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Harnessing multimode waves allows high information capacity through modal expansions. Although
passive multimode devices for broadband responses have been demonstrated in momentum or frequency
domains, the difficulty in achieving collective manipulation of all eigenmodes has hindered the
implementation of digital multimode devices such as switching. Here we propose building blocks for
digital switching of spatially random waves based on parity-converted supersymmetric pairs of multimode
potentials. We reveal that unbroken supersymmetric transformations of any parity-symmetric potential
derive the parity reversal of all eigenmodes, which allows the complete isolation of random waves in the
“off” state. With two representative solvable potentials, building blocks for binary and many-valued logics
are then demonstrated for random waves: a harmonic pair for binary switching of arbitrary wave fronts and
a Pöschl-Teller pair for multilevel switching which implements fuzzy membership functions. Our results
realizing the transfer of arbitrary wave fronts between wave elements will lay the foundation of
high-bandwidth data processing.
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I. INTRODUCTION

Digital electronics of today has been established upon
stable switching operation of transistors [1], which is based
on charge-density-based processing of electric signals. The
current flow inside a transistor is controlled by a field
exerted on the charge which is the density of electric wave
functions independent of their phase information. The
performance of electronic switching is, thus, insensitive
to spatial profiles and phases of wave functions, allowing a
high degree of freedom for information capacity.
However, the operation principle of digital photonics is

disparate from the electronic one due to the lack of charges in
photons. In contrast to the direct control of electrons with
external fields, the control of light flows is, thus, achieved
indirectly through the alteration of optical wave functions
from light-matter interactions, which enforces strong modal
dependence on optical modulations. This limit has hindered
consistent and collective manipulations of multimodes in
photonics, and, therefore, in spite of the success of passive
multimode devices [2–6], most of the switching technologies
in optics [7–10] have remained in single-mode operation
with fixed input profiles, not only restricting information
capacity but also enforcing the use of large-footprint multi-
to-single-mode couplers [11–13]. To exploit the highest
degree of freedom through multimode expansions and, thus,
achieve high information capacity of light as observed in the
bandwidth explosion with the introduction of waveform
transparent optical amplifiers [14], the present obstacle for

collective switching of multimodes insensitive to spatial
profiles of wave functions must be overcome.
In this paper, we propose the “building block” for the

switching of “random” waves to realize digital photonic
systems of high information capacity. To achieve collective
and high contrast switching of multimodes contained
within random waves, we employ the concept of super-
symmetry (SUSY), which derives isospectrally trans-
formed eigenmodes with the ground-state annihilation
[15]. As a physical building block for the binary switching
of random waves, we design a SUSY harmonic pair [15]
possessing even-spacing, isospectral eigensystems, and
most critically, having parity-reversed eigenmodes. By
employing a pair of harmonic index profile waveguides
and applying index modulations [16], the collective switch-
ing of multimodes is achieved, completely regenerating
arbitrary wave fronts between optical elements without any
loss of spatial information. With a SUSY Pöschl-Teller pair
[15], we also demonstrate the multilevel switching [17],
establishing a random wave membership function for
many-valued fuzzy logics [18]. Our results extending the
regime of digital photonics to random light conditions
implement uncorrupted information transfer between
elements and pave the way for fuzzy photonics [19].

II. BUILDING BLOCK FOR RANDOM WAVES

A. Basic concept

We start with the collective control of random waves
(Fig. 1). To realize the switching of broadband spatial infor-
mation, it is noted that conventional designs [7–10] require
multiple switches with multiplexers and demultiplexers*nkpark@snu.ac.kr
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[Fig. 1(a)] for the separate switching of each participating
mode. As an alternative, we propose a building block for the
collectivemultimode switching [Fig. 1(b)], transparent to the
spatial profiles and phases of the data.

B. Design criteria

Figure 2 shows the implementation of the building block
for the mode-independent binary switching of random
waves. For transverse-electric-mode propagating waves,

input and output ports are one-dimensional potentials rep-
resented by the Schrödinger-like equation Hψ ¼ γψ
[20–22], where the Hamiltonian is H ¼ −ð1=k20Þ∂x

2−
εðxÞ, where εðxÞ is the relative permittivity, and k0 is the
free-space wave number. To achieve the modal independ-
ence, two criteria should be satisfied for eigenvalues and
eigenmodes. First, we enforce eigenspectra in input and
output potentials to be “equally spaced” and “identical” for
simultaneous transitions of all the participating modes
[Figs. 2(a) and 2(b)], to attain the global phase matching
of multimodes: both at the on and off states. While equally
spaced spectra can be obtained by employing the harmonic
orWannier-Stark ladder [23] potentials, the identical spectra,
also known as isospectrality [24], can be implemented
through the SUSY transformation [4,15,21,22,25–27].
Second, the mode overlap between ports is critical to both

the isolation (off) and transparency (on) in switching. To
achieve perfect isolation in the off state, all eigenmodes in
input and output potentials should be decoupled, with zero
modal overlap. To satisfy the two criteria, the isospectrality
with equally spaced spectra, and perfectly decoupled
eigenmodes, we introduce the “parity-reversed contact”
[28] of input and output potentials having spectrallymatched
but globally parity-reversed eigenmodes [Fig. 2(a)].

C. Parity-reversed contact from SUSY

While the “equal-spacing isospectral” contact can be
achieved by employing harmonic potentials with the concept
of SUSY [4,15,21,22,25–27] based on the Darboux trans-
formation [29], the necessity of “collective” parity conver-
sion has not been explored before, to our knowledge. We,
thus, start from Darboux transformation, focusing on the
transformation of the eigenmodes.
In the Darboux transformation, the Hamiltonian is

factorized as H − γd ¼ A†A where γd is a scalar constant.
The operator A then becomes A ¼ ð1=k0Þ∂x þ VðxÞ with
the Riccati equation of ∂xV ¼ k0V2 þ k0½εðxÞ þ γd� for the
superpotential VðxÞ. The particular solution of the equation
for the “nonsingular” superpotential VðxÞ is obtained as
VðxÞ ¼ −ð1=k0Þ∂xψdðxÞ=ψdðxÞ, where ψd is the nodeless
eigenmode of Hψd ¼ γdψd from γd ≤ γ0, for the ground
state of Hψ0 ¼ γ0ψ0.
The isospectral SUSY-partner Hamiltonian Hs ¼ AA† þ

γd is then achieved with transformed eigenmode Aψ , from
AHψ¼ðAA†AþγdAÞψ¼ðAA†þγdÞAψ¼HsðAψÞ¼γðAψÞ.
It is known that the condition of γd ¼ γ0 and ψd ¼ ψ0

provides the “unbroken” SUSY Hamiltonian for the
bosonic (ψ) and fermionic (Aψ) relation with the
ground-state annihilation (Aψ0 ¼ O) [15], while γd < γ0
results in the broken SUSY [30]. The unbroken SUSY
partner Hs ¼ AA† þ γ0, thus, becomes

Hs ¼ − 1

k02
d2

dx2
−
�
εðxÞ þ 2

k02
d
dx

�∂xψ0

ψ0

��
; ð1Þ

FIG. 1. The operation principle of controlling random waves.
(a) Conventional operation composed of multiplexer, demulti-
plexer, and multiple single-mode switches. (b) A switching
building block for random waves with the modal-profile-
independent operation.

FIG. 2. The building block for digital binary switching of
random waves: the SUSY harmonic pair. (a) Off state from the
parity-reversed decoupling between the harmonic potential (out-
put) and its SUSY partner (input). (b) On state from the parity-
aligned coupling (black dotted arrows) through the modulation of
the output potential (red arrow Δε ¼ 2εΔ

1=2=k0). The shapes of
the eigenmodes are plotted on the potentials (red, even parity;
blue, odd parity) in (a),(b). The configuration of the designed
silicon waveguides is shown in (c) for the off state and (d) for
the on state. The silicon refractive index is n ¼ 3.5 at λ0 ¼
2π=k0 ¼ 1500 nm. The “effective” relative permittivities for
the original and SUSY-partner harmonic waveguide are εoðxÞ¼
½10.38–7.48×10−4ðk0xÞ2� and εsðxÞ¼½10.32–7.48×10−4ðk0xÞ2�,
respectively. The waveguide width L ¼ 24.84 μm, and the
distance between the waveguides is d ¼ 800 nm.
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which leads to SUSY-transformed eigenmodes
ψ sðxÞ ¼ AψðxÞ and optical potential εsðxÞ ¼ εðxÞ þ
ð2=k20Þ∂x½∂xψ0ðxÞ=ψ0ðxÞ�.
Having summarized the fundamentals of SUSY, we now

proceed to construct multimodal “parity conversion” by
applying the unbroken SUSY transformation to “parity-
symmetric” potentials. For the parity operator P with
PfðxÞ ¼ fð−xÞ, a parity-symmetric potential εðxÞ ¼
εð−xÞ satisfies the commutation ½H;P� ¼ 0, imposing the
definite parity on all eigenmodes as ψðxÞ ¼ �ψð−xÞ.
Because the ground state ψ0 is nodeless, only the even
parity is allowed for ψ0ðxÞ with εðxÞ ¼ εð−xÞ. Then, the
unbrokenSUSYoperatorA ¼ ð1=k0Þ[∂x − ∂xψ0ðxÞ=ψ0ðxÞ]
composed of ∂−x ¼ −∂x and even ground state ψ0ðxÞ ¼
ψ0ð−xÞ leads to the parity reversal of all eigenmodes
when applied to an original potential of even parity
(εðxÞ ¼ εð−xÞ). We note that the resulting unbroken
SUSY corresponds to parity-reversed bosonic and fermionic
states with ground-state annihilation, and this “collective
parity conversion” with the isospectrality can be applied to
any parity-symmetric potential εðxÞ ¼ εð−xÞ when unbro-
ken SUSY transformation is applied (see Appendix A for the
breaking of the definite parity in broken SUSY or other
isospectral family).

D. SUSY harmonic pair for binary switching

The parity-reversed contact with equally spaced and
isospectral eigenspectra can be obtained by utilizing a
harmonic potential, which satisfies the parity symmetry
εðxÞ ¼ εð−xÞ. Consider the harmonic potential εðxÞ ¼
εb − εΔx2, which possesses the eigenvalues of γm ¼ −εb þ
ð2mþ 1Þε1=2Δ =k0 and the eigenmodes

ψmðxÞ ¼
�
k0

ffiffiffiffiffi
εΔ

p
π

�
1=4 1ffiffiffiffiffiffiffiffiffiffiffi

2mm!
p _Hm

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

ffiffiffiffiffi
εΔ

pq
x
�
e−1

2
k0

ffiffiffiffi
εΔ

p
x2 ;

ð2Þ

where Hm is the mth-order Hermite polynomial
(m ¼ 0; 1;…). The SUSY transformation operator is
then A ¼ ð1=k0Þ½∂x þ k0ε

1=2
Δ x�, which corresponds to the

annihilation operator a [15]. The SUSY-partner potential
becomes the shifted harmonic potential εsðxÞ ¼ εb − εΔx2 −
2ε1=2Δ =k0 with the eigenmode ψ sðxÞ ¼ AψðxÞ. At the
same eigenvalue, the eigenmodes of the original
harmonic potential and its SUSY partner satisfy the parity
reversal for the zero modal overlap

R
ψ�ðxÞð1=k0Þð∂x þ

k0ε
1=2
Δ xÞψðxÞdx ¼ 0, which is desired for complete block of

wave transport in the off state.
We now assign the harmonic potential εoðxÞ¼

εb−εΔx2¼εð−xÞ and its unbroken SUSY partner εsðxÞ ¼
εb − εΔx2 − 2ε1=2Δ =k0 as the output and input potential,
respectively. Then, by exerting the index modulation

εoðxÞ − εsðxÞ ¼ 2ε1=2Δ =k0 on one of the SUSY pair poten-
tials for turning to the on state [Fig. 2(b), red arrow],
complete overlaps between all the eigenmodes of input and
output harmonic potentials are achieved with the breaking
of the SUSY condition, deriving the equivalent transpar-
ency for all eigenmodes.
The landscapes of harmonic potentials are realized with

optical waveguides that have finite widths. Figures 2(c) (off
state) and 2(d) (on state) show the designed coupled silicon
waveguides for the SUSY harmonic pair (y-axis propaga-
tion). To guarantee the parity reversal and uniform coupling
for all eigenmodes, the harmonic waveguides are vertically
aligned. Note that the waveguide which has the two-
dimensional (z-x) cross section but maintains the single-
mode condition along the z axis can be considered as a
one-dimensional (x axis) spatially varying potential, with
the effective potential landscape εðxÞ determined by the
z-axis structural parameter.
Each waveguide, thus, has a spatially varying thickness

[toðxÞ for the original waveguide and tsðxÞ for its SUSY-
partner waveguide; see Fig. S1 in Ref. [31]], and in spite of
its finite width, 25 eigenmodes with almost equal level
spacing are successfully obtained [Figs. 3(a) and 3(b)]. The
control of the waveguide thickness to;sðxÞ, which can be
achieved through the chip-integrable microfabrication for
multiwedge structures [32], is just an example of harmonic
potentials for the SUSY-based digital switching; a coupled
system [33] or subwavelength design [34] can be consid-
ered an alternative.

E. Modal analysis

Figure 3(a) shows the effective modal index neff of
residing eigenmodes for original and SUSY-partner wave-
guides before the coupling. Except for the annihilated
ground state, 25 pairs of bound modes of the waveguides
show perfect alignment in their eigenvalues, also satisfying
the complete parity-reversal condition for the off state (red
triangles for even parity and black inverted triangles for odd
parity). The level spacing of neff in the original waveguide
is almost uniform as Δneff ∼ 8.5 × 10−3 [Fig. 3(b)]. We
also note that the modal coupling between the switched
waveguide and the SUSY waveguide is almost uniform
for 25 eigenmodes, as shown in the level splitting by the
coupling in Fig. 3(c).
With experimentally accessible potential modulation [16]

of silicon to the original waveguide (Δn¼ 8×10−3∼Δneff ,
for Δn=n ∼ 0.23%), the global parity- and phase-matching
condition for the transparency (on state) is then achieved
completely and simultaneously. The variation of the coupled
eigenspectrum for the potential modulation Δn is shown in
Fig. 3(d). Starting from the degenerate states at “e” having
opposite parity [Δn ¼ 0, Fig. 3(e)], the simultaneous match-
ing of the parity and wave vector at “f” derives the
“anticrossing” [Δn ¼ 8 × 10−3 ∼ Δneff , Fig. 3(f)] accom-
panied with even-odd modal splitting. Notably, from the
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identical overlap between eigenmodes in the original and
SUSY waveguides, almost the same magnitude of the
splitting is observed for all participating mode pairs. As
we demonstratewith the “crossing” of eigenvalues at “g” and
Fig. 3(g) (Δn ¼ 1.6 × 10−2 ∼ 2Δneff ), the global phase
matching with parity reversal does not induce the coupling
between input and output potentials (see Fig. S2 in Ref. [31]
for other excited states).

F. Point-source switching operation

Taking the 25 eigenmodes ψmðx; zÞ in Fig. 3 as the basis
in the modal expansion of switchable input waves, now we
work on the static optical switching obtained from the
coupled SUSY harmonic waveguide pair. We apply the
transfer matrix from eigenmode simulations (Appendix B).
Figure 4 shows the binary switching operation for
point-source-like input waves. The input wave front is
defined by the two-dimensional Gaussian function
ξðx; zÞ ¼ exp½−ðx − xcÞ2=ð2σ2xÞ − ðz − zcÞ2=ð2σ2zÞ�, where
σx ¼ 10 nm and σz ¼ 300 nm (zc ¼ 950 nm) to construct
the point-source excitation, without [xc ¼ 0, Figs. 4(a)
and 4(b)] or with the x-axis offset [xc ¼ 5 μm, Figs. 4(c)
and 4(d)]. Initially, the expansion and refocusing of wave
fronts are observed periodically with the beat length of
approximately λ0=Δneff, while preserving the complete
decoupling to the original output waveguide [Figs. 4(a)
and 4(c), off state]. By exerting the potential modulation

FIG. 3. Eigenmodes in the SUSY harmonic pair of silicon
waveguides. (a) Effective modal indices neff of each waveguide
before the coupling. (b) Level spacing of neff in the original
waveguide. The black dashed line denotes Δneff ∼ 8.5 × 10−3.
(c) Level splitting by the coupling between the switched wave-
guide and the SUSY-partner waveguide. The black dashed
line is the averaged splitting. (d) The variation of neff as a
function of the refractive-index modulation Δn in the output
waveguide. The e state denotes the degeneracy from the decou-
pling due to the parity reversal between eigenmodes. The f state
(or g state) represents the anticrossing (or crossing) of eigenval-
ues. The modal profiles (Ex) for the states of e, f, and g in (d) are
shown in (e), (f), and (g), respectively. All of the results are
obtained by the full-wave eigenmode simulation in COMSOL

MULTIPHYSICS.

FIG. 4. Binary switching for point-source excitations in the
SUSY harmonic pair. Light excitations (a),(b) at the center and
(c),(d) 5-μm offset. (a),(c) Off state. (b),(d) On state. (e),(f) The
reconstruction of the input wave front at the full coupling position
in the output [white dashed lines in (a)–(d)]. The results
are obtained by transfer-matrix calculations utilizing full-wave
eigenmode simulations in COMSOL (Appendix B). All other
parameters are the same as those in Figs. 2(c) and 2(d).
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Δn ¼ 8 × 10−3 ∼ Δneff on the output potential [orange
waveguides in Figs. 4(b) and 4(d)], the on state from the
directional coupling between input and output waveguides
is achieved irrespective of the excitation position, also
maintaining the periodic reconstruction of incident wave
fronts [Figs. 4(e) and 4(f) each for xc ¼ 0 and 5 μm). This
one-to-one spatial correspondence between input and out-
put ports reflects high information capacity of the SUSY
harmonic pair switch, also allowing the possibility of
spatial switching techniques for random wave incidences.

G. Random wave switching operation

We work on the optical switching of the random
waveform (Fig. 5). Specifically, for the arbitrary input
ξðx; zÞ, its guided part φðx; zÞ ¼ P

cmψmðx; zÞ, where
cm ¼ R R

ψ�
mðx; zÞ ξðx; zÞdxdz will be switched by apply-

ing Δn ∼ Δneff , independent of the phase or amplitude
distributions of ξðx; zÞ. Furthermore, from the equally
spaced eigenspectrum of harmonic potentials deriving the
reconstruction of wave fronts [33], we expect the lossless
transfer of wave functions between optical elements.
In order to test completely random combinations of

eigenmodes in terms of amplitude and phase, the input
wave is set to be ξðx; zÞ ¼ P

u½0; 1�exp½iuð0; 2πÞ�ψmðx; zÞ
where u½a; b� is the random number between a and b

following the uniform distribution. Even with the fully
random input waves, the ideal transition from the decou-
pling [Fig. 5(a), off state] to directional coupling [Fig. 5(b),
on state] is achieved through the moderate value of index
modulation Δn ¼ 8 × 10−3 ∼ Δneff , successfully deriving
the even-odd-mode splitting and their interference. Most
important, we demonstrate perfect transfer of spatial
information [Fig. 5(c)] between optical elements, without
any corruption.
To investigate the stability of the proposed binary

switching, the statistical analysis is conducted for the
ensemble of 400 random input waveform realizations
[Fig. 5(d)]. High performance of the switching at Δn ¼
Δneff is demonstrated in terms of modulation depth
(26 dB), power transfer (93%), and stability (1.1% error).

III. BUILDING BLOCK FOR FUZZY LOGICS

A. Design criteria

Extending the binary switching, we now challenge
another solvable potential of the SUSY Pöschl-Teller
[15] pair to realize the multilevel switching. Figures 6(a)
and 6(b) show the schematics of the multilevel switching by
using the SUSY Pöschl-Teller pair waveguide of sech2

potentials. In the off state with the unbroken SUSY trans-
formation from VðxÞ ¼ −ð1=k0Þ∂xψ0ðxÞ=ψ0ðxÞ, complete
isolation from the isospectral parity reversal is achieved
[Fig. 6(a)], the same as that in the SUSY harmonic pair.
However, when the modulation increases with the Pöschl-
Teller potential property which provides “linearly varying”
eigenspectrum separation, the parity andwave-vectormatch-
ing of the eigenmode is achieved “in sequence” from higher-
order eigenmodes with the breaking of the SUSY relation
[Fig. 6(b)]. We note that such a chain of eigenmodal
“transparency” corresponds to the many-valued “truth,”
while the “isolation” represents “false” [18].

B. SUSY Pöschl-Teller pair for multilevel switching

The Pöschl-Teller potential is realized with the permit-
tivity of εðxÞ¼εbþεΔsech2ðαxÞ, which leads to the eigen-
values of γm¼−εb−ðα=k0Þ2ðp−mÞ2½m¼0;1;…;floorðpÞ�,
where p ¼ −ð1=2Þ þ ½ð1=4Þ þ ðk0=αÞ2εΔ�1=2: Note that
the effective index neff;ðmÞ ¼ ½εb þ ðα=k0Þ2ðp −mÞ2�1=2 ≈
ε1=2b ½1þ ðα=k0Þ2ðp −mÞ2=ð2εbÞ� has the level separation
varying linearly as neff;ðmÞ − neff;ðmþ1Þ ¼ ðα=k0Þ2ðp −m−
1=2Þ=ε1=2b . The SUSY-transformation operator is A ¼
ð1=k0Þ½∂x þ pα tanhðαxÞ�; which derives the SUSY-partner
potential of

εsðxÞ ¼ εb þ
�
εΔ − 2α2p

k02

�
sech2ðαxÞ; ð3Þ

the modified Pöschl-Teller potential. Again, the eigenm-
odes of the original potential and its SUSY partner satisfy
the parity reversal at the same eigenvalue.

FIG. 5. Binary random wave switching in the SUSY harmonic
pair: (a) off and (b) on states. (c) The reconstruction of the input
wave front at the full coupling position in the output [dotted lines
in (a),(b)]. (d) The power distribution in input and output
waveguides at the full coupling position as a function of the
modulation Δn. Error bar denotes the standard deviation for
the ensembles of 400 random input waveform realizations. The
results are obtained by transfer matrices linked with COMSOL

eigenmode simulations (Appendix B). All other parameters are
the same as those in Figs. 2(c) and 2(d).
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C. Switching operation

We design the Pöschl-Teller potential of εoðxÞ and
εsðxÞ, again by controlling the thickness of the silicon
waveguides (Fig. S1 in Ref. [31]). The structures lead to

the isospectral eigenspectra [Fig. 6(c)], while maintaining
the linear variation of the level separations [Fig. 6(d)].
Figures 6(e) and 6(f) denote the multilevel switching for
different values of Δn ¼ 9 × 10−3 and Δn ¼ 2.1 × 10−2,
respectively. For the random wave incidences ξðx; zÞ, the
degree of truth is determined by the transparent eigen-
mode [Fig. 6(e) for the 14th eigenmode and Fig. 6(f) for
the ground state], which is determined by Δn. The
stability of the multilevel switching is estimated with
the ensemble of 400 random input waves for increasing
Δn [Fig. 6(g)], confirming that the transparency of the
eigenmode is achieved in sequence. We note that
the mode-dependent transmission as a function of the
modulation Δn derives the membership function in
many-valued fuzzy logics [18,19] with uniform-level
separations. The Pöschl-Teller pair with the overlap of
eigenmode spectra then forms the building block of fuzzy
logic systems, with high performance including the
complete isolation at the off state and the utilization of
optical bandwidth.

IV. CONCLUSION

In conclusion, we propose the collective switching of
multimodes, allowing the dynamic control of random
waves. In terms of footprint and waveform transparency,
the realization of SUSY-based digital random wave switch-
ing boosts the performance of multimode-based signal
processing for the chip-to-chip photonic circuits [35–37]
by replacing multi-to-single-mode couplers and multiple
single-mode switches. We note that the required level of the
modulation depth Δn=n ∼ 0.23% for the designed structure
can be achieved with (10–40)-Gbps speed, utilizing the
carrier density control in silicon, germanium, and their
hybrid structures [16]. We emphasize that by decreasing the
level separation in eigenspectra, all-optical modulations
using optical nonlinearity [9,10,38] can be applied to the
proposed SUSY-based building block for ultrafast switch-
ing applications. The many-valued feature in Pöschl-Teller
SUSY pairs will also pave the way toward the optical
realization of fuzzy logics [18,19].
Although we employ the SUSY pairs of parity-reversed

isospectrality to the k domain in optics, the same concept
can be extended to other wave platforms or the ω domain.
For example, the isospectrality and harmonic realizations
can be achieved in the ω domain to enable the lossless
switching of temporally random waveforms by using
coupled resonators [39] for multiresonant structures.
Because of the generality of the Schrödinger equation,
wave potentials for quantum-mechanical, elastic, and
acoustic waves can also be envisaged as platforms for
the proposed building blocks. The concept of mode-
converted isospectrality can also be applied to other
isospectral transformations, such as Householder trans-
formation [40] between different dimensions or graph
reduction [41].

FIG. 6. Multilevel switching in the SUSY Pöschl-Teller pair.
(a) The off state from the decoupling between the Pöschl-Teller
potential (output) and its SUSY partner (input). (b) One of the
many-valued on states from the coupling (black dotted arrow)
through the modulated output (red arrow). (c) Effective indices
neff of each waveguide before the coupling. (d) Level
spacing of neff in the original [blue-green lines, εoðxÞ ¼
8.6þ 1.7sech2ð5.5 × 10−2k0xÞ] and SUSY [red-brown lines,
εsðxÞ ¼ 8.6þ 1.6sech2ð5.4 × 10−2k0xÞ] potentials. (e) The 14th
truth (Δn ¼ 9 × 10−3) and (f) zeroth truth (Δn ¼ 2.1 × 10−2)
transparency for random wave incidences. (g) The transmission
of each eigenmode (zeroth to 14th) in the output waveguide
at the full coupling position as a function of the modulation Δn.
Error bar denotes the standard deviation for the ensembles of 400
random samples. All other parameters are the same as those
in Fig. 2.
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APPENDIX A: PARITY MIXING IN BROKEN
SUSY AND ISOSPECTRAL FAMILY OF
PARITY-SYMMETRIC POTENTIALS

Consider the parity-symmetric potential εðxÞ ¼ εð−xÞ
and the SUSY-transforming operator A¼ð1=k0Þ∂xþVðxÞ,
where VðxÞ ¼ −ð1=k0Þ∂xψdðxÞ=ψdðxÞ for Hψd ¼ γdψd.
In the case of “broken” SUSY (γd < γ0) [15,30], the mode
of ψdðxÞ is nodeless but unbounded (or non-normalizable)
because γ0 is the ground state. The signs of ∂xψdðxÞ for
x → ∞ and x → −∞ are, thus, the same, and then VðxÞ
becomes the evenlike function (or zero Witten index [15]),
in contrast to the case of unbroken SUSY: bounded ψ0ðxÞ,
different signs of ∂xψdðxÞ for x → ∞ and x → −∞ and,
thus, oddlike VðxÞ (or unity Witten index [15]). Because
the operator A for broken SUSY is the sum of the “odd-”
parity operator (1=k0)∂x and “evenlike” parity operator
VðxÞ, the application of the broken SUSY operator breaks
the definite parity condition of the transformed eigenmode.
We can also introduce other sets of isospectral family

[15,26] starting from the unbroken SUSY partner (γd ¼ γ0).
From the unbroken SUSY Hamiltonian Hs ¼ AA† þ γd
with the SUSY optical potential εsðxÞ ¼ εðxÞ þ ð2=k20Þ×∂x½∂xψ0ðxÞ=ψ0ðxÞ�, the Riccati equation for the SUSY
potential has the form of ∂xV¼−k0V2−k0½εsðxÞþγ0�.

Utilizing the particular solution of VðxÞ ¼
−ð1=k0Þ∂xψ0ðxÞ=ψ0ðxÞ, the general solution can be
obtained as

VðxÞ ¼ − 1

k0

∂xψ0ðxÞ
ψ0ðxÞ

þ ψ0
2ðxÞ

cþ R
x−∞ k0ψ0

2ðxÞdx ; ðA1Þ

where c is an arbitrary constant (c → �∞ for the original
unbroken case). From the superpotential VðxÞ in Eq. (A1),
other isospectral family potentials of εðxÞ can be obtained
as εfðxÞ ¼ −V2 þ ð1=k0Þ∂xV − γ0. However, for the
finite c and the even-parity ground state ψ0ðxÞ from
εðxÞ ¼ εð−xÞ, the second term of Eq. (A1) breaks the
definite parity condition of the transformed eigenmode by
A ¼ ð1=k0Þ∂x þ VðxÞ. To summarize, in contrast to the
parity conversion by unbroken SUSY transformation,
broken SUSY or other isospectral family mix the parity
of eigenmodes through the transformation.

APPENDIX B: TRANSFER-MATRIX METHOD
USING EIGENMODE SIMULATIONS

First, by employing the full-wave eigenmodal simulation
in COMSOL MULTIPHYSICS, all of the bounded eigenmodes
ψmðx; zÞ in SUSY waveguide structures can be derived
with corresponding eigenvalues (effective index neff-m).
From this complete eigenmode set for guided modes, we
interpret the wave transport as the interfered propagation of
each eigenmode that is excited by an incident wave.
Because the guided part of the arbitrary input

waveform ξðx; zÞ at y ¼ 0 is φðx; zÞ ¼ P
cm·ψmðx; zÞ,

where cm ¼ R R
ψm

�ðx; zÞξðx; zÞdxdz, the entire wave-
form Ψðx; z; yÞ is obtained as Ψðx; z; yÞ ¼ P

cmψmðx; zÞ×
expð−ik0neff−myÞ ¼ P

αmðyÞψmðx; zÞ, where

2
666664

α0ðyÞ
α1ðyÞ
..
.

αBðyÞ

3
777775
¼

2
666664

expð−ik0neff-0yÞ 0 � � � 0

0 expð−ik0neff−1yÞ 0 ..
.

..

.
0 . .

.
0

0 � � � 0 expð−ik0neff−ByÞ

3
777775

2
666664

c0
c1

..

.

cB

3
777775
; ðB1Þ

and B is the number of bounded excited states. The matrix
in Eq. (B1) is the transfer matrix for bounded multimodes,
and the entire three-dimensional waveform can be obtained
by scanning the y axis with Ψðx; z; yÞ ¼ P

αmðyÞψmðx; zÞ.
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