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We present analytical relations for the dark recombination current of a p-nþ junction with positively
charged columnar grain boundaries in the high-defect-density regime. We consider two defect-state
configurations relevant for positively charged grain boundaries: a single donor state and a continuum
of both acceptors and donors. Compared to a continuum of acceptor þ donor states or to the previously
studied single acceptor þ donor state, the grain-boundary recombination of a single donor state is
suppressed by orders of magnitude. We show numerically that superposition holds near the open-circuit
voltage VOC so that our dark JðVÞ relations determine VOC for a given short-circuit current JSC. Finally, we
explicitly show how VOC depends on the these two grain-boundary defect-state configurations.
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I. INTRODUCTION

Polycrystalline photovoltaics have seen substantial
increases in power-conversion efficiency in recent years,
exceeding the 20% mark [1]. Many of these advancements
are due to improvements in light management and have
resulted in a short-circuit current density JSC at 95% of
its theoretical maximum in CdTe [2]. However, there
remains substantial room for improvement in the open-
circuit voltage VOC; the current record value of 850 mV in
CdTe is only 76% of its theoretical maximum [2]. Despite
the impressive progress in thin-film photovoltaics, funda-
mental questions regarding the role of grain boundaries
persist. For example, the relatively low efficiency of single-
crystal CdTe has led some to suggest that grain boundaries
are beneficial to photovoltaic performance [3,4], while
numerical simulations typically indicate that this is not the
case [5–8]. There are multiple reasons for the uncertainty
regarding grain boundaries: experimentally, grain bounda-
ries are difficult to independently control and measure, and
theoretically, there is not a simple analytical model which
fully captures the physics of grain boundaries’ impact on
photovoltaic performance.
Two recent reports [9,10] on single-crystal CdTe solar

cells showed open-circuit voltages above 1 V, indicating
that grain boundaries are a primary source of VOC losses
due to recombination. This finding has renewed the
impetus to understand and mitigate the impact of grain
boundaries on VOC. Most previous theoretical works in this
direction have consisted of numerical simulations [5–8,11].
Alternately, analytical models offer a concise, quantitative

description of system behavior while providing further
insight.
In light of the need for improved understanding of grain

boundaries’ impact on VOC, we recently developed an
analytical description of dark grain-boundary recombina-
tion current, with the primary result of a simple relation
between grain-boundary properties and VOC [12]. Some
details of the grain-boundary model in this previous work
are rather particular: we assumed that the grain-boundary
defect states consist of a donor and an acceptor at the same
energy (the so-called negative U center). This assumption
has been used in previous studies [6,13] and is a simple
way for the grain boundary to exhibit Fermi-level pinning.
However, the performance of polycrystalline photovoltaics
like CdTe and CuðIn;GaÞSe2 depends critically on the
grain-boundary defect chemistry [14,15]. An adequately
general model should, therefore, accommodate varied
defect spectra.
In this work, we generalize our previous analysis to

consider other grain-boundary defect configurations. We
provide closed-form expressions and physical descriptions
relating grain-boundary properties to VOC. Because a
majority of experimental works provide evidence for pos-
itively charged grain boundaries in CdTe [16–18], we
restrict our attention to positively charged defects: a
single donor defect and a continuum of donor and acceptor
defects. We find that generalizing the grain-boundary defect
configurations necessitates a clearer and more general
formulation of the model assumptions given in Ref. [12].
The scope of this analysis is limited to grains with interior
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electrostatically similar to the unperturbed (i.e., grain-
boundary-free) p-n junction and materials with large intra-
grain hole mobility (on the order of 50 cm2=ðV sÞ, which is
consistent with single-crystal CdTe [19,20]). To provide
specific context, we present much of our analysis in terms of
material parameters related to CdTe solar cells. However,
our analysis is not material specific and applies to any
material which conforms to the assumptions we make.
There are qualitative similarities between the behavior of

the single donor þ acceptor considered in Ref. [12] and the
single donor and continuum cases studied here. In all cases,
there are three regimes of qualitatively distinct behavior,
which can roughly be classified according to the grain-
boundary core type: n type, p type, or neither (the latter
case applies at high applied voltages, where both electron
and hole densities vary with voltage). The full explicit form
of the grain-boundary dark current is shown in Table I for
all defect configurations. An important finding in this work
is that compared to a continuum of acceptor þ donor states
or to the previously studied single acceptor þ donor state,
the grain-boundary recombination of a single donor state is
suppressed by orders of magnitude.
This article is structured as follows. We begin with a

description of the physical model for the grain boundary,
encompassing both the single donor case and the con-
tinuum of gap states in Sec. II. We summarize the
equilibrium properties of the grain boundary and our
assumptions for analyzing the out-of-equilibrium problem
in Sec. III. We present the charge transport and associated
grain-boundary dark current for the single donor state in
Sec. IV and for the continuum of gap states in Sec. V.
We end the article with Sec. VI where we discuss the
implications of our analysis on the open-circuit voltage
of an illuminated p-n junction. Finally, we examine the
differences between the various configurations of the gap
states considered in the paper.

II. PHYSICAL MODEL OF THE
GRAIN BOUNDARY

Our model system is depicted in Fig. 1(a): a p-nþ
junction of width d and length L with a grain boundary
perpendicular to the junction. We use periodic boundary
conditions in the y direction so that the system describes
a closed grain of width d (d ¼ 3 μm in our numerical
calculations). We assume selective contacts so that the
majority- (minority-) carrier surface recombination velocity
is infinite (zero), which implies that the electron (hole)
current vanishes at x ¼ L (x ¼ 0). We define x0 as the
position where electron and hole concentrations are equal
in the grain interior. As stated in the Introduction, we focus
on positively charged grain boundaries, which require
screening by nearby negative charges (free electrons or
ionized acceptor dopants) to conserve the device electro-
neutrality. The consequences of the screening on the
electrostatics surrounding the grain boundary depend on

the statistics of the gap levels, the defect density of states,
and on the grain interior type (n-type or p-type region). For
example, a p-type material will develop an electric field
around the grain boundary to repel free holes from the
grain-boundary core, creating a depleted region around it.
Because of the absence of holes, this region has a negative
charge compensating the positive charge of the defect, as

TABLE I. Summary of analytical results for the grain-boundary
recombination current for various defect density of states (single
donor, single donor and acceptor, continuum of donors and
acceptors). The general form of the grain-boundary dark current
is JGBðVÞ ¼ λðS=dÞNe−Ea=kBTeqV=ðnkBTÞ, where S is a surface
recombination velocity, λ is a length characteristic of the
recombination region, N is an effective density of states, Ea is
an activation energy, n is the ideality factor, d is the grain size,
and V is the applied voltage. Each column corresponds to the
regime in which the grain boundary is depending on voltage. LGB
is the length of the grain boundary, Ln and L0

n are effective
electron diffusion lengths, x0 is given by Eq. (C4). f0 is the
thermal equilibrium occupancy of the single donor state (f0 ≈ 1).
γ is given by Eq. (48).

Grain-boundary dark current:
JGBðVÞ ¼ λðS=dÞNe−Ea=kBTeqV=ðnkBTÞ

Defect(s) Parameter n type p type
High

recombination

Single D n 1 1 2

Ea EGB Eg − EGB Eg=2

N NV NC
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NCNV

p

S ð1 − f0ÞSp Sn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − f0ÞSnSp

p

λ LGB

LGB for
Ln ≫ LGB

LGB for
L0
n ≫ LGB

Ln for
Ln ≪ LGB

L0
n for
L0
n ≪ LGB

Single Aþ
D

n 1 1 2

Ea EGB Eg − EGB Eg=2

N NV NC
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NCNV

p

S Sp=2 Sn=2
ffiffiffiffiffiffiffiffiffiffi
SnSp

p
=2

λ LGB

LGB for
Ln ≫ LGB

LGB for
L0
n ≫ LGB

x0 for
Ln ≪ LGB

L0
n for
L0
n ≪ LGB

Continuum
AþD

n 1 1 2

Ea EGB Eg − EGB Eg=2

N NV NC
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NCNV

p

S Sp Sn S=
ffiffiffi
γ

p

λ LGB

LGB for
Ln ≫ LGB

LGB for
L0
n ≫ LGB

x0 for
Ln ≪ LGB

L0
n for
L0
n ≪ LGB
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shown in Fig. 1(b). Electroneutrality determines the spatial
extent of this depleted region: the net charge (grain-
boundary charge plus depleted charge) of the ensemble
grain boundary-depletion region is zero.
The consequence of the aforementioned electric field on

the local energy landscape can be seen on a band-diagram
plot across the grain boundary, as shown in Fig. 1(c). The
electric field leads to the bending of the conduction and
valence bands, leading to a built-in potential VGB around
the grain boundary. Depending on material parameters
and the extent of band bending, the grain-boundary core
may undergo type inversion with respect to the grain
interior. Each grain-boundary type has different carrier-
transport properties under nonequilibrium conditions. In
this work, we consider both inverted and noninverted grain
boundaries.
The grain boundary is modeled as a two-dimensional

plane with various concentrations of donor and acceptor
gap states. The grain-boundary defect charge density reads

QGB ¼ q
Z

Eg

0

dE ρDðEÞ½1 − fDðEÞ� − ρAðEÞfAðEÞ; ð1Þ

where ρD (ρA) is a two-dimensional density of donor
(acceptor) states per energy unit. The occupancies of each
donor or acceptor state [indicated by the index k ∈ ðD;AÞ]
is [21]

fkðEÞ ¼
SknnGB þ Skpp̄GBðEÞ

Skn(nGB þ n̄GBðEÞ)þ Skp(pGB þ p̄GBðEÞ)
; ð2Þ

where nGB (pGB) is the electron (hole) carrier density at
the grain boundary, Sn (Sp) is the electron (hole) surface
recombination velocity, n̄GB and p̄GB are

n̄GBðEÞ ¼ NCeð−EgþEÞ=kBT; ð3Þ

p̄GBðEÞ ¼ NVe−E=kBT; ð4Þ

where E is a defect-energy level calculated from the valence-
band edge, NC (NV) is the conduction- (valence-) band
effective density of states, Eg is the material band gap, kB is
the Boltzmann constant, and T is the temperature. The
parameters Skn;p and ρk are related to the electron and hole

capture cross sections σkn;p by Skn;p ¼ σkn;pvt
R Eg

0 dE ρkðEÞ,
where vt is the thermal velocity. In this work, we vary Skn;p
with fixed ρk; this corresponds to varying σkn;p accordingly.
Note that at thermal equilibrium, Eq. (2) reduces to
the Fermi-Dirac distribution and is independent of the
recombination velocity parameters. In this case, the
occupancies of donor and acceptor states at energy E are
equal, which we denote by fGBðEÞ where fGBðEÞ ¼
f1þ exp½ðE − EFÞ=kBT�g−1.
In this work, we restrict the scope of Eq. (1) to two

cases of interest for positively charged grain boundaries.
First, we focus on a single donor state at EGB: ρDðEÞ ¼
NGBδðE − EGBÞ, where NGB is a two-dimensional defect
density (units of m−2). Denoting f0 ¼ fGBðEGBÞ, the grain-
boundary charge reads

QGB ¼ qNGBð1 − f0Þ: ð5Þ

Our second case, a continuum of gap states, is based on
the observation that a wide variety of states populate the
band gap of polycrystalline thin-film materials [22,23]. In
the absence of precise knowledge of electronic defect
structure for these materials, we consider a continuum of
uniform densities of acceptor and donor states in the gap:
ρDðEÞ ¼ NGB=Eg, ρAðEÞ ¼ αNGB=Eg. α is the ratio of
acceptor to donor density of states. For this case, we use
EGB to denote the neutral energy level of the distribution of
states: the grain-boundary charge is zero when the gap
states are filled to this level [24]. If the Fermi level is above
(below) EGB, the grain-boundary core develops a negative
(positive) charge. At thermal equilibrium, the continuum
of gap states can, therefore, be mapped onto an effective
single defect level positioned at energy EGB. The defect
charge is then

QGB ¼ qNGBð1 − 2f0Þ; ð6Þ
where f0 is now the effective occupancy of the effective
single donor þ acceptor defect state EGB. This latter case
was studied in detail in Ref. [12]. This mapping from a
continuum of donor þ acceptor states to a single donor þ
acceptor state is valid for values of α such that the densities
of donor and acceptor states remain commensurate [25].
In the large defect density limit (specified below), we find
that EGB ¼ Eg=ð1þ αÞ.

(a) (b)

(c)

FIG. 1. (a) Two-dimensional model system of a p-nþ junction
containing a columnar grain boundary. The depletion region of
the grain boundary is indicated in blue (width 2WGB). x0 is the
point in the grain interior where electron and hole densities are
equal. (b) Static charges at and around the grain-boundary core
(þ and − signs, respectively) in the p-type part of the system.
(c) Schematic of a band structure corresponding to the situation
described in (b).
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We consider large defect densities such that
QGB=ðqNGBÞ ≪ 1. We show in Appendix A that the
critical defect density for this condition to be satisfied is

Ncrit
GB ¼ 1þ e3

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵNAðEGB − EF þ 3kBTÞ

p
ð7Þ

for the single donor state, and

ρcritD ¼ 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵNAðEGB − EF − kBTÞ

p
kBT ln

�
1þeðEg−EGBþkBTÞ=kBT

1þeð−EGBþkBTÞ=kBT

�
− αEg

ð8Þ

for the continuum of acceptor and donor states. For material
parameters typical of CdTe, Eq. (7) is on the order of
1012 cm−2 for EGB ∈ ½0.4 eV; 1.3 eV�, and Eq. (8) ranges
from 4 × 1010 cm−2 eV−1 to 6 × 1011 cm−2 eV−1 for
α ∈ ½0.1; 4�.

III. EQUILIBRIUM PROPERTIES AND
ASSUMPTIONS AWAY FROM EQUILIBRIUM

A. Equilibrium properties

We first provide an expression for the equilibrium built-
in potential V0

GB in terms of the defect occupancy f0. In
both single donor and continuum defect cases, the absence
of recombination at thermal equilibrium gives the equilib-
rium carrier densities along the grain boundary [26]

neqGB ¼ f0
1 − f0

n̄GBðEGBÞ; ð9Þ

peq
GB ¼ 1 − f0

f0
p̄GBðEGBÞ: ð10Þ

We take the energy reference at the valence-band edge
in the grain interior of the p-type material, as shown in
Fig. 1(c). With this reference, the distance between the
Fermi level and the conduction band at the grain-boundary
core is Eg−EF−qV0

GB. This expression determines another
form of the equilibrium electron density at the grain-
boundary core, neqGB ¼ NC exp½ðEF − Eg þ qV0

GBÞ=kBT�.
Equating this form with Eq. (9) leads to the equilibrium
grain-boundary built-in potential

qV0
GB ¼ EGB − EF þ kBT ln

�
f0

1 − f0

�
: ð11Þ

We next consider the determination of the equilibrium
defect-state occupancy f0. The value of f0 is determined by
electroneutrality: the grain-boundary charge must be com-
pensated by the charge of the surrounding depletion region.
The depletion region width surrounding the grain boundary

in the p-type region is WGB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵV0

GB=ðqNAÞ
q

as shown

in Fig. 1 (the schematic neglects the modification of the
grain-boundary built-in potential in the p-n junction

depletion region). For the donor case, the electroneutrality
requirement leads to the following equation for f0:

1

8

�
NGB

NALD

�
2

ð1 − f0Þ2 ¼
EGB − EF

kBT
þ ln

�
f0

1 − f0

�
; ð12Þ

where LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkBT=q2NA

p
. In general, Eq. (12) must be

solved numerically for f0. Since no closed form of f0 is
available, we present our results in terms of the variable f0.
Note that as NGB → ∞, f0 → 1, and the built-in potential
of Eq. (11) diverges logarithmically. In practice, realistic
values of NGB are well below this diverging limit, so this
issue can be safely ignored. In the continuum defect
case, f0 ¼ 1=2 for the assumed large value of NGB. In
this case, Eq. (11) reduces to the previously studied single
donor þ acceptor case of Ref. [12].

B. Assumptions in the nonequilibrium analysis

A direct analytical solution for the full two-dimensional
problem is not feasible. To make analytical progress, we
split the two-dimensional system into two one-dimensional
subsystems: the grain-boundary core where electrons are
electrostatically confined [5,12,27] and the grain interior
(grain-boundary-free p-n junction) where a solution is
known. Our approach relies on approximations (or assump-
tions) which connect these two problems and render the
continuity-Poisson equations along the grain-boundary
core analytically tractable. In this section, we state our
assumptions and sketch out the subsequent solution
procedures.
One blanket assumption is that the hole quasi-Fermi

level is approximately flat across and along the grain
boundary. This is valid because the hole current along
the grain boundary is negligible (electrons carry the current
along the grain boundary), while in the grain interior, holes
are majority carriers. We provide a criterion restricting the
validity of this assumption in Appendix B. We find that for
typical material parameters of CdTe, this assumption is
generally valid for intragrain hole mobilities on the order
of 50 cm2=ðVsÞ.
The next assumption is that the grain-boundary charge

does not change with voltage. This is justified by the limit
of high defect density of states QGBðVÞ=ðqNGBÞ ≪ 1. This
assumption is crucial, as it enables us to relate the
electrostatic potential to the quasi-Fermi levels without
the Poisson equation. We denote the nonequilibrium defect
occupancy with f, which replaces f0 in Eqs. (5) and (6) for
systems out of equilibrium. f is an integral of Eq. (2) and
depends on the nonequilibrium carrier densities. Fixing the
grain-boundary charge to its equilibrium value results in
assuming f ¼ f0. The relative sizes of the terms in Eq. (2)
delineate three regimes of different behavior:
(a) “n-type” grain boundary. In this case, the defect

occupancy is determined by the electron carrier
density at the grain boundary. f remains fixed by
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maintaining a constant distance between electron
quasi-Fermi level and (actual or effective) EGB. We
further assume that the electron quasi-Fermi level is
relatively flat and equal to its bulk value. This is valid
because the high electron density in the grain-
boundary core enables high currents with relatively
small quasi-Fermi level gradients. Together with
the assumption of the relatively flat-hole quasi-Fermi
level, the densities and recombination are easily
determined.

(b) “p-type” grain boundary. In this case, the occupancy
of the defect state(s) is determined by the hole carrier
density at the grain boundary. f remains fixed by
maintaining a constant distance between the hole
quasi-Fermi level and (actual or effective) EGB.
Because the electron density is small at the grain-
boundary core, the electron quasi-Fermi level develops
gradients to drive the electron current along the
grain boundary. In this case, we must solve a one-
dimensional diffusion equation for the electron density
to obtain the carrier densities and recombination.

(c) High recombination. For sufficiently large applied
voltages, the electron and hole carrier densities are
the largest terms in the expression for f and determine
the defect occupancy. In the donor case, maintaining
f ¼ f0 leads to the following relation between elec-
tron and hole density:

SppGB ≈ ð1 − f0ÞSnnGB: ð13Þ

In the continuum case, the occupancy of the acceptor
and donor states is constrained to ensure that f ≈ 1=2.
Because f is now an integral of the acceptor and donor
occupancies, a simple relation like Eq. (13) does not
exist. We show in Sec. V C that f ¼ 1=2 leads to the
relation

pGB ¼ γðVÞnGB; ð14Þ

where the density ratio γ varies weakly with voltage. In
this high-recombination regime, Eq. (13) or Eq. (14)
together with the assumption of flat-hole quasi-Fermi
level leads to a one-dimensional drift-diffusion equa-
tion for electrons confined to the grain boundary.
Solving this equation leads to the carrier densities and
recombination.

A final assumption which applies for all of our analysis
is that the depletion regions of grain boundaries do not
overlap; i.e., grain sizes d are greater than 2WGB. In other
words, we assume that the electrostatic potential of the
grain interior is the same as that of a grain-boundary-free
p-n junction. This assumption is necessary because we
need a priori knowledge of the solution in the bulk in
order to construct the solution along the grain boundary.
For a doping density 1015 cm−3, this requirement implies

d > 2 μm. The average grain size in CdTe thin films
(excluding twin boundaries) was recently [28] found to
be 2.3 μm.

IV. GRAIN-BOUNDARY DARK CURRENT
OF A SINGLE DONOR DEFECT STATE

We begin with the case of a single donor state in the gap
of the absorber material. The grain-boundary charge is
proportional to 1 − f0 [see Eq. (5)]. In the limit of large
defect density of states, the electroneutrality of the grain
boundary is satisfied when the defect level is fully
occupied: f0 ≈ 1. In the bulk n-type region (x < x0), the
large concentration of electrons satisfies this requirement
without the need for modifying the electrostatics around the
grain boundary. In the bulk p-type region, however, the
resulting built-in potential around the grain boundary is
given by Eq. (11),

qV0
GB ¼ EGB − EF − kBT lnð1 − f0Þ: ð15Þ

Because of the logarithm term and f0 ≈ 1, the Fermi level
EF is not pinned to EGB.
We now derive analytical expressions for the dark

recombination current at the grain boundary. We support
the physical descriptions with numerically computed car-
rier densities along the grain boundary presented in Fig. 2.
The absence of modification of the electrostatics in the
bulk n-type region results in a recombination similar to the
grain interior of the p-n junction depletion region: the
recombination is determined by the hole density (minority-
carrier density) which decreases sharply for x < x0, as
shown in Fig. 2(b). In what follows, we, therefore, neglect
the contribution of this part of the grain boundary to the
total recombination and focus on carrier densities and
recombination for x ≥ x0. The general expression for the
grain-boundary recombination current reads

JGBðVÞ ¼
1

d

Z
LGB

x0

Z
d

0

dxdy RGBðx; yÞ; ð16Þ

where LGB is the length of the grain boundary. RGB is
the recombination at the grain boundary and has the
Schockley-Read-Hall form

RGBðx; yÞ ¼
SnSp(nGBðxÞpGBðxÞ − n2i )δðy − yGBÞ

Sn(nGBðxÞ þ n̄GB)þ Sp(pGBðxÞ þ p̄GB)
;

ð17Þ

where ni is the intrinsic carrier density, and we drop the
“donor” superscript for the recombination velocities.
n̄GB and p̄GB are given by Eqs. (3) and (4) evaluated
at E ¼ EGB.
As we discuss in Sec. III, under nonequilibrium con-

ditions we assume that the grain-boundary carrier densities

CHARGED GRAIN BOUNDARIES AND CARRIER … PHYS. REV. APPLIED 8, 054026 (2017)

054026-5



evolve while keeping the level occupancy equal to its
thermal equilibrium value f0. Using this assumption and
comparing the relative sizes of the terms in the non-
equilibrium level occupancy, Eq. (2) leads to three regimes
of interest for the grain-boundary dark current. We next
analyze these regimes individually.

A. Grain-boundary recombination
for SppGB ≪ Snn̄GB

We first consider SppGB ≪ Snn̄GB, also called the n-type
regime. As we discuss in Sec. III, for this case f0 remains
fixed by keeping EFn

− EGB constant. Equivalently, EFn

replaces EF in Eq. (15) [12]. In the grain interior of the bulk
p-type region, the increase of voltage V shifts the electron
quasi-Fermi level from the valence band by an amount qV.
The electron current transverse to the grain boundary is
small compared to the longitudinal one. So despite the low
electron density in the grain interior, the gradient of EFn

across the grain boundary driving the transverse current is
small and can be neglected. Assuming that EFn

is flat across
the grain boundary, the built-in potential also varies with V:

qVGB ¼ EGB − EFn
− kBT lnð1 − f0Þ

¼ EGB − EF − qV − kBT lnð1 − f0Þ
¼ qðV0

GB − VÞ; ð18Þ

where EF is the equilibrium Fermi level. Equation (18)
shows that the grain-boundary built-in potential decreases
linearly with voltage for x > x0. This is shown in Fig. 3(b).
The reduction of the barrier allows holes of the grain
interior to flow toward the grain-boundary core. The
recombination of holes generates an electron current along
the grain boundary, as depicted in Fig. 3(a).
Because holes are majority carriers in the bulk of the

absorber, the hole quasi-Fermi level is flat and equal to EF.

We derive in Appendix B a criterion under which the hole
quasi-Fermi level is flat across the grain boundary so that
the bulk quasi-Fermi level extends to the grain-boundary
core. Using Eq. (18) and the assumption of flat-hole
quasi-Fermi level, the distance between EFp

and the
valence band is EGB − qV − kBT lnð1 − f0Þ. The hole
density at the grain boundary, therefore, reads

pGBðx > x0Þ ¼ ð1 − f0ÞNVeð−EGBþqVÞ=kBT: ð19Þ

The hole density is shown in Fig. 2(b) (blue continuous
lines). The electron density is equal to its equilibrium value
Eq. (9) for x > x0, shown in Fig. 2(a). Because SnnGB is
much larger than all the other terms in the denominator of
Eq. (17), the recombination simplifies to

RGBðx > x0Þ ¼ SppGBðx > x0Þ ð20Þ

for V ≫ kBT=q. The recombination is uniform for x > x0
and negligible in the n region, so the dark recombination
current reads

JGBðVÞ ¼ ð1−f0Þ
SpðLGB− x0Þ

d
NVeð−EGBþqVÞ=kBT: ð21Þ

The features of Eq. (21) are a saturation current
ð1 − f0ÞSpðLGB − x0Þ=d, an ideality factor of 1, and an
activation energy EGB.
In Appendix B, we derive a condition under which the

hole quasi-Fermi level is approximately flat. This condition
reads (VT ¼ kBT=q),

(a) (b)

FIG. 2. Numerical simulation results for carrier densities along
the grain boundary for the three regimes determined by the ratio
SnnGB to Spp̄GB. (a) Electron density. (b) Hole density. SnnGB ≫
Spp̄GB is obtained for EGB ¼ 1 eV at V ¼ 0.3 V (blue continu-
ous lines), SnnGB ≪ Spp̄GB for EGB ¼ 0.5 eV at V ¼ 0.3 V
(orange dashed lines), and SnnGB ∝ SppGB for EGB ¼ 0.5 eV
at V ¼ 0.7 V (green dotted lines). All calculations are done for
Sn ¼ Sp ¼ 105 cm=s, μn ¼ 320 cm2=ðVsÞ, μp ¼ 40 cm2=ðV sÞ,
and NA ¼ 1015 cm−3. General parameters are listed in Table II.

(a) (b)

(c) (d)

FIG. 3. (a) Schematic of the electron and hole currents in the
regime SppGB ≪ Snn̄GB. (b) Difference in electrostatic potential
between grain boundary and grain interior VGB along the grain
boundary for the applied voltages V ¼ 0 V and V ¼ 0.3 V. (c),
(d) Band diagrams across the grain boundary for x > x0, for
V ¼ 0 V and V ¼ 0.3 V, respectively.

BENOIT GAURY and PAUL M. HANEY PHYS. REV. APPLIED 8, 054026 (2017)

054026-6



Sp
2μp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ

qVTNA

s
< 1: ð22Þ

For Sn;p ¼ 105 cm=s, NA ¼ 1015 cm−3, ϵ ¼ 9.4 ϵ0, VT ¼
25 meV, Eq. (22) is satisfied for μp > 32 cm2=ðV sÞ. Over
the course of this work, we find this numerical value to be
an acceptable threshold for all the grain-boundary regimes
of this section.

B. Grain-boundary recombination for SnnGB ≪ Spp̄GB

We turn to SnnGB ≪ Spp̄GB, also called the p-type
regime. In this case, the distance between EGB and EFp

does not change with the applied voltage V, as seen in
Figs. 4(c) and 4(d). We further assume that EFp

is flat equal
to EF [26]. As a result, Eq. (15) shows that the grain-
boundary built-in potential is independent of the applied
voltage for x > x0. This is shown in Fig. 4(b).
The electron transport is more complex than in the

previous case. In particular, the electron quasi-Fermi level
is not always equal to EF þ qV along the grain boundary
but varies significantly to accommodate the electron
current. The grain-boundary built-in potential confines
electrons near the grain-boundary core, leading to a one-
dimensional motion along it. As a result, the continuity
equation around the grain boundary reduces to a one-
dimensional equation along the grain-boundary core
(x direction). Upon solving this equation beyond x0 (see
Appendix C), the electron density reads

nGBðx > x0Þ ¼
NC

1 − f0
eð−EgþEGBþqVÞ=kBTe−

x−x0
Ln ; ð23Þ

where Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DnLE=(Snð1 − f0Þ)

p
(Dn ¼ kBTμn=q is

the electron diffusion coefficient) is the diffusion length
of electrons along the grain boundary. LE is the length scale
of the confinement of the electrons to the grain-boundary
core. This length is related to Ey, the electric field transverse
to the grain boundary in the neutral region of the p-n
junction, by 2LE ¼ 2VT=Ey [see Eq. (C9) in Appendix C].
The electron density described here is shown in Fig. 2(a)
(dashed orange line). The hole density [shown in Fig. 2(b)]
is equal to its equilibrium value Eq. (10). Because Spp̄GB

dominates the denominator of Eq. (17), the recombination
reads

RGBðx > x0Þ ¼ ð1 − f0ÞSnnGBðx > x0Þ ð24Þ

for V ≫ kBT=q. We now consider two limiting cases for
the integration of the recombination.
The first limit is the large diffusion length Ln ≫ LGB

obtained for large mobilities and small values of recombi-
nation velocity. The electron density is uniform for x > x0,
leading to the dark recombination current

JGBðVÞ ¼
SnðLGB − x0Þ

d
NCeð−EgþEGBþqVÞ=kBT: ð25Þ

In the second limit Ln ≪ LGB, the electron mobility is
small so that the electron density decays rapidly beyond x0.
The recombination is peaked on both sides of x0, and the
recombination current reads

JGBðVÞ ¼
SnLn

d
NCeð−EgþEGBþqVÞ=kBT: ð26Þ

The description of this regime is shown in Fig. 4(a).
Holes converge to x0 where they recombine, generating
a localized electron current. Both regimes have similar
features: the saturation current varies as SnNC=d, the
ideality factor is 1, and the thermal activation energy is
Eg − EGB.

C. Grain-boundary recombination for
SnnGB ≈ ð1 − f 0ÞSppGB

As we increase the applied voltage in either of the
previous cases, Snn̄GB and Spp̄GB become negligible
compared to SppGB and SnnGB, respectively. Because
the system approximately maintains the level occupancy
close to its thermal equilibrium value, the carrier densities
satisfy the relation

f0 ≈
SnnGB

SnnGB þ SppGB
: ð27Þ

Equation (27) leads to SppGB ≈ ð1 − f0ÞSnnGB, defining
the “high-recombination” regime.

(a) (b)

(c) (d)

FIG. 4. (a) Schematic of the electron and hole currents in the
regime SnnGB ≪ Spp̄GB. (b) Difference in electrostatic potential
between grain boundary and grain interior VGB along the grain
boundary for the applied voltages V ¼ 0 V and V ¼ 0.3 V.
(c),(d) Band diagrams across the grain boundary for x > x0, for
V ¼ 0 V and V ¼ 0.3 V, respectively.
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While the electrostatic potential now varies along the
grain boundary, the built-in potential still confines the
electrons to one-dimensional motion along the grain-
boundary core. Similar to the regime SnnGB ≪ Spp̄GB, a
one-dimensional continuity equation describes the electron
transport along the grain boundary. Upon solving this
equation (see Appendix D), we find the carrier densities

nGBðx > x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − f0
p

ffiffiffiffiffi
Sp
Sn

s
nieqV=ð2kBTÞe

−x−x0
L0n ; ð28Þ

pGBðx > x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0

p ffiffiffiffiffi
Sn
Sp

s
nieqV=ð2kBTÞe

−x−x0
L0n ; ð29Þ

where L0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DnL0

E=(Snð1 − f0Þ)
p

(L0
E is the character-

istic length of the electric field across the grain boundary).
These densities yield the grain-boundary recombination

RGBðx > x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0

p ffiffiffiffiffiffiffiffiffiffi
SnSp

p
nieqV=ð2kBTÞe

−x−x0
L0n ð30Þ

for V ≫ kBT=q. We consider two limiting cases for the
recombination current.
Because of the factor 1 − f0 in L0

n, common material
parameters for CdTe lead to large diffusion lengths such
that L0

n ≫ LGB. The uniform grain boundary (for x > x0)
described in Sec. IVA applies in this case, and the
recombination current reads

JGBðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0

p ffiffiffiffiffiffiffiffiffiffi
SnSp

p ðLGB − x0Þ
d

nieqV=ð2kBTÞ: ð31Þ

For smaller values of the electron diffusion length,
L0
n ≪ LGB, and the recombination is peaked at x0 with

the electron and hole flows depicted in Fig. 4(a). The dark
recombination current, therefore, reads

JGBðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0

p ffiffiffiffiffiffiffiffiffiffi
SnSp

p
L0
n

d
nieqV=ð2kBTÞ: ð32Þ

In both limits, the thermal activation energy is Eg=2 and the
ideality factor is 1. Note that the factor 1 − f0 is on the
order of 10−4 to 10−3 for typical doping densities. As a
result, Sn is effectively reduced by 2 orders of magnitude,
significantly reducing the amplitude of the grain-boundary
recombination current.
For equal EGB, this difference between the single donor

case and the single acceptor þ donor state studied in
Ref. [12] comes from the difference in band bending
associated with the two cases. For the donor case, the
band bending is substantially increased [see Eq. (15)]
relative to the donor þ acceptor case. The increased band
bending leads to suppressed hole density, which, in turn,
suppresses electron-hole recombination.

D. Numerical verification of the analytical results

We verify the accuracy of our analytical results using
numerical solutions of the drift-diffusion-Poisson equa-
tions. We use our own finite-difference software to solve
these equations for our geometry in Fig. 1(a). We discretize
the electron and hole currents using the Scharfetter-
Gummel scheme [29] and use the Newton-Raphson method
to find the self-consistent solution. To determine the
electrostatic potential boundary conditions, we perform
two steps. First, we solve the thermal equilibrium Poisson
equation with ∂ϕ=∂x ¼ 0 at each contact. Then, we solve
the full drift-diffusion Poisson equations by imposing
ϕðx ¼ 0; yÞ ¼ ϕeqðx ¼ 0; yÞ þ qV and ϕðx ¼ L; yÞ ¼
ϕeqðx ¼ L; yÞ, where ϕeq is the equilibrium potential.
Table II gives the list of material parameters used for these
calculations.
Figure 5 presents calculations for the grain-boundary

dark current. At each applied voltage, the current is given
by the smallest value between the n-type, p-type, and
high-recombination regimes.
The doping density is varied in Fig. 5(a) for

EGB ¼ 0.5 eV. The crossover from the p-type regime
(SnnGB ≪ Spp̄GB) to the high-recombination regime
[SnnGB ≈ ð1 − f0ÞSppGB] occurs at about 0.5 V, as seen
from the slope change. The inset shows the doping
dependence of the high-recombination regime. Contrary
to the case studied in Ref. [12] where common material
parameters for CdTe lead to decreasing grain-boundary
dark currents with doping at high voltages, the donor state
shows the opposite behavior. The key difference between
these cases lies in the effective electron surface recombi-
nation velocity entering the definition of the electron
diffusion length at high voltages. In the single acceptor þ
donor case, it is given by Sn=2, while in the single donor
case, we find ð1 − f0ÞSn. Because f0 ≈ 1, the latter value is
orders of magnitude smaller than the former. The primary
consequence is that for the same Sn, the diffusion length is
much larger in the donor case. In turn, the limit L0

n ≫ LGB

TABLE II. List of default parameters for numerical simulations.
Minority-carrier lifetimes correspond to the lower range found in
single-crystal CdTe [10,30]. Mobilities are varied across a wide
range of literature values [19,20,31,32]. Lifetimes and surface
recombination velocities are taken equal for electrons and holes.

Parameter Value Parameter Value

L 3 μm ND 1017 cm−3

d 3 μm NA ð3 × 1014 to 1016Þ cm−3

NC 8 × 1017 cm−3 τn;p (10 to 100) ns

NV 1.8 × 1019 cm−3 Sn;p ð1 to 106Þ cm=s

Eg 1.5 eV μp 40 cm2=ðV sÞ
ϵ 9.4 ϵ0 μn ð10 to 103Þ cm2=ðV sÞ
NGB 1014 cm−2
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is the relevant one for common CdTe parameters with the
single donor state [Eq. (31)], while the opposite limit is
relevant for the case studied in Ref. [12]. An increasing
doping density increases the depletion charge, leading to a
larger value of 1 − f0. Consequently, the 1 − f0 factor in
Eq. (31) is responsible for the increase in recombination
current with doping density observed here. This increase is
a major difference that will reflect in the open-circuit
voltage.
We show the various grain-boundary types in Fig. 5(b),

where EGB ¼ 0.5 eV and EGB ¼ 1.1 eV correspond,
respectively, to a p-type and n-type grain boundary at
equilibrium. Figure 5(c) shows the dependence of the grain-
boundary dark current with electron mobility. This depend-
ence is absent at low voltage, as shown by the limiting case
Eq. (25). At higher voltages, the relevant limit is Eq. (31),
as we discuss above, which is independent of mobility. This
limit explains the weak mobility dependence shown in the
inset. Finally, Fig. 5(d) shows the scalings of the grain-
boundary dark current with surface recombination velocity.
We show grain-boundary dark currents in the p-type
regime (dots) and high-recombination regime (squares).
On this plot, both scalings are equal. The dark current
scales as Sp at low voltage and as

ffiffiffiffiffiffiffiffiffiffi
SnSp

p
at high voltage.

The second scaling is given by Eq. (31), which is the

relevant limit in this case. With Sn ¼ Sp, these scalings are
identical.

V. GRAIN-BOUNDARY DARK RECOMBINATION
CURRENT OF A CONTINUUM

OF DEFECT STATES

We turn to the case of a continuum of donor and acceptor
states in the absorber band gap. We assume density of states
uniform in energy, ρD ¼ NGB=Eg, ρAðEÞ ¼ αNGB=Eg,
where

α ¼ ρA=ρD ð33Þ

determines the ratio of acceptor to donor density of states.
More acceptor (donor) states lead to a p-type (n-type)
grain-boundary core. The neutral energy level of the
distribution of gap states is EGB ¼ Eg=ð1þ αÞ (see Sec. II).
Under nonequilibrium conditions, the grain-boundary

dark current is given by Eq. (16) where the integral along
the grain boundary (x direction) now starts from x ¼ 0.
The recombination is the sum of the contributions from the
acceptor and donor states [represented by the superscript
k ∈ ðA;DÞ]

Rk
GBðxÞ

¼
Z

Eg

0

dE
Eg

SknSkpðnGBpGB − n2i Þ
Skn(nGB þ n̄GBðEÞ)þ Skp(pGB þ p̄GBðEÞ)

:

ð34Þ

Despite the apparent complexity of a continuum of states as
opposed to a single state, the physical description of the
nonequilibrium electron and hole currents is the same as
given in Ref. [12]. This apparent complexity is incorpo-
rated in effective surface recombination velocities in what
follows. The results of Ref. [12] and of this section are
gathered in the last two rows of Table I.

A. Grain-boundary recombination
for SknnGB ≫ SkppGB

We begin with the regime SknnGB ≫ SkppGB (n-type grain
boundary). In this regime, the electron quasi-Fermi level is
pinned to Eg=ð1þ αÞ. The recombination is determined by
holes, which flow from the p-type grain interior into the
grain-boundary core. Because most of the absorber is p
type, the recombination is uniform along the entire grain
boundary. We refer to Sec. III A of Ref. [12] for a more
complete description of this regime.
The electron density is independent of voltage and

spatially uniform, given by Eq. (9) with f0 ¼ 1=2. The
hole density is also uniform and reads

pGB ¼ NVeð−EGBþqVÞ=kBT: ð35Þ

(a) (b)

(c) (d)

FIG. 5. Grain-boundary recombination current characteristics
JGBðVÞ for a single donor state at EGB ¼ 0.5 eV (p-type grain
boundary), NA ¼ 1016 cm−3, Sn ¼ Sp ¼ 105 cm=s, and μn ¼
320 cm2=ðV sÞ unless specified otherwise. Symbols are numeri-
cal calculations; full lines correspond to analytical results of
Eqs. (21), (C15), and (D9). (a) JGBðVÞ varied with doping
density. Inset: Grain-boundary recombination current as a func-
tion of doping density at V ¼ 0.7 V. (b) JGBðVÞ varied with
defect-energy level. (c) JGBðVÞ varied with electron mobility.
Inset: Grain-boundary recombination current as a function of
electron mobility for V ¼ 0.7 V (high-recombination regime).
(d) Grain-boundary recombination current as a function of
surface recombination velocity (Sn ¼ Sp) at V ¼ 0.2 V (dots)
and V ¼ 0.7 V (squares).
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The grain-boundary dark current reads

JGBðVÞ ¼
SpLGB

d
NVeð−EGBþqVÞ=kBT; ð36Þ

where Sp is the effective surface recombination velocity

Sp ¼
X
k∈A;D

Skp

Z
Eg

0

dE
Eg

1

1þ n̄GBðEÞ
nGB

þ Skpp̄GBðEÞ
SknnGB

: ð37Þ

The integrals in Eq. (37) can be computed analytically, but
the results are cumbersome and difficult to interpret. To
give a sense of these integrals, we refer to the solid blue line
of Fig. 6(b) where we show the grain-boundary recombi-
nation as a function of energy. This figure shows that only
states with energies Eg − EGB ≲ E≲ EGB contribute sig-
nificantly to the recombination. The upper limit results
from the fact that states above EGB are empty of electrons.
The lower limit is the energy at which holes are emitted
from the defect state to the valence band faster than
electrons relax from the conduction band to the defect
state. This rapid hole emission rate prevents recombination.
The typical width of the integrand of Sp is

ΔkðαÞ ¼
���� 1 − α

1þ α
þ kBT

Eg
ln

�
Skn
Skp

NC

NV

�����; ð38Þ

as shown on the continuous plot of Fig. 6(b). Equation (37),
therefore, simplifies to

Sp ≈ SApΔAðαÞ þ SDpΔDðαÞ: ð39Þ

Note that the occupancy of the gap states is independent of
the applied voltage in this regime [see the continuous curve
in Fig. 6(a)]. That is because the occupancy of the gap
states is determined solely by the electron density, which is
independent of voltage here.
In Appendix B, we derive a condition under which the

hole quasi-Fermi level is approximately flat. This condition
applied here reads (VT ¼ kBT=q),

Sp

2μp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ

qVTNA

s
< 1: ð40Þ

For α ¼ 2, SA;Dn;p ¼ 105 cm=s,NA ¼ 1015 cm−3, ϵ ¼ 9.4 ϵ0,
VT ¼ 25 meV, and Eq. (40) is satisfied for μp >
25 cm2=ðVsÞ. This value is in the range of standard bulk
mobilities for CdTe [19,20]. We find this order of magni-
tude to be an acceptable threshold for all the grain-
boundary regimes with the continuum of defect states.

B. Grain-boundary recombination
for SknnGB ≪ SkppGB

In the regime SknnGB ≪ SkppGB (p-type grain boundary),
the hole quasi-Fermi level is pinned to Eg=ð1þ αÞ. In this
regime, the recombination is determined by electrons
flowing into the grain-boundary core from regions of the
grain interior where n > p. These regions correspond to
x < x0 in Fig. 1(a). The recombination is, therefore, mainly
concentrated within the n region of the p-n junction
depletion region and is uniform for x < x0. We refer to
Sec. III B of Ref. [12] for a complete description of
this case.
For x > x0, the hole density is uniform given by Eq. (10)

with f0 ¼ 1=2; the electrons are confined to the grain-
boundary core by the grain-boundary built-in electric field,
leading to a one-dimensional diffusion along it. Solving the
one-dimensional diffusion equation leads to the electron
density

nGBðxÞ¼NCeð−EgþEGBÞ=kBTeqV=kBT for x<x0;

¼NCeð−EgþEGBÞ=kBTeqV=kBTe−
x−x0
Ln for x>x0; ð41Þ

where Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DnLE=Sn

p
(Dn is the electron diffusion

coefficient) is the electron diffusion length, and LE ¼
VT=Ey is the length scale of the confinement (Ey is the
electric field transverse to the grain boundary in the bulk of
the p-n junction). Sn is the effective surface recombination
velocity, in this case,

Sn ¼
X
k∈A;D

Skn

Z
Eg

0

dE
Eg

1

1þ p̄GBðEÞ
pGB

þ Sknn̄GBðEÞ
SkppGB

: ð42Þ

The grain-boundary dark current reads

(a) (b)

(c) (d)

FIG. 6. (a),(c) Occupancy of the gap states as a function of
energy at x0 for ρA=ρD ¼ 0.5 (EGB ¼ 1 eV) and ρA=ρD ¼ 2
(EGB ¼ 0.5 eV), respectively. (b),(d) Normalized recombination
at x0 as a function of energy corresponding to the occupancy
levels in (a) and (c), respectively. We use SAn;p ¼ SDn;p so that
recombinations of the acceptor and donor states are the same.
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JGBðVÞ ¼
Sn

d
NCeð−EgþEGBþqVÞ=kBT

× ½x0 þ Lnð1 − e−
LGB−x0

Ln Þ�: ð43Þ

The integrals in Sp have a similar interpretation as for the
n-type grain boundary: only the states with energies EGB ≲
E≲ Eg − EGB contribute significantly to the recombina-
tion, as shown in Fig. 6(d). The lower limit results from the
fact that states below EGB are empty of holes. The upper
limit is the energy at which electrons are emitted from the
defect state to the conduction band faster than holes relax
from the valence band to the defect state. The integrands in
Sn exhibit the same shape as Sp. In particular, the width of
the integrand is still given by Eq. (38). Equation (42),
therefore, simplifies to

Sp ≈ SAnΔAðαÞ þ SDnΔDðαÞ: ð44Þ

Similar to the n-type grain boundary, the occupancy of the
gap states is determined solely by holes and is, therefore,
independent of the applied voltage shown in Fig. 6(c).

C. Grain-boundary recombination for nGB ∝ pGB

As the applied voltage is increased above EgΔk=q, the
minority-carrier density approaches the majority-carrier
density at the grain boundary. This results in a rearrange-
ment of the gap-state occupancies. However, we use the
assumption that the grain-boundary charge does not change
with voltage, as we discuss in Sec. III, which leads to the
constraint

1 ¼ 1=Eg

Z
Eg

0

dE fDðEÞ þ αfAðEÞ: ð45Þ

The change in occupancies keeps the area under the
occupancy curves equal to its equilibrium value, as shown
by the dashed lines in Figs. 6(a) and 6(c). More specifically,
occupancies above EGB increase, while the ones below EGB
decrease. These changes lead to an increase of the number
of states contributing to the recombination, as can be seen
in Figs. 6(b) and 6(d).
There is no pinning of either quasi-Fermi level to

Eg=ð1þ αÞ in this regime. We refer to Sec. III C of
Ref. [12] for the derivations in this case. We can show
that the constraint Eq. (45) imposes that the ratio of carrier
densities remains constant along the grain boundary. While
this ratio was independent of voltage for the single
acceptor þ donor state of Ref. [12], this is not the case
anymore. Assuming pGB ¼ γðVÞnGB and solving a one-
dimensional diffusion equation along the grain boundary
leads to the carrier densities

nGBðxÞ ¼
1ffiffiffi
γ

p nieqV=ð2kBTÞe
− x
L0n ; ð46Þ

pGBðxÞ ¼ ffiffiffi
γ

p
nieqV=ð2kBTÞe

− x
L0n : ð47Þ

We find γðVÞ by solving Eq. (45). This ratio gives the value
of the plateau reached by the level occupancy at energies
around midgap, as shown by the dashed lines in Figs. 6(a)
and 6(c). Because nGB and pGB dominate the level
occupancy Eq. (2) at these energies, the value of the
plateau is 1=ð1þ γβkÞ, with βk ¼ Skp=Skn. Considering
(unrealistically) large values of applied voltage such that
the level occupancy is entirely independent of energy, we
find that γ converges to

γ ¼ α − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − αÞ2 þ 4αβA=βD

p
2βA

: ð48Þ

In Eqs. (46) and (47), L0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DnLE

0=S
p

is the diffusion
length of electrons along the grain boundary, and LE

0 is
the characteristic length of the electric field transverse to
the grain boundary. The effective surface recombination
velocity S reads

S ¼
X
k∈A;D

γSknSkp
Skn þ γSkp

Z
Eg

0

dE
Eg

1

1þ Sknn̄GBðEÞþSkpp̄GBðEÞ
ðSknþγSkpÞniffiffiγp eqV=ð2kBTÞ

: ð49Þ

The integrand of Eq. (49) now varies with voltage as shown
by the dashed line in Fig. 6(b). It can be shown that an
approximation for the integral is

S ≈
X
k∈A;D

γSknSkp
Skn þ γSkp

�
qV
Eg

−
2kBT
Eg

ln

� ffiffiffi
γ

p
Skn

Skn þ γSkp

�	
: ð50Þ

Gathering the above results leads to the grain-boundary
dark current

JGBðVÞ ¼
SL0

nffiffiffi
γ

p
d
nieV=ð2VT Þ½1 − e−LGB=L0

n �: ð51Þ

This result is formally similar to the corresponding case for
the single acceptor þ donor state studied in Ref. [12], yet
the voltage dependence of the effective surface recombi-
nation velocity is a key difference. Taking SAn;p ¼ SDn;p,
Eq. (51) is proportional to

ffiffiffi
α

p
=ð1þ αÞ. This shows that

when the distribution of gap states is skewed towards either
donors or acceptors (e.g., big or small α), the recombination
current is diminished. This reduction can be understood
with the level occupancy in Fig. 6(c) (dashed line). The
recombination plotted in Fig. 6(d) shows that the states
around midgap contribute the most to the recombination.
These states correspond to the plateau of the level occu-
pancy, which is approximately equal to 1=ð1þ αÞ here. For
large or small α, the plateau is far from 1=2, which reduces
the probability that a hole and an electron be captured
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together by a gap state. This reduced probability leads to a
reduction of the recombination current.
In all three gap-state configurations studied (single and

continuum of acceptor þ donor, single donor), the high-
recombination regime exhibits a thermal activation energy
Eg=2 and an ideality factor of 2 (both typical of recombi-
nation determined by electrons and holes equally). These
characteristics were observed in previous experimental
work on Si p-nþ junctions aiming to isolate the grain-
boundary recombination current [33].

D. Numerical verification of the analytical results

The numerical tests to verify the accuracy of the results
of this section are presented in Fig. 7. These results are
obtained with SAn;p ¼ SDn;p. For applied voltages below
EgΔk=q, the current is given by the smallest value between
the n-type and p-type regimes. For higher values of applied
voltage, we use the high-recombination regime. For all
plots except Fig. 7(b), we use ρA=ρD ¼ 2, which leads to
EGB¼ 0.25 eV (p-type grain boundary).
We vary the doping density in Fig. 7(a). Before the

change of slope, the dark current is given by Eq. (43),
which exhibits a doping dependence mostly via the width
of the n region x0. The reduction of the slope reveals the
crossover to the high-recombination regime (nGB ∝ pGB)

where the dark current is given by Eq. (51). In this regime,
the inset shows the predicted scaling in N−1=4

A .
Figure 7(b) shows the grain-boundary dark current for

various ratios ρA=ρD. In descending order, these correspond
to grain-boundary neutral levels EGB ≈ 0.38, 0.75, and
1.1eV. The crossover to the high-recombination regime
occurs when the occupancy of the gap states starts to
change significantly, that is, for qV > EgΔk [see Figs. 6(b)
and 6(d)].
The dependence of the dark current with electron

mobility is shown in Fig. 7(c). At low voltage, this
dependence is barely visible but present. The dependence
is weak in the p-type regime because both limiting cases
of Eq. (43), Ln ≪ LGB and Ln ≫ LGB, are independent of
mobility. The chosen set of parameters lies in between these
limits. At high voltages, we verify the square-root scaling
as shown by Eq. (51) in the limit L0

n ≪ LGB. Increasing
electron mobility reduces the suppression of carrier den-
sities away from the maximum of recombination by
increasing the electron diffusion length L0

n. The increase
of L0

n, in turn, increases the recombination along the grain
boundary.
Figure 7(d) shows the scalings of the grain-boundary

dark current with surface recombination velocity SA;Dn;p .
Because we use equal surface recombination velocities
for the donor and acceptor states, and electrons and holes,
the effective recombination velocities and SA;Dn;p are propor-
tional. The notable feature of this plot is the

ffiffiffiffi
S

p
scaling of

the grain-boundary recombination current obtained at high
voltage. This feature appears only at high-recombination
velocities, as it requires L0

n ≪ LGB, as shown by Eq. (51).
In the opposite limit, one recovers a linear scaling in S.

VI. OPEN-CIRCUIT VOLTAGE

We now consider a charged grain boundary under
illumination and derive relations for the open-circuit
voltage VOC. We assume that around VOC the current-
voltage relation under illumination is given by the sum of
the short-circuit current JSC and the dark current (see
Sec. V of Ref. [12] for a discussion on the validity of this
assumption). The dark current is the sum of the grain-
boundary dark current (derived in Secs. III and IV) and
the bulk recombination current. We use the results of
Sec. IVof Ref. [12] for the bulk recombination whenever
necessary.
Neglecting the bulk recombination and the nonexponen-

tial voltage dependences in the grain-boundary dark cur-
rents, we can write down explicit forms for the open-circuit
voltage associated with the grain-boundary recombination.
The general form of the open-circuit voltage reads

qVGB
OC ¼ nEa þ nkBT ln

�
dJSC
SλN

�
; ð52Þ

(a) (b)

(c) (d)

FIG. 7. Grain-boundary recombination current characteristics
JGBðVÞ for a continuum of donor and acceptor states with
ρA=ρD ¼ 2, NA ¼ 1015 cm−3, SAn;p ¼ SDn;p ¼ 105 cm=s, and
μn ¼ 320 cm2=ðVsÞ unless specified otherwise. Symbols are
numerical calculations; full lines correspond to analytical results.
(a) JGBðVÞ varied with doping density. Inset: Grain-boundary
recombination current as a function of doping density at
V ¼ 0.7 V. (b) JGBðVÞ varied with the ratio of acceptor to donor
density of states. (c) JGBðVÞ varied with electron mobility. Inset:
Grain-boundary recombination current as a function of electron
mobility for V ¼ 0.7 V. (d) Grain-boundary recombination
current as a function of surface recombination velocity
(SAn;p ¼ SDn;p), at V ¼ 0.2 V (dots) and V ¼ 0.7 V (squares).
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where S is a surface recombination velocity, λ is a length
characteristic of the physical regime, N is an effective
density of states, Ea is an activation energy, V is the applied
voltage, and n is an ideality factor. Even though Eq. (52) is
not mathematically correct in all cases (because it neglects
nonexponential voltage dependence), it captures the dom-
inant scalings for the physical parameters and should give
the reader an intuition for how these parameters impact
VOC. The parameters entering Eq. (52) are shown in Table I
for all grain-boundary configurations.

A. Single donor state

We begin with the single donor state in the gap of the
absorber material. The parameters in Eq. (52) for this case
are given in the first row of Table I. Figure 8 shows
comparisons between the numerically computed VOC and
the values obtained with the numerically computed JSC and
the analytic forms of the dark current.
These results differ somewhat from the single donor þ

acceptor defect case of Ref. [12]. As we discuss in
Sec. IV D, the single donor state with common material
parameters for CdTe exhibits increasing grain-boundary
dark currents with doping at high voltages. As a result, VOC
decreases with doping as shown in Fig. 8(a). Figure 8(b)
shows that the open-circuit voltage as a function of defect-
energy level is not symmetrical from midgap. In fact, for
EGB ≳ 1.2 eV the open-circuit voltage is given by the
grain-boundary recombination current of the n-type regime

Eq. (21), while for lower EGB values, the open-circuit
voltage is given by the regime SnnGB ≈ ð1 − f0ÞSppGB and
Eq. (31) (high-recombination regime). The plot shows that
donor states close to the band edge (i.e., n-type grain
boundaries) are more favorable to VOC. These states are less
easily accessible to holes than over states, hence, reducing
the probability for recombination. Figure 5(b) shows that
for a given applied voltage, the amplitude of the grain-
boundary recombination current of the n-type regime is
smaller than the one of the high-recombination regime
(hence, the larger VOC in the first case). Figure 8(c) shows
the dependence with electron mobility for values higher
than 10 cm2=ðVsÞ. Under the chosen conditions, the
grain-boundary recombination current depends weakly on
mobility. Finally, the logarithmic dependence on surface
recombination velocity of Eq. (52) is shown in Fig. 8(d).
A key difference between this single donor case and the

donor þ acceptor case of Ref. [12] is the amplitude of the
grain-boundary recombination in the high-recombination
regime. In the single donor state of the present work, the
electron surface recombination velocity is effectively
reduced by the factor 1 − f0 (which can be on the order
of 10−3 in the regime of large defect density of states), as
can be seen in the expressions of the carrier densities
Eqs. (28) and (29), as well as in the recombination itself,
Eq. (30). As a result, for intermediate values of bulk
lifetime (approximately 10 ns), the bulk recombination
current is of the same order of magnitude as the grain-
boundary recombination current with Sn;p ¼ 105 cm=s, as
shown in Fig. 9. In this example, reducing the doping
density increases the bulk recombination (because the
width of the p-n junction depletion region increases),

(a) (b)

(c) (d)

FIG. 8. Open-circuit voltage for the system described in
Fig. 1(a) with a single donor state at EGB ¼ 0.5 eV, with
τn ¼ 100 ns, under a photon flux 1021 m−2 s−1. The absorption
length is 2.3 × 104 cm−1. The electron mobility is
320 cm2=ðV sÞ, NA ¼ 1016 cm−3, and Sn ¼ Sp ¼ 105 cm=s un-
less specified otherwise. Numerical data are in blue (dots) and
analytical predictions are in red (triangles). (a) VOC as a function
of doping density. (b) VOC as a function of the defect-state energy
level. (c) VOC as a function of electron mobility. (d) VOC as a
function of surface recombination velocity (Sn ¼ Sp).

FIG. 9. Recombination current as a function of voltage for the
grain boundary (blue dots) and the bulk (orange squares) obtained
with a bulk lifetime τn¼10ns. Other parameters:NA¼1015 cm−3,
Sn;p¼105 cm=s, μn ¼ 320 cm2=ðV sÞ, EGB ¼ 0.5 eV. Inset:
Open-circuit voltage for our system under a photon flux
1021 m−2 s−1. The absorption length is 2.3 × 104 cm−1.
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which now dominates over the grain-boundary contribu-
tion. The inset of Fig. 9 shows that the resulting open-
circuit voltage increases with doping, contrary to the
behavior shown in Fig. 8(a) for which τ ¼ 100 ns.

B. Continuum of gap states

We now turn to the continuum of acceptor and donor
states. The parameters in Eq. (52) are given in the last row
of Table I. Note that in the high-recombination regime
(nGB ¼ γpGB), Eq. (52) applies when neglecting the linear
voltage dependence of the effective surface recombination
velocity S [see Eq. (50)]. Despite this approximation,
Eq. (52) provides the correct overall scalings with doping
density, distribution of states, mobility, and surface
recombination velocities. Figure 10 shows the comparisons
of the simulated open-circuit voltages with our analytical
results.
The continuum of states studied here has many features

similar to the single acceptor þ donor state studied in
Ref. [12]. In particular, we find the same scalings of
VOC with doping, mobility, and surface recombination
velocity shown in Figs. 10(a), 10(c), and 10(d). A differ-
ence with Ref. [12] is the U-shape dependence of VOC with
the ratio ρA=ρD presented in Fig. 10(b). The open-circuit
voltage now varies with ρA=ρD (i.e., with the effective EGB
value) even for intermediate values of the ratio. This is
because the grain-boundary recombination current in the

high-recombination regime depends on this ratio via γ as
shown by Eq. (48).
Figure 10(b) shows that gap-state configurations with

ratios ρA=ρD away from 1 give better VOC values. Note that
we assume equal values of short-circuit current JSC for all
values of grain-boundary parameters. This is certainly not
the case in practice. Indeed, for grain boundaries which do
not undergo type inversion (e.g., p-type grain boundaries),
we find that the short-circuit current density is decreased.
Therefore, only gap-state configurations with more donor
states will be beneficial for photovoltaic performance for
the model configurations studied in this paper.

VII. CONCLUSION

We generalize the physical descriptions associated with
the microscopic charge transport and recombination of
Ref. [12] to two additional configurations of gap states: a
single donor state and a continuum of donor and acceptor
states. In this work, we derive the corresponding analytic
expressions for the grain-boundary dark recombination
current. We find that all these configurations share three
similar regimes describing the grain-boundary dark recom-
bination current as a function of voltage (n type, p type, and
high recombination). However, they exhibit differences in
the amplitude of the subsequent recombinations. Mixtures
of acceptor and donor states (single level and continuum)
result in enhanced recombination that reduces the open-
circuit voltage for a wide range of bulk lifetimes. The
amplitudes of recombination for the single donor state are
lower and commensurate with the bulk recombination for
intermediate bulk lifetimes. From this work and Ref. [12],
we observe that a larger concentration of donor states
compared to acceptor states improves the device open-
circuit voltage for a fixed value of the short-circuit current
density.
Nanoscale imaging and spectroscopy combined with

first-principles calculations can now determine, at least in
principle, the electronic configuration of grain boundaries
[34]. In turn, this knowledge can be used within the
framework developed here to obtain quantitative predic-
tions of device open-circuit voltage. In this way, our work
provides a bridge between nanoscale characterization and
macroscopic device response. Finally, our approach and the
physical descriptions of grain boundaries presented here
extend beyond CdTe or CuðIn;GaÞSe2 technologies. For
example, our approach can be applied to grain boundaries
with upward band bending resulting from negatively
charged boundaries in p-type materials or, alternatively,
positively charged boundaries in n-type materials.
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APPENDIX A: CONDITIONS FOR LARGE
DEFECT DENSITY REGIME

We derive the minimal defect densities for which
QGB=ðqNGBÞ ≪ 1 for the single donor defect state and
the continuum of defect states. Because the defect statistics
in thermal equilibrium are different in each case [see
Eqs. (5) and (6), respectively], we must derive two different
criteria.
We start with the single donor state. The condition

QGB=ðqNGBÞ ≪ 1 requires that fGB ≈ 1. We specify this
requirement by imposing that the Fermi level lies at least
3kBT above the defect level at the grain boundary,

EF þ qV0
GB − EGB > 3kBT: ðA1Þ

This condition together with Eq. (11) imposes

1 − f0 >
1

1þ e3
; ðA2Þ

where f0 ¼ f1þ exp½ðEGB − EFÞ=kBTg−1. Using a
depletion approximation and qV0

GB ¼ EGB − EF þ 3kBT,
the charge in the depleted regions surrounding the grain
boundary is

Q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵqNAV0

GB

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵNAðEGB−EF þ 3kBTÞ

p
: ðA3Þ

Equating Eqs. (5) and (A3) leads to the critical defect
density

Ncrit
GB ¼ 1þ e3

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵNAðEGB − EF þ 3kBTÞ

p
: ðA4Þ

For the case of the continuum of acceptor and donor
states, the large defect density of states corresponds to
the pinning of the Fermi level to the neutral point of
the gap-state distribution. We consider the large defect
density regime when the distance between EF and EGB is
smaller than kBT. Using a depletion approximation and
qV0

GB ¼ EGB − EF − kBT, the charge in the depleted
regions around the grain boundary is

Q ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵNAðEGB − EF − kBTÞ

p
: ðA5Þ

Equating Eqs. (1) and (A5) leads to the critical value

ρcritD ¼ 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵNAðEGB − EF − kBTÞ

p
kBT ln

�
1þeðEg−EGBþkBTÞ=kBT
1þeð−EGBþkBTÞ=kBT

�
− αEg

; ðA6Þ

where EGB ¼ Eg=ð1þ αÞ with α ¼ ρA=ρD. This critical
donor density of states depends on the ratio α considered.
Also note that because the denominator of Eq. (A6)
depends on energy, ρcritD is a density of states per energy
unit (expressed in m−2 eV−1).

APPENDIX B: CONDITION FOR NEARLY
FLAT HOLE QUASI-FERMI LEVEL

We specify the domain of validity of the assumption of
flat hole quasi-Fermi level. In the main text, we consider
EFp

¼ EF when variations of EFp
across the grain boun-

dary are smaller than kBT. An expansion of EFp
across the

grain boundary yields

EFp
¼ EF−

���� ∂EFp

∂y
����δy; ðB1Þ

where the gradient of EFp
at the grain boundary depends

on the regime considered (e.g., n-type grain boundary).
The single donor state and the continuum of defect
states require formally the same condition. The relevant
surface recombination velocity must be used in each
case. We are able to derive such a criterion only for an
n-type grain boundary but find that it applies well also in
other regimes. In what follows, we focus on the single
donor state.
In the regime SppGB ≪ Snn̄GB, the gradient of EFp

is
obtained by integrating the continuity equation for holes
across the grain boundary over an infinitely small distance,

���� ∂EFp

∂y
���� ¼ q

Sp
2μp

: ðB2Þ

Assuming that the variation of EFp
across the grain

boundary follows that of the electrostatic potential, the
distance across the grain boundary where EF − EFp

< kBT
is given by a depletion approximation δy ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵVT=ðqNAÞ

p
. The assumption of flat EFp

is, therefore,
valid for

Sp
2μp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ

qVTNA

s
< 1: ðB3Þ

For the continuum of states, one will use Sp instead.

APPENDIX C: DERIVATIONS FOR p-TYPE
DONOR DEFECT STATE

Using the energy scale and definitions of Fig. 4(d), the
carrier densities at the grain boundary are given by

nGBðxÞ ¼ NCe(EFn ðxÞþqϕGBðxÞ−Eg)=kBT; ðC1Þ
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pGBðxÞ ¼ NVe
(−EFp ðxÞ−qϕGBðxÞ)=kBT; ðC2Þ

where ϕGB is the electrostatic potential at the grain
boundary. The zero of electrostatic potential is at the p
contact away from the grain boundary. In the p-type donor
state, the electrostatic potential is uniform along the grain
boundary in the bulk of the p-n junction and is independent
of voltage. The value of ϕGB is determined by the grain-
boundary built-in potential at thermal equilibrium,

qϕGB ¼ qV0
GB; ðC3Þ

where V0
GB is given by Eq. (15). The grain-boundary

recombination is maximum at x0, where x0 is the point
where the carrier densities in the grain interior are equal.
We consider that the grain interior recombination is peaked
at the same point. Using a depletion approximation in the
depletion region of the p-n junction in the grain interior, we
find that n ¼ p ¼ ni at

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ϵVBI

qNA

s "
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

VT

VBI
ln
�
ND

ni

�s #
; ðC4Þ

where VBI is the p-n junction built-in potential (the
dependence of x0 on applied voltage is weak and can be
neglected). Using the potential Eq. (C3) in Eqs. (C1) and
(C2) and assuming that EFp

¼ EF [see justification above
Eq. (19)], we obtain expressions for the carrier densities
beyond x0,

nGBðx≥ x0Þ ¼
NC

1−f0
eð−EgþEGBÞ=kBTe(EFn ðxÞ−EF)=kBT; ðC5Þ

pGBðx ≥ x0Þ ¼ ð1 − f0ÞNVe−EGB=kBT: ðC6Þ

Despite the above formulation, these relations are valid
only for x ≫ x0. We extend their domain of validity to
x ¼ x0 for the purpose of calculating the recombination,
where the errors we make here on nGB and pGB cancel out.
For x ≥ x0, we use the continuity equation for electrons

to obtain EFn
,

∂Jn;x
∂x þ ∂Jn;y

∂y ¼ Snð1 − f0ÞnGBδðy − yGBÞ þ RbulkðyÞ;

ðC7Þ

where Rbulk is the bulk recombination, and the electron
current component along the grain boundary is given by

Jn;xðx; yÞ ¼ μnnGBðxÞe−y=LE
∂EFn

∂x ðxÞ: ðC8Þ

In the above equation, we assume that the electron density
across the grain boundary decays as e−y=LE , where

LE ¼ VT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ=ðqNAV0

GBÞ
q

ðC9Þ

is the characteristic length associated with the electric field
transverse to the grain boundary in the bulk region. This
exponential decay assumes that EFn

is flat around the grain
boundary, which coincides with the fact that the currents
going to the grain boundary are small. Integrating Eq. (C7)
in the y direction around the grain boundary leads to

2LEμnkBT
∂2

∂x2 ½e
EFn=kBT � ¼ qSnð1 − f0ÞeEFn=kBT; ðC10Þ

where we neglect the currents in the y direction at the
end of the grain-boundary depletion region, and the bulk
recombination. We introduce the effective diffusion length
Ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DnLE=(Snð1 − f0Þ)

p
, whereDn ¼ kBTμn=q is the

electron diffusion constant, to rewrite Eq. (C10) as

∂2

∂x2 ½e
EFn=kBT � ¼ 1

L2
n
eEFn=kBT: ðC11Þ

Considering that EFn
¼ EF þ qV at x ¼ x0, and neglecting

the diverging part of the solution of Eq. (C11), we obtain

EFn
ðx ≥ x0Þ ¼ EF þ qV − kBT

x − x0
Ln

: ðC12Þ

We verify the accuracy of Eq. (C12) in Fig. 11(b) (lower
black dashed line).
Inserting Eq. (C12) into Eq. (C5) yields the electron

density given in the main text

nGBðx ≥ x0Þ ¼
NC

1 − f0
eð−EgþEGBþqVÞ=kBTe−

x−x0
Ln : ðC13Þ

Because SnnGB ≪ Spp̄GB, the recombination at the grain
boundary reads

RGBðx ≥ x0Þ ¼ Snð1 − f0ÞnGBðx ≥ x0Þ: ðC14Þ

(a) (b)

FIG. 11. Numerical data computed along the grain boundary
for the parameters of Fig. 2 with mobilities μn ¼ 10 cm2=ðV sÞ,
μp ¼ 40 cm2=ðV sÞ. (a) Electrostatic potential. The dark dashed
line corresponds to Eq. (D7). (b) Electron quasi-Fermi level. The
dark dashed lines correspond to Eq. (D5) (upper) and Eq. (C12)
(lower).
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We integrate over the length of the grain boundary to obtain
the recombination current

JGBðVÞ ¼
SnNC

d
eð−EgþEGBþqVÞ=kBTLn½1 − e−

LGB−x0
Ln �: ðC15Þ

Equation (C15) is the general result in the case
SnnGB ≪ Spp̄GB.

APPENDIX D: DERIVATIONS
FOR DONOR STATE IN THE

HIGH-RECOMBINATION REGIME

Here we provide the derivations of the analytical results
presented in Sec. IV C. In the high-recombination regime,
there is a constant k such that SppGB ¼ kSnnGB along the

grain boundary. In addition, nGBpGB ¼ n2i e
ðEFn−EFp Þ=kBT , so

that we get

nGBðxÞ ¼
ffiffiffiffiffiffiffi
Sp
kSn

s
nie

(EFn ðxÞ−EFp ðxÞ)=ð2kBTÞ: ðD1Þ

Similar to the p-type case, the recombination is peaked at
x0 and decays after that point, so we focus the derivation
beyond x0.
From here on, the derivation of EFn

follows the same
steps as Appendix C starting with the continuity equation,

∂Jn;x
∂x þ ∂Jn;y

∂y ¼ k
1þ k

SnnGBδðy− yGBÞþRbulkðyÞ; ðD2Þ

where L0
E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵVT=ðqNAÞ
p

. L0
E is the characteristic length

associated with the electric field transverse to the grain
boundary. Rbulk is again the bulk recombination. Because
the grain-boundary built-in potential is not uniform in this
regime, the transverse electric field depends on the location
along the grain boundary. While L0

E does not correspond
to a precise field, we find that it accurately determines the
slopes of the electron quasi-Fermi level and the electrostatic
potential along the grain boundary. The electron current
is still given by Eq. (C8) with the change of LE for L0

E.
Integrating Eq. (D2) around the grain boundary leads to

4L0
EμnkBT

∂2

∂x2 ½e
EFn−EFp

2kBT � ¼ q
k

1þ k
Sne

EFn−EFp
2kBT ; ðD3Þ

where we neglect the currents in the y direction at the end of
the grain-boundary depletion region, and the bulk recom-
bination. We introduce the effective diffusion length L0

n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DnL0

Eð1þ kÞ=ðkSnÞ
p

and assume that EFp
¼ EF [see

justification above Eq. (19)] to rewrite Eq. (D3) as

∂2

∂x2 ½e
EFn=ð2kBTÞ� ¼ 1

L0
n
2
eEFn=ð2kBTÞ: ðD4Þ

Considering that EFn
¼ EF þ qV at x ¼ x0, we obtain

EFn
ðx ≥ x0Þ ¼ EF þ qV − 2kBT

x − x0
L0
n

: ðD5Þ

Since kSnnGB ¼ SppGB, we can equate Eqs. (C1) and (C2)
to get

EFn
ðxÞ ¼ −2qϕGBðxÞ − EF − Eg − kBT ln

�
k
SnNC

SpNV

�
;

ðD6Þ

which yields the electrostatic potential along the grain
boundary

ϕGBðxÞ ¼ kBT
x − x0
L0
n

− EF − q
V
2
− kBT ln

 
ni
NV

ffiffiffiffiffiffiffi
kSn
Sp

s !
:

ðD7Þ

Comparisons of Eqs. (D7) and (D5) with numerical data are
shown in Figs. 11(a) and 11(b), respectively (dotted green
curves). We see that the numerically computed potential
and electron quasi-Fermi level are not linear over the entire
length of the grain boundary; however, the analytical results
give a good approximation of the slopes near the depletion
region.
Inserting Eqs. (D5) and (D7) into the densities Eqs. (C1)

and (C2) yields the densities given in Sec. IV C. These
densities yield the grain-boundary recombination

RGBðx > x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kSnSp

p
1þ k

nieqV=ð2kBTÞe
−x−x0

L0n : ðD8Þ

Integrating the recombination over the length of the grain
boundary gives the recombination current

JGBðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kSnSp

p
L0
n

ð1þ kÞd nieV=ð2VTÞ½1 − e−LGB=L0
n �: ðD9Þ

Equation (D9) is the general result in the case
kSnnGB ¼ SppGB.
The constant k can be specified considering that the

occupancy of the grain-boundary defect level remains equal
to its thermal equilibrium value f0. We thus find

k ≈ 1 − f0; ðD10Þ

assuming that f0 ≲ 1 because of the high defect density of
states.
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