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Achieving stop band over broadband at low-frequency range has remained a great scientific challenge
in spite of various efforts made using metamaterials or other technologies. In this work, we propose an
idea that creates a stop band for broadband at low-frequency range. The dual mechanism of shear
stiffening and rotation softening is initiated here to achieve a broad stop band at low-frequency
range. Through analytical, numerical, and experimental studies, we reveal the underlying physical
mechanism and confirm the effectiveness of this metamaterial on vibration shielding for flexural
elastic wave covering 235 to 4520 Hz. This work opens an avenue for the development of elastic
metamaterials with performance and functionalities that are highly desirable in many fields such as

vibration shielding.
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I. INTRODUCTION

Recent advances in acoustic and elastic waves have
opened a way to manipulate phonon transfers with artificial
media called metamaterials. From the dynamics of artificial
unit-cell structures, it was shown that the band gap in
quantum scale can also be obtained at the macroscopic
scale for wave insulations. The most well-known structure
for the wave insulation is a periodic structure mimicking
atomic arrangement, called phononic crystals, in which the
band gap due to the Bragg scattering can be formed [1-7].
In addition, the resonance-based metamaterials [8-23], of
which the effective density or stiffness can be negative
around the unit cell’s monopolar or dipolar resonance
frequencies, have been actively researched. Although these
ideas opened a way to insulate and manipulate waves, there
are still limitations in the elastic regime in that the broad
elastic wave insulation is still hard to be achieved at
low-frequency range. There have been several approaches
based on the metasurfaces [23-28] and corrugated struc-
tures [29-31] for low-frequency wave manipulation, but
still the broad band gap at low-frequency range has not
been achieved with these ideas. Recently, acoustic [32,33]
or elastic [34,35] plasmoniclike phenomena have been
reported. However, the acoustic plasmonics cannot be
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applied to the elastic case due to the physical difference
and that elastic plasmonics require an external fixed-
boundary condition connected to every unit cell. Also,
there has been various research on inertia amplification
[36-40], which can provide a very broad stop band at low
frequencies. However, it will be much more favorable if
one can achieve a broad stop band at any desired frequency
ranges with high designability. To clarify this issue, the
typical band structure of metamaterials shown in Fig. 1(a)
is considered. In phononic crystals, the band gaps are
formed at the frequency ranges where the wavelength is
comparable with the periodicity of crystal. Therefore, band
gaps are usually achieved at high frequencies; i.e., both the
lower and upper edge frequencies of the band gap [depicted
as w; and w, in Fig. 1(a)] are high. On the other hand, for
the band gaps formed by resonance-based metamaterials @,
and w, can be low, and a low-frequency band gap can be
achieved. However, due to the nature of resonance, the
band gaps generally suffer from narrow bandwidth. If
attainable, very low @; and very high @, can obviously
provide the broad wave insulation at low-frequency range.
However, there has been no method enabling such fre-
quency tuning.

In this research, we propose an elastic metamaterial
for the elastic wave insulation at broad low-frequency
range. The metamaterial proposed in this work, shown in
Fig. 1(b), is a periodic structure as in phononic crystals.
However, in our metamaterial, the lower and upper edge
frequencies of the band gap @w; and @, can independently
be tuned so that very low w; and very high @, can be
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(a) Schematic illustration of the main idea, dual mechanism of shear stiffening, and rotation softening. (b) The proposed elastic

metamaterial with the dual mechanism; the bar provides the shear stiffening, while the plate provides the rotation softening.

simultaneously achieved. Figure 1(a) shows the main idea
enabling the frequency tuning: the dual mechanism of
shear stiffening and rotation softening. Here, we mainly
focus on the elastic wave propagating along thin plate with
its polarization along the thickness direction (usually
called the flexural wave). Note that the same idea can
also be applied to other elastic wave modes if a mass-
spring system is properly designed. Unlike in acoustic or
electromagnetic waves, the wave motion is governed by
two kinds of stiffnesses in flexural elastic wave, i.e., the
vertical shear stiffness and the rotational stiffness. We find
that the lower edge frequency w; is governed by the
rotational stiffness, while the upper edge frequency w, by
the shear stiffness. Therefore, increasing shear stiffness
(shear stiffening) and decreasing rotational stiffness
(rotational softening) can provide the broad stop band at
low-frequency range. In our metamaterial consisting of a
rigid mass block, a mass-connecting plate, and a set of side
bars linking the adjacent mass blocks [41,42], the plate
structure is mainly dedicated to the rotational softening,
while the bar parts are mainly dedicated to the shear
stiffening. Therefore, a very broad band gap at low
frequency can be achieved with the proposed metamate-
rial. Numerical and experimental investigations show that
the achieved the band gap extends from 235 to 4520 Hz.
Also, the proposed method can provide very high desig-
nability, which is very favorable in various applications
such as vibration shielding.

II. DUAL MECHANISM OF SHEAR STIFFENING
AND ROTATION SOFTENING

A. Key idea in realizing the broad band gap

Because the key idea in realizing the broad band gap at
low frequencies is the dual mechanism, we explain why it is
critical. Consider a flexural elastic wave propagating
through an infinite periodic equivalent mass-spring system
with the periodicity of a, as shown in Fig. 2. The model in
Fig. 2 reflects the fact that flexural elastic waves are
governed by vertical shear stiffness and rotational stiffness;

I % B ,
x (wave prop. direction) a

FIG. 2. General mass-spring system of the flexural elastic
wave.
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the equivalent mass-spring model shown in Fig. 2 [41,43]
includes two springs @ and f that have vertical shear
and rotational stiffnesses, respectively. Following the
detailed procedures shown in the Supplemental Material
[44], the equation of motion for the equivalent mass-
spring system of a continuum structure shown in Fig. 2
is given as

R L P P

where matrix components A, B, and C are defined as

A = alexp(—ika) + exp(ika) — 2], (1b)
B = 0.5a*alexp(ika) — exp(—ika)], (Ic)

C = plexp(—ika) + exp(ika) — 2]
— (0.5a*)%alexp(—ika) + exp(ika) +2].  (1d)

Based on Eq. (1), one can calculate the lower edge
frequency w; and the upper edge frequency w,. Since w,
corresponds to the wave vector of ka =z, w; can be
analytically calculated by solving Eq. (1) for w at ka ==
and selecting the lower one. In the same manner, w,
corresponds to the wave vector of ka = 0 (if the optical
branch has a positive wave speed) or ka = x (if the optical
branch has a negative wave speed) and, thus, can be
analytically calculated by solving Eq. (1) at ka =0 or
ka =z and selecting the higher one. The calculated
results are
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From Eq. (2), one can clearly see that the lower edge
frequency of the band gap w, is a function of £, while the
upper edge frequency of the band gap w, is a function of a.
To achieve a broad band gap at low frequency, @, should be
low, while @, is high; i.e., a small value of § and a large
value of a are needed to form a broad band gap in a low-
frequency range.

In general continuum media or structures, however, a
and f usually increase or decrease simultaneously depend-
ing on the thickness, width, and Young’s modulus of the
continuum medium. Thus, if one lowers f, a also becomes
lowered, not increasing the band-gap width. This intrinsic
coupling behavior makes it difficult to achieve a broad band
gap in a low-frequency range for flexural elastic waves.
This is why a new metamaterial is required; a dual-
mechanism metamaterial possessing very high a (shear
stiffening) and very low S (rotation softening) simulta-
neously can achieve an extremely broad band gap at low-
frequency range.

B. Metamaterial proposition for the dual mechanism

To explain how the dual mechanism can be achieved, we
first consider the metamaterial without bar structures shown
in the left side of Fig. 3(a). Here, the plate acts as the
springs, and the corresponding spring coefficients /3, and
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metamaterial

.’.

= abal

ﬁ - lgplmc

Dual mechanism

a\

x (wave prop. direction)

(a) Design of the proposed elastic metamaterial by combining metamaterial with the plate and that with bars. (b) Equivalent

mass-spring system of the proposed elastic metamaterial for the analytic investigation of the proposed metamaterial.
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Qplae are very small due to its thin thickness. As a result,
with the metamaterial without bar structure, the lower edge
frequency of the band gap w, is very low due to the small
value of fye; 1.€., the rotation softening can be achieved.
However, the broad wave insulation at low-frequency range
cannot be achieved since the upper edge of the band gap w,
is also very low due to the very small value of @, and,
thus, the band gap is very narrow.

Now, consider the metamaterial without plate structure
shown in the middle of Fig. 3(a). As shown in the previous
research, the metamaterial with the crossed hinge-
connected bar structure has zero rotational stiffness
Pream = 0 but nonzero vertical stiffness apeam [41].
Accordingly, the shear stiffening can be achieved by
increasing the bar’s stiffness; if the bar structure has very
high stiffness, the upper edge frequency of the band gap w,
will be very high. Also, the lower edge frequency w;
remains almost zero value due to the zero rotational
stiffness. Unfortunately, it shows that the metamaterial
structure having zero rotational stiffness cannot sustain its
own weight under the static case, and, thus, it is extremely
hard to apply the metamaterial in actual applications. Also,
the metamaterial without the plate structure does not have
any mechanism to tune the lower edge frequency of the
band gap. The metamaterial without the plate structure
cannot realize the broad wave insulation at low-frequency
range.

Finally, by combining two metamaterials as in the
right of Fig. 3(a), a metamaterial with rotational stiffness
P = Pplae and vertical shear stiffness a = @ + Apeam ~
Opeam  (SINCE  Apeam > Aplae) can be achieved. In  this
metamaterial, the plate provides low rotational stiffness
(rotation softening), while the bars provide high vertical
shear stiffness (shear stiffening). This point indicates that
each stiffness component can be independently tuned to
have very low w; and very high @,. Therefore, a broad
band gap at very low-frequency range can be obtained.
Furthermore, each frequency can be independently tuned
by adjusting the plate and the bar structure, respectively, to
obtain any range of band gap.

This point can be better explained if the equivalent mass-
spring system is analytically investigated, as shown in
Fig. 3(b). In Fig. 3(b), the spring coefficient y originates
from the stiffness of the connecting bar, while the rotational
spring coefficient f from the bending stiffness of the
connecting plate. As a result, the wave dispersion relation-
ship can be expressed as (see the Supplemental Material for
details [44])

i N R e | P

A’ = 2ysin’®[exp(—ika) + exp(ika) —2], (3b)

B’ =2y sin®(b sin ® + d cos ®)[exp(ika) — exp(—ika)],
(3¢)

C' = plexp(—ika) + exp(ika) — 2]
—2y(bsin® + d cos @)?[exp(—ika) + exp(ika) + 2],
(3d)

where @ is the angle of the bar structure as shown in Fig. 3.
Comparing Eq. (3) with Eq. (1), the following equivalences
can be observed:

a* =2(bsin® +dcos®)/sin®, f=p.
(4)

Equation (4) reveals a very important fact: the bar
stiffness y affects only the shear spring coefficient a, while
the plate’s stiffness affects the rotational spring coefficient
p. Therefore, the proposed metamaterial can have the dual
mechanism of shear stiffening and rotation softening by
designing the metamaterial with small  and considerably
large a, from which the extremely broad band gap in low-
frequency range can be achieved. It should be noted that
there should be a certain lower limit for the rotational spring
coefficient 3, otherwise, the metamaterial will not sustain
its own weight.

It should be noted that the equivalent mass-spring system
shown in Fig. 3(b) can be used only for low-frequency
ranges because the mass of the bar and plate are not
considered. At high frequencies, it is shown that the bar or
plate can exhibit dynamic motions due to their own mass,
and the equivalent mass-spring model shown in Fig. 3(b)
fails to describe the wave motion of the metamaterial. For
instance, at frequencies around 6500 Hz, it is shown that
the bar structure is under the resonance motion so that other
forces that are not considered in the mass-spring system in
Fig. 3(b) take place. However, at low frequencies, as in
this work, it is shown that the plate and bar structures are
almost in their quasistatic motion, and those masses can be
ignored.

a = 2ysin’®,

III. NUMERICAL VALIDATION

A. Validation of the idea with wave
dispersion curves

Based on the analytic investigation, numerical simula-
tions are carried out to validate our idea. The wave
dispersion curve of the proposed elastic metamaterial is
numerically and analytically calculated. In the numerical
simulation, the unit-cell structure shown in Fig. 4(a) is
used, the Floquet-Bloch boundary condition (periodic BC)
[5] is imposed at the sides of the unit cell, and the
eigenvalue problem is solved for various wave vectors k
inside the first Brillouin zone [45,46]. In particular, the
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FIG. 4. (a) A unit-cell structure of the proposed elastic
metamaterial considered in the numerical simulation. (b) The
numerically and analytically calculated wave dispersion curves.
(c) Mode shapes of the unit-cell structure at the lower (left) and
upper (right) edge of the band gap, respectively.

hinge connection should be properly considered in the
simulation. For the analytic calculation, the spring and
mass coefficients of the actual metamaterial are analytically
or numerically determined to obtain the analytic dispersion
curve by using the mass-spring model. The detailed
geometry, material properties, and calculation procedure
are given in the Supplemental Material [44].

The dispersion curve in Fig. 4(b), which is obtained for
the proposed metamaterial, supports our argument that the
proposed metamaterial effectively forms a broad band gap
at low frequencies, specifically, between 235.59 and
4521.9 Hz. The normalized bandwidth is 1.802. Also,
very good agreement can be observed between the ana-
lytically calculated wave dispersion curves and the numeri-
cally calculated one, validating our analytic approaches

based on the equivalent mass-spring system. In addition,
the formation of broad band gap at low frequencies from
235.59 to 4521.9 Hz clearly supports that our idea of the
dual mechanism works well as desired.

Since the metamaterial is not symmetric along the
thickness direction (due to the bar connection), one may
argue that there may exists a coupling between the
longitudinal (x-polarized) and flexural (z-polarized) waves.
Thus, in Fig. 4(b), both the wave dispersion curves for
longitudinal (x-polarized) and flexural (z-polarized) waves
are plotted, while other wave modes such as the shear
(y-polarized) and torsional (rotation with respect to the x
axis) are not plotted due to the unit cell’s symmetric
configuration. As can be seen in the dispersion curve,
the coupling effect between the longitudinal and flexural
waves does not affect the overall wave dispersion curves at
the frequency range of interest. In fact, although the bar
structures are not symmetric along the z direction, the
coupling effect is shown to be almost negligible.

Figure 4(c) shows the mode shapes of the unit-cell
structure at the lower and upper edge frequency of the band
gap, respectively. As can be seen in Fig. 4(c), the mode
shape at the lower edge of the band gap (left) is dominated
by the rotational motion of the mass block, while that of the
upper edge (right) is dominated by the vertical motion of
the mass block. This agrees well with our findings shown in
the previous section that the lower edge frequency of the
band gap is governed by the rotational stiffness, while the
upper edge frequency is governed by the vertical shear
stiffness. Also, it can be seen that at the lower edge of the
band gap, the plate exhibits large displacements, while the
bars do not show any displacement. This supports that
the rotation softening is mainly from the plate structure. On
the other hand, at the upper edge frequency both the plate
and bars exhibit large displacements because the plate also
has a vertical shear stiffness. However, since the plate’s
vertical shear stiffness is very small, it does not highly
affect the shear-stiffening mechanism. More simulation
results with various plate and bar stiffnesses are given in the
Supplemental Material [44].

B. Numerical simulation for the low-frequency
wave insulation

Figure 5(a) is the numerical simulation setting to
measure the flexural wave transmission of the proposed
elastic metamaterial. For the simulation, we use the
metamaterial system consisting of four unit cells arranged
along the x direction. The fixed condition is imposed at the
left boundary of the system, and the vertical harmonic force
is applied at the second mass, as indicated in Fig. 5(a).
Under this condition, the time harmonic simulation is
carried out for various frequencies. In addition, only half
of the system is modeled, and the symmetric boundary
condition along the y direction is imposed to reduce the
computational time.
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FIG. 5. (a) The metamaterial system considered in the numeri-
cal simulation. The simulation results for (b) 100 Hz, (c) 1000 Hz,
(d) 3000 Hz, and (e) 5500 Hz.

It should be noted that the simulation setting in Fig. 5(a)
is not generally used in measuring the wave transfer in
metamaterial; generally, wave-based simulations (using the
perfectly matched layers or finite-difference time-domain
method) are considered to measure the wave transfer in the
metamaterials. However, in this work, the simulation
setting in Fig. 5(a) is used to correlate the simulation with
the experiment; the reasons why such a setting is required
in experiment are explained later in the paper. Nevertheless,
the simulation carried out in this work can also be useful to
predict the formation of the band gap; if an actuating
frequency belongs to the band gap, there will be no
wave transfer, and the harmonic motion of the fifth mass
in Fig. 5(a) should be very low, too.

Figures 5(b)-5(e) show the simulation results for various
frequencies of 100, 1000, 3000, and 5500 Hz. At 100 Hz
(which belongs to the pass band), both second and fifth
masses exhibit large vibration, indicating that there exists
wave transfer between each mass. However, at 1000 and
3000 Hz (which belong to the band gap), the fifth mass
exhibits very small vibration compared with the second
mass. This shows that the wave transfer is highly sup-
pressed, and very small wave transfer exists between each
mass; i.e., the band gap is formed to suppress the wave
transfer. At 5500 Hz (which belongs to the pass band),
the fifth mass vibrates again and shows the rotational
motion again, indicating that the frequency belongs to the
pass band.

To better observe the flexural wave insulation at various
frequencies, the vibration transmission is measured for
various frequencies by normalizing the motion of the fifth
mass with that of the second mass. To calculate the
vibration transmission, the vertical displacement at the left
and right sides of the second and fifth masses are measured
for varying excitation frequencies, respectively. Then, the
rotations of the second and fifth masses are calculated and
normalized to evaluate the vibration transmission plotted in
Fig. 6(b). It should be noted that unlike in the general wave
simulation, the ratio can exceed 1 since it is based on the
vibration simulation. Figures 6(b) clearly demonstrates that
the vibration transmission is extremely low in the frequency
range of 235 to 4520 Hz. This behavior is consistent with
the formation of the broad band gap at low frequency for
the flexural elastic wave, as predicted by the dispersion
curve. Such low vibration is almost impossible to achieve
with general materials such as viscoelastic materials; see
the simulation results shown in the Supplemental Material
[44] that compares the vibration shielding performance of
the proposed metamaterial and the conventional rubber
beam. This low vibration transmission can be effectively
applied in various applications on vibration shielding.

To check whether the stop-band frequencies are highly
affected by the damping effect, Fig. 6(b) is prepared with
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FIG. 6. (a) The metamate-
rial system considered in
the numerical simulation
for the wave transfer. Plot
of (b) the rotation ratio and
(c) the vertical displacement
ratio of the fifth and second
mass.
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the transmission under various damping coefficients.
Figure 6(b) shows that the transmission behavior and the
stop-band frequencies are little affected by the effect of
damping, suggesting the robustness of the proposed meta-
material system for the lossy cases.

Note that instead of the rotation of each mass, the vertical
displacement may also be considered to evaluate the wave
transfer since the flexural wave is governed by both vertical
and rotational motion. However, since we consider the
vibration simulation with the fixed boundary condition
here, the use of vertical displacement may cause a wrong
result. Figure 6(c) shows the vibration transmission mea-
sured for the ratio of vertical motion. In Fig. 6(c), there
seems to be a pass band around 1000 Hz, which, in fact,
belongs to the band gap as shown in Fig. 5(c). This is mainly
because of the fixed boundary condition imposed at the left
side of the metamaterial structure; due to the fixed boun-
dary, the second mass exhibits large rotation but very small
vertical displacement at 1000 Hz. In fact, the rotational
motion is more dominant than the vertical one in the low-
frequency ranges, as elucidated in the literature [41,43,45].

IV. EXPERIMENTAL REALIZATION

A. Experimental setting

We fabricate the metamaterial system and carry out
the experiment as shown in Fig. 7. Aluminum material is
used to make all components (masses, bars, rods, and
plates) of the metamaterial, and the bars are assembled to
the mass block by rods to form the hinge connection. The

2 3 4 5 6
Frequency (kHz)

fabrication details of the metamaterial can be found in the
Supplemental Material [44].

The experiment is set up to simulate the conditions used
for the numerical simulation depicted in Fig. 6(a); the left
side is the fixed piezoelectric actuator installed at the
second mass. Note that the static deformation of the
metamaterial sample is shown to be less than 0.1 mm,
which can be ignored in the experiments. At the piezo-
electric actuator, the sine wave is actuated with various
frequencies from 0.1 to 6 kHz. After the actuation, the
displacement of each mass is measured with the laser
Doppler vibrometer (PSV-500). In the measurement, the
following sampling frequencies are used for each frequency
range to achieve the best results: 12.5 kHz from 0.1 to
1 kHz, 50 kHz from 1 to 4 kHz, and 100 kHz from 4 to
6 kHz. Also, the measurements are carried out at the left
and right side of the second and fifth mass, respectively, to
measure the rotation of each mass, as in the simulation.
After the measurement, the Fourier transformation is
carried out to extract the displacement amplitude at the
actuating frequency.

It is worth noting that the general experiments are carried
out as follows: Actuation is made at the media outside the
metamaterial, and the reflected and transmitted waves are
measured at the outside media with proper methods.
However, in this work, we find that the general wave
experiments are hard to apply and may not be accurate. The
most critical problem is that in such a thick plate, the
actuation is not strong enough that it requires some time to
have enough amplitude. Since there exist very small gaps
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Measurement

points

between mass and rod (or rod and bar), small excitation
may result in zero wave transmission, regardless of the
frequency. On the other hand, in our vibration experiment,
the measurements are carried out under the steady state, and
there is enough time for sufficient energy transferring into
the metamaterial. Therefore, sufficiently large actuation
and fully developed flexural waves inside the metamaterial
can be achieved with the current vibration experiment.
Although this experiment cannot provide any other data
such as effective parameters or dispersion curve of the
metamaterial, it can accurately show the formation of a
band gap, which is the main point focused on in this work.

After the measurement, the rotation of the second and
fifth masses is calculated. Unlike the case of simulation,
special attention is required here. In the simulation, the
rotation of each mass can be readily calculated as 0 =
|Ug — UL |. However, since the Fourier transformation used
in the experiment provides amplitudes for each frequency
component, the experimentally measured values are always
positive, i.e., |Ug| and |U;| are measured. Thus, if we
calculate the rotation with the difference between the
measured values at the left and right side, the result is
|Ug| —|U.|, which causes a problem if the displacements
at the left and right side have different sign. Therefore, we
additionally measure the displacement at the middle of
the mass U, in Fig. 7. If the average of the measured value
is similar to Uy, |Ug| + |UL| ~2|Uyl, Ug and U; have

FIG. 7. Experimental set-
ting for the realization of
wave insulation with the pro-
posed elastic metamaterial.

Vice
(fixed)

,r"

the same sign, and the rotation can be defined as
0 = |Ug| — |U|. However, if the average is larger than
Uy, |Ug| + |UL| > 2|Uy|, Ug and U; have the different
sign, and the rotation should be defined as 6=
|Ug| + |U|. Note that no other exceptional case is
observed since the mass exhibits almost rigid-body motion.

B. Experimental results

Figure 8(a) compares the rotation ratios (calculated by
the ratio of the rotation of the fifth mass to that of the second
mass) that are obtained numerically and experimentally.
Here, the +, o, and x markers indicate the experimental
results obtained for different sampling rates. As previously
explained, three different sampling rates are used in the
experiments since the target frequency range is very broad,
and a single sampling rate cannot be used: 12.5 kHz from
0.1 to 1 kHz (corresponding to the 4+ marker), 50 kHz from
1 to 4 kHz (corresponding to the o marker), and 100 kHz
from 4 to 6 kHz (corresponding to the x marker). To
consider any possible loss effect, the experimentally mea-
sured loss factor of 1.62¢ — 8 x f, where f is the actuation
frequency, is used in the simulation.

Even though there are some discrepancies, they
agree well in the targeted band-gap frequency range
(235 to 4520 Hz), validating the actual formation of such
a broad band gap at low-frequency range. At extremely low
frequencies, from 0 to 300 Hz, high vibration transmission

054034-8



ELASTIC METAMATERIAL INSULATOR FOR BROADBAND ...

PHYS. REV. APPLIED 8, 054034 (2017)

(@ 15
A
~ 1 Simulation
S
> 17 /
o
2 Experimental
<
: results ——
2051 b+ /
S +
& 600

(b)
=
o
X
2
2
g
&
2
Frequency (kHz)
FIG. 8. Experimentally measured wave transfer in the proposed

elastic metamaterial at various frequencies. Plot of (a) the rotation
ratio and (b) the vertical displacement ratio of the fifth and
second mass.

can be observed, indicating that those frequencies belong to
the pass band of the metamaterial. On the other hand, at
frequencies from 300 to 4000 Hz, the vibration trans-
mission becomes significantly lowered. This is due to the
formation of the stop band, as in the simulation, the
formation of the stop band prohibits the flexural wave
propagation, and, thus, a very small amount of the vibration
is transferred from the actuation point (the second mass) to
the measurement point (the fifth mass). Finally, at frequen-
cies higher than 4000 Hz, high vibration transmission is
measured, indicating that the frequency range corresponds
to the pass band of the metamaterial. Overall, the experi-
ment well captures the broad band gap at low frequencies as
predicted by the simulation.

The discrepancy between the experimental result and the
simulation result can be found around 5000 Hz, which is
caused by the effect of the rods’ deformation ignored in
simulations. Since almost all regions of the rod are
embedded in other parts, the deformation of the rod is
mainly a shear one at a very small region, indicating that the
stiffness of the rod is very high. Furthermore, because
almost all deformation takes place at a plate structure at low
frequencies, the stiffness of the rod can be ignored at low
frequencies. However, at high frequencies where the

deformation of the bar becomes dominant, the stiffness
effect of the rod also affects the overall motion. The peaks in
Fig. 8(a) are due to the formation of the standing wave mode
inside the metamaterial (since the simulations and experi-
ments are carried out under the steady state), and the
stiffness of the aluminum rod decreases the overall stiffness,
resulting in the reduced peak frequency in the experimental
results. The discrepancy can be reduced if the stiffness of the
rod becomes significantly harder than the bar. For instance,
if the bar is made of plastic or if the rod is made of steel, the
experimental result will fit much better.

In addition to the rotation ratio, the vertical displacement
ratio is also experimentally calculated and compared in
Fig. 8(b). Good agreement can be observed in the case of
the displacement ratio, which well supports the validity of
the experimental results.

V. DISCUSSION

In this research, we propose an idea of wave insulation for
the broad- and low-frequency range by the dual mechanism
of shear stiffening and rotation softening. Based on our idea,
we create an elastic metamaterial with a configuration of a
rigid mass block, a thin mass-connecting plate, and a set of
bars that are hinge connected to the masses. The analytic
investigation shows that the plate alone contributes to the
lower edge of the band gap by rotation softening, while
the bars largely contribute the shear stiffening that governs
the upper band-edge frequency. Numerical and experimen-
tal results show that the realized band gap is from 235 to
4520 Hz. Although the numerical and experimental vali-
dations are carried out for one-dimensional flexural elastic
waves, the idea can also be extended to other wave modes
and to a two- or three-dimensional system. In fact, the idea
can also be applied for other wave modes such as the
longitudinal or shear wave mode if a unit cell is properly
designed so that the longitudinal or shear motion is coupled
with additional rotational motion.

As possible applications, our idea of the shear stiffening
and rotational softening can effectively be applied in various
vibration shielding applications. Usually, in vibration shield-
ing, it has been a long issue to effectively isolate vibration at
very low and broad frequencies. Moreover, almost all
vibration problems are based on the flexural motions. Our
metamaterial can provide extremely effective broadband
flexural vibration shielding at very low-frequency ranges,
which cannot be achieved with general materials. Since the
lower and upper edge frequencies of the stop band can be
easily tuned, our idea can be readily applied in various
applications such as vibration reduction in bridges or
buildings, vibration engineering in cars, automobile appli-
cations, etc. Furthermore, various vibration devices can be
designed, such as vibration waveguides, cavities, and
vibration focusing based on the present research. We believe
that our metamaterial will open a way for flexural vibration
manipulation at low-frequency ranges.
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