout
is extremely close to 90°, even a slight decrease of the
operating frequency drives the first FB mode outside of

FIG. 9. Fractional frequency bandwidth as a function of the
splitting angle, for metagratings designed for operation at
f ¼ 20 GHz; the deviation rangeΔf is defined so as to guarantee
that ηsplit ≥ 90%. Predictions based on the analytical model (blue
solid lines) are compared to the actual bandwidth extracted from
full-wave simulations of the physical structure (red circles).
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the visible spectrum, leading to an inherent deterioration
of the bandwidth at these points).

IV. CONCLUSION

To conclude, we have presented a detailed analytical
model for metagrating beam splitters based on loaded
conducting wire arrays. With respect to previous reports,
the formulation describes electrically polarizable metagrat-
ings excited by TE-polarized fields, more practical for
realization in planar devices, and derives explicit relations
between the device performance parameters and the indi-
vidual meta-atom load, including realistic losses. From a
synthesis perspective, these relations allow an almost-
analytical prediction of the required meta-atom geometry,
significantly reducing the design effort. From an analysis
point of view, the ability to naturally integrate conductor
losses, as well as deviations from the nominal reactance and
frequency operating conditions, provides a convenient
analytical framework to investigate the effects of these
parasitics on the metagrating performance.
Specifically, we reveal that the metagratings feature

distinct preferable working points. Both in terms of losses,
as well as in terms of reactance deviation and frequency
response, designs that operate close to the points where the
effective grid resistance R̃g tends to zero are more prone to
significant performance reduction, exhibiting extremely
high sensitivity to conductor losses, load geometry inac-
curacies, and frequency shifts. Relying on the analytical
derivation, we show that these phenomena stem from
fundamental interference processes taking place in the
device. At these wire-PEC separation distances where
destructive interference occurs for both the incident and
the wire-generated field, extremely high currents are
expected to be excited by extremely low effective fields.
These extreme operating conditions lead to high sensitivity
to design parameters as well as to significant losses, due to
the large by-design transadmittance gain and large con-
ducted currents. These physical effects are very basic and
general and thus are expected to be observed in any
metagrating system of this sort (e.g., the metagratings
based on bianisotropic single-wire inclusions presented
in Ref. [44], the ones relying on dielectric rod meta-atoms
presented in Ref. [45], and those implemented using
metallic patches, as in Ref. [46]).
Interestingly, these problematic working points are not

correlated with the typical challenging operating conditions
of beam-manipulating metasurfaces [4,7,9,33,53,68], in
which performance reduction is commonly associated with
large wave-impedance mismatch. In fact, for the inves-
tigated metagrating devices, some of the best working
points actually occur for extremely wide-angle beam
splitting.
The detailed model, verified with full-wave simulations

of realistic physical structures, thus provides both a set of
efficient semianalytical tools for synthesis and analysis and

physical insights on the dominant processes taking place
within the device. Our observations also highlight the
immense potential of these devices for a variety of
wave-manipulating devices, which is consistent with pre-
vious reports [40–44,46]. Specifically, when suitable work-
ing points are chosen, these metagratings can split a
normally incident beam into two equal-power beams
propagating at very large oblique angles (around 80°) with
minimal absorption, moderate bandwidth, and substantial
resilience to fabrication inaccuracies. In fact, such a perfect
wide-angle reflect-mode beam splitting is still considered a
very challenging problem to solve accurately with conven-
tional metasurfaces [8,32], even though metagratings fea-
ture a much simpler structure, requiring only the design of a
single meta-atom (which can be done semianalytically
following our derivation).
It should be noted that, although the metagratings

presented here consider the meta-atoms to be suspended
in air below the ground plane, the synthesis and analysis
schemes can be rigorously extended to consider practical
configurations, which would naturally include a dielectric
substrate to support the loaded conductors. Enforcing
specular reflection elimination and power conservation
would still be used in order to derive the substrate thickness
and load impedance required for perfect beam splitting;
however, the interference effects dictating the optimal values
would now account also for the reflections from the
dielectric-air interface. Interestingly, due to the spatial
dispersion associated with multiple reflections between this
interface and the PEC, the splitting angles in which
destructive interference occurs at thewire-array planewould
depend on the substrate permittivity. Thus, proper selection
of this permittivity should provide a means to shift the
points of low performance from the observed θout → 30°,
θout → 60°, and θout → 90°, allowing one to achieve low-
loss perfect beam-splitting metagratings at these angles as
well [another option to achieve the same goal would be to
choose a different solution branch for Eq. (14), as denoted at
the beginning of Sec. III A, leading to a thicker device, albeit
with lower losses]. Although incorporation of a dielectric
substrate into the analyticalmodel is beyond the scope of this
paper, recent empirical evidence implies that such a con-
figuration would still enable highly efficient reflecting
metagratings with large bandwidth [46].
Finally, it is important to note that, although the synthesis

and analysis presented here are demonstrated using meta-
gratings operating at microwave frequencies, the derivation
and observations are not restricted to this frequency range.
More than that, similar meta-atom structures have been
used in the past to devise metasurfaces for terahertz and
optical applications [12,57–59]; in view of this similarity
and the metagratings’ relative resilience to conductor losses,
we expect that the presented concept can be used to devise
efficient plasmonic beam splitters as well. Furthermore,
considering more than one loaded wire per macroperiod
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would provide additional degrees of freedom by which
additional FB modes could be controlled, e.g., as was
demonstrated in Refs. [45,46]. Such an extension, which
could be achieved within the same analytical framework,
would allow synthesis of reflecting metagratings operating
at oblique angles as well; removing the PEC and cascading
the additional meta-atoms vertically should enable also
implementation of beam-splitting metagratings operating
in transmit mode. Hence, the presented analytical model
could facilitate effective semianalytical design of advanced
low-loss, robust, ultrathin devices for field manipulation
across the electromagnetic spectrum, with the highlighted
physical observations guiding the synthesis to enhance
performance by a judicious choice of working points.
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