
Thermodynamics of the Heat-Flux Avalanches at the First-Order
Magnetic Transition in Magnetocaloric Materials

Marco Piazzi,1,* Cecilia Bennati,2 and Vittorio Basso1
1Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino, Italy

2Istituto dei Materiali per l’Elettronica ed il Magnetismo—Consiglio Nazionale delle Ricerche,
Parco Area delle Scienze 37/A, I-43124 Parma, Italy

(Received 11 July 2017; revised manuscript received 22 September 2017; published 30 October 2017)

We investigate the kinetics of first-order magnetic phase transitions by measuring and modeling the heat-
flux avalanches corresponding to the irreversible motion of the phase-boundary interface separating the
coexisting low- and high-temperature stable magnetic phases. By means of out-of-equilibrium thermo-
dynamics, we encompass the damping mechanisms of the boundary motion in a phenomenological
parameter αs. By analyzing the time behavior of the heat-flux signals measured on LaðFe-Mn-SiÞ13-H
magnetocaloric compounds through Peltier calorimetry temperature scans performed at low rates, we relate
the linear rise of the individual avalanches to the intrinsic-damping parameter αs.
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I. INTRODUCTION

Magnetic refrigeration around room temperature is emerg-
ing as an environmentally friendly, efficient, and increasingly
feasible alternative to the conventional vapor-compression
cooling technology [1–5]. Thephysical effect underlying this
technique is the magnetocaloric effect (MCE), correspond-
ing to the magnetic-field-induced isothermal entropy change
ΔSisoðHÞ and the adiabatic temperature variation ΔTadðHÞ
occurring in magnetically ordered solid materials under a
varying applied magnetic field H [6,7]. Recently, many
results have been achieved in the search for materials
showing optimal properties for applications, e.g., first-order
magnetostructural transitions finely tunable around room
temperature, low thermal hysteresis, high entropy and
temperature changes [8–13]. Nevertheless, the practical
realization of cooling engines based on active-magnetic-
regenerative-refrigeration (AMRR) cycles still suffers from
some open issues, mainly dealing with the operation fre-
quency of the devices. Although the design of such devices
has been substantially improved by the contributions and
proposals of many different research groups [14–32], the
operation frequency of AMRR-based engines has been only
partially worked out. In Ref. [33], Kuz’min showed that this
frequency depends on the characteristic relaxation-time
constants related to the thermal conductivity of the solid
refrigerant (τtc), to the viscosity of the heat-exchange fluid
(τfc), and to the magnetic processes occurring in the MCE
material during the AMRR cycles (τmr). The conditions to
reduce both τtc and τfc—relating them to the values of two
parameters, dr and df, representing the cross sections of the
refrigerator channels filled with the MCE material and the

heat-exchange fluid, respectively—are known [33].
However, the intrinsic magnetic relaxation process has been
neglected, with the assumption that the MCE material
magnetizes or demagnetizes itself instantaneously when
the applied magnetic field is switched on or off. While this
can be valid for ferromagnets, like Gd [34,35], if the eddy
currents are negligible, it is not the case for first-order MCE
materials, like LaðFe-SiÞ13 [36], Fe2P-type compounds as
ðMn-FeÞ2ðP-AsÞ [37], and Gd5ðSi2Ge2Þ [38], where the
magnetization process takes place through a magnetostruc-
tural phase transition.
Many efforts have recently focused on the research about

the factors limiting the kinetics in this kind of transition
[39–51]. Extrinsic factors, possibly masking the intrinsic
effects, were carefully evaluated by Moore et al. [39] and
Lovell et al. [43]. By means of magnetic fields varying in
time, they have shown that the demagnetizing fields, the
thermal contacts between the sample and the measuring
setup, and a limited heat diffusion inside the sample
represent strong extrinsic limiting factors that must be
accurately taken into account. The role of intrinsic ther-
mally activated processes over energy barriers was studied
in Ref. [48]. Such an analysis, based on the Johnson-Mehl-
Avrami model [52,53], shows that the phase-boundary
growth and motion between the ferro- (FM) and para-
magnetic (PM) states in LaðFe0.88Si0.12Þ13 compounds is
predominantly of the two-dimensional type. However, the
study does not give enough evidence that intrinsic thermal-
activation effects are the main factors limiting the kinetics
since similar results can also be attributed to extrinsic
effects, namely, the presence of bad thermal contacts
between the sample and the external bath [50]. A step
forward on this topic has been made by observing that a
system slowly driven through its transition, by varying
either the applied magnetic field [41] or the temperature
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[51,54], shows heat-flux signals subdivided in spikelike
events characterized by an initial linear rise in time
followed by an exponential decay. The appearance of these
avalanchelike events is an indication of the fact that the
phase transformation most probably takes place as a
sequence of nucleation events responsible for the phase-
boundary growth, followed by the progressive pinning and
depinning of the interface front. Studies on the statistics of
the avalanches’ size distributions have demonstrated that
avalanchelike events close to the critical points may be
characterized by power-law behaviors, thus suggesting the
absence of characteristic length scales in the phase tran-
sition [55,56]. In this case, the knowledge of the power-law
exponents allows us to infer many aspects of the physics of
the underlying transitions, and this approach has already
been successfully applied to certain classes of MCE
materials [57,58]. However, a thermodynamic approach
for the investigation of the dynamic aspects involved in the
avalanche patterns, similar to the one employed in normal
ferromagnets to describe the magnetization process
[59,60], is missing in the case of MCE systems.
In this paper, we aim at developing an out-of-equilibrium

thermodynamic model appropriate for extracting a phe-
nomenological damping coefficient αs from the analysis of
the rise times of the individual heat-flux avalanches
experimentally detected. The knowledge of this coefficient
is crucial to build up a macroscopic model of the kinetics
governing the transitions in MCE materials. The model
could possibly be employed to predict the high-frequency
behavior of MCE-based cooling devices and to compare
these predictions with experimental data obtained by
varying the magnetic fields at a high sweep rate of about
10–100 Hz [35,61,62]. In developing the model, we
concentrate on the presence of metastable states in the
energy landscape of the system and on the factors limiting
the velocity of the phase front. In the classical Stefan
problem [63–65], the phase front is described at the
equilibrium temperature and the heat-diffusion processes
limiting its growth are considered. Within this approach, the
thermodynamic equilibrium is maintained at the expense of
the emergence of strong local temperature gradients. In the
present case of solid-solid phase transitions occurring in the
MCE materials, we are dealing with metals characterized by
a high heat conductivity and a distribution of defects which
suggests using an out-of-equilibrium description of the
moving front. In this case, the latter is allowed to be at a
temperature different from the equilibrium one [66], and the
temperature gradients will be relevant only on length scales
much larger than themicrostructural ones. For this reason,we
employ the out-of-equilibrium thermodynamics of linear
systems and, on a phenomenological basis, we assume that
the velocity of the phase front should be proportional to the
distance from equilibrium, with the proportionality coeffi-
cient represented by αs.

In this paper, after deriving the model, we apply it to
interpret the time behavior of the heat-flux signals exper-
imentally detected through temperature scans performed at
a rate of 1 mK=s and for various applied magnetic fields H
on a series of LaðFe-Mn-SiÞ13-H1.65 compounds. From
the comparison, we can extract the values of the damping
coefficient αs and of the latent heat of the system ΔuL,
finding that, within the uncertainty limits, αs=ΔuL ≈
0.5 × 10−3 ðm=sÞK−1, independent of both H and the
material composition. Moreover, we determine the time
scales involved in the transition process, showing that the
intrinsic damping and the heat exchange with the external
thermal bath are governed by time constants having the
same order of magnitude.
The paper is organized as follows. In Sec. II, we

introduce the out-of-equilibrium thermodynamic theory
of linear systems by first describing homogeneous systems
(Sec. II A) and then extending out to the case of space-
extended macroscopic systems in which phase coexistence
occurs (Sec. II B). In Sec. III, we derive first the kinetic
constitutive equation of the system from a continuity
equation for the energy (Sec. III A). We then apply the
above theory to the analysis of solid-state MCE transitions
in quasi-isothermal conditions by adding the role of an
external thermal reservoir (Sec. III B) and we find the
theoretical behavior of the heat flux in the case of individual-
avalanche events (Sec. III C). In Sec. IV, we compare the
theoretical predictions with the experimental data obtained
by Peltier calorimetry temperature scans at a low rate and, in
Sec. V, we discuss the results obtained, suggesting also
possible routes for future works. Finally, in Sec. VI, we
present our conclusions.

II. OUT-OF-EQUILIBRIUM THERMODYNAMICS
OF FIRST-ORDER PHASE TRANSITIONS

A. Homogeneous systems

Let us consider to deal with an isotropic magnetic system
in which the magnetic moment m and the applied magnetic
field H are fixed along an arbitrary direction, so that, in
what follows, we can limit to consider their scalar ampli-
tudesm andH, respectively. Such a system is characterized
by the entropy S and the magnetic moment m. Since the
controlled magnetic variable is the magnetic field H, we
can describe the system through the enthalpy potential
UeðS;HÞ ¼ U − μ0Hm, where U is the internal energy
[67]. A first-order phase transition will be characterized by
a nonmonotonic behavior of the equation of state

TpðS;HÞ ¼ ∂Ue

∂S ; ð1Þ

so that the temperature of the system T will not follow
everywhere the equilibrium temperature path which is
defined by Tp. The typical behavior is depicted in
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Fig. 1, where we show the out-of-equilibrium path as 1=Tp

as a function of the enthalpy Ue. Upon heating, after
reaching the limit of stability, i.e., point A in Fig. 1, T will
pass through a sequence of high-energy out-of-equilibrium
states going towards the first available equilibrium state,
i.e., point B in Fig. 1. The rate at which T relaxes towards
the new equilibrium state should be determined by means
of nonequilibrium thermodynamics.
The main observation to take into account is that, when T

is in a nonequilibrium state higher than Tp [Eq. (1)], the
entropy change per unit time dS=dt is ð1=TpÞ∂Ue=∂t,
which is higher than ð1=TÞ∂Ue=∂t. The difference is
associated with the presence of internal entropy production
processes. Therefore, by describing the internal entropy
production processes through the entropy production rate
Σs ≥ 0, the entropy-change rate reads

dS
dt

¼ 1

T
dUe

dt
þ Σs: ð2Þ

From Eqs. (1) and (2), we immediately obtain the following
expression for the entropy production rate:

Σs ¼
�

1

Tp
−
1

T

�
dUe

dt
: ð3Þ

In Eq. (3), we can recognize two different terms. The first
one, dUe=dt, represents the velocity of the relaxation
process bringing the system temperature T back to the
equilibrium value. The second term, ð1=Tp − 1=TÞ, is

proportional to the distance of the system temperature T
from the equilibrium value Tp. Then, in the framework of
out-of-equilibrium thermodynamics of linear systems, the
latter term acts as the generalized force responsible for the
relaxation process, while the former term is a generalized
displacement. When the displacement term is small
enough, it is possible to assume that the displacement
and the force are linearly coupled, and thus the relaxation
equation describing the rate at which any generic out-of-
equilibrium state reaches the equilibrium one is given by

dUe

dt
¼ αT2

p

�
1

Tp
−
1

T

�
; ð4Þ

where the proportionality coefficient α has the units W/K.

B. Phase-coexistence state

In a macroscopic system composed of many internal and
interacting degrees of freedom, a first-order transition may
occur differently than that described in the previous section.
Indeed, the system may build up a mixture of the low- (LT)
and high-temperature (HT) stable phases, separated
by a phase boundary, because the phase coexistence may
be more favorable from an energetic point of view.
Specifically, the phase coexistence defines a transition
temperature at equilibrium Tt which is obtained by means
of the Maxwell construction. This construction consists of
replacing the nonmonotonic part of TpðSÞ, defined in
Eq. (1), with the constant temperature Tt, as shown in
Figs. 1 and 2. The latter is the temperature at which the
two minima in the Gibbs-free-energy representation
have the same value, i.e., GLðS0;TtÞ ¼ GLðS1;TtÞ, where
GLðS;TÞ ¼ UeðSÞ − TS and S0ðTÞ, S1ðTÞ are the
temperature-dependent minima of GLðS;TÞ, satisfying
∂GL=∂SjS¼S0 ¼ ∂GL=∂SjS¼S1 ¼ 0. It is worth noting that
S0 and S1 represent the entropies of the LT and HT stable
magnetic phases which coexist at Tt. Specifically, from
Eq. (1) and from the Maxwell construction, we obtain that
the enthalpy-change rate at equilibrium and in the phase-
coexistence region can be expressed as dUe=dt ¼ TtdS=dt.
However, this equilibrium picture is not always realized.

The nucleation and pinning of the phase boundary may
occur at a sample temperature T that differs from Tt
because of the local defects present in the material micro-
structure. This means that, when transforming in heating
from the LT to the HT or, conversely, in cooling from the
HT to the LT phase, a specific nucleation or pinning event i
will be characterized by a critical value Thi higher, or Tci
lower, than Tt (see Fig. 2). With T differing from the
equilibrium value Tt, we consider also in this case the role
of the entropy production processes introduced in Sec. II A.
Analogous to Eq. (2), the entropy-change rate dSi=dt
associated with the ith event will be, in this case,

FIG. 1. Out-of-equilibrium first-order transition in homo-
geneous systems: temperature 1=Tp [Eq. (1)] vs enthalpy Ue.
Arrows show the path followed by the system upon heating
(D-A-B) and subsequent cooling (B-C-D). Dashed-dotted black
lines represent the out-of-equilibrium states explored during the
transition, after the limits of stability A and C are overcome. 1=Tt
(the dashed red line) is the equilibrium transition temperature
path following the Maxwell construction (see also Fig. 2).ΔUL is
the enthalpy change at Tt, whose volume density ΔuL appears in
Eq. (10) and in Table I.
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dSi
dt

¼ 1

T
dUei

dt
þ Σsi; ð5Þ

so that the entropy production rate will be given by

Σsi ¼
�
1

Tt
−
1

T

�
dUei

dt
: ð6Þ

In the latter equation, we recognize a velocity term, i.e.,
dUei=dt, and a displacement term, i.e., 1=Tt − 1=T. By
means of the same reasoning followed in Sec. II A to obtain

Eq. (4), we end up with the following linear expression
for the enthalpy-change rate occurring in the phase-
coexistence region:

dUei

dt
¼ αiT2

t

�
1

Tt
−
1

T

�
; ð7Þ

where the proportionality coefficient αi associated with the
microscopic event i again has the units W/K.

III. THERMAL TRANSPORT IN FIRST-ORDER
PHASE TRANSITIONS

A. Constitutive kinetic equation for the material

The thermal transport in a macroscopic solid-state
system is described by its constitutive equation that locally
takes the form of a continuity equation for the energy
[64,68,69]:

cs
∂T
∂t þ ∇ · jq ¼ −

∂ue
∂t : ð8Þ

The first term on the left-hand side of Eq. (8) describes the
specific heat cs of the system arising from the electronic
and structural reversible contributions. The second term on
the left-hand side takes into account the heat current density
jq flowing through the sample. Finally, the term on the
right-hand side of Eq. (8) describes a source or sink for the
heat flux that, in a first-order magnetic transition, is
represented by the specific latent heat ∂ue=∂t absorbed
or released by the system.
It is now convenient to introduce the typical linear size λ,

over which the temperature T is uniform into the sample
(see Fig. 3 for a schematic view of the typical length scales
involved in the description of the irreversible events
occurring in a first-order magnetic phase transition). By
performing the integration of the continuity equation (8)
over the volume λ3, we get the following relation describing
the latent heat of the system:

dUe

dt
¼ −

�
Cs

dT
dt

þ
Z
λ2
jq · nd2r

�
: ð9Þ

In Eq. (9), Ue ¼ λ3ue and Cs ¼ λ3cs are the enthalpy and
heat capacity of the region of the sample involved in the
phase transformation, respectively, and the last term at the
right-hand side is obtained by means of the divergence
theorem, with n being the outward-pointing unit vector
orthogonal to the surface and λ2 being the surface area
encompassing the integration volume.
We can get another expression for the latent heat dUe=dt

by relating the latter to the microscopic events i giving rise
to the phase transition. We will assume that the transition is
driven by the motion of the phase-boundary interface
separating the LT and HT magnetic states, which is

FIG. 2. (Top panel) Gibbs free energy GLðS;T ¼ TtÞ and
(bottom panel) temperature T ¼ ∂Ue=∂S vs entropy S, in first-
order transitions, for (i) a homogeneous system (the black dotted
line) in which the transition follows the Tp curve [Eq. (1)], (ii) a
macroscopic system (the red dashed line) in which the transition
occurs through the Maxwell construction at the equilibrium
temperature Tt, and (iii) an irreversible domain nucleation event
i (the pale-blue solid line) occurring around a defect at temper-
ature Thi (Tci) upon heating (cooling). Green lines highlight the
LT-HT phase-coexistence region. ΔSL ¼ S1 − S0 is the entropy
change at Tt between the entropies S0, S1 of the LT and HT stable
magnetic phases.
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nucleated at the defects present in the material micro-
structure, as explained in Sec. II B. This interface can be
thought of as a surface of total area A that moves with a
certain velocity and is composed by several portions
characterized by surface area Ai, so that A ¼ P

iAi. If
we assume to deal with an ideally thin interface, the phase
transformation will be due to the displacement of the
position of the interface in time, xðtÞ, and the latent heat
can be expressed as

dUe

dt
¼ ΔuLA

dx
dt

; ð10Þ

where ΔuL ¼ TtΔsL > 0 is the enthalpy change per unit
volume at Tt (see Fig. 1) and ΔsL is the isothermal entropy
density change at the transition. Specifically, from Eq. (10),
we can obtain the enthalpy-change rate associated with the
motion of any individual portion Ai of the boundary
interface, given by

dUei

dt
¼ ΔuLAi

dx
dt

: ð11Þ

On the one hand, by substituting Eq. (11) into Eq. (7) and
by defining the proportionality coefficient αs ¼ αi=Ai,
having units WK−1m−2, we immediately get the following
expression for the velocity of the phase-boundary interface:

dx
dt

¼ αs
ΔuL

T2
t

�
1

Tt
−
1

T

�
: ð12Þ

It is worth noting that Eq. (12), through the coefficient αs,
encompasses the details of the damping mechanisms of the
phase-boundary motion, thus describing the kinetics of the
relaxation processes occurring at first-order phase transi-
tions in macroscopic systems. On the other hand, by
substituting Eq. (12) back into Eq. (10) and assuming that
T ≃ Tt, we obtain the expression for the latent heat of the
system:

dUe

dt
≃ αsAðT − TtÞ ¼

X
i

αsAiðT − TtÞ: ð13Þ

Finally, the comparison of Eq. (9) to Eq. (13) allows us to
determine the following expression for the heat current
flux:

1

λ3

Z
λ2
jq · nd2r ¼ −cs

dT
dt

−
X
i

αs
Ai

λ3
ðT − TtÞ: ð14Þ

It is worth pointing out that each of the microscopic events i
contributing to the sum in Eq. (14) is activated at its own
temperature Thi > Tt in a heating process, or Tci < Tt in
the cooling case, as described in Sec. II B and depicted in
Fig. 2. This fact indicates that the motion of each portion of
the boundary surface is activated by overcoming different
energy barriers. Then, Eq. (14) shows that the events i
within the volume λ3 are correlated because the activation
of a certain single event will cause the decrease—upon
heating—or the increase—upon cooling—of the temper-
ature T within the whole volume λ3, therefore inhibiting the
activation of the other domains’ motion.

B. Kinetics in quasi-isothermal conditions

In order to unveil the local variations of the sample
temperature T occurring in a phase transition caused by the
presence of a distribution of different activation temper-
atures Tci, Thi, let us consider connecting the MCE sample
to a thermal reservoir having uniform temperature Tb,
through a thermal contact. The latter is conveniently
represented as a region characterized by a surface area
Ac and a thickness tc. The current density jq ¼ ∥jq∥
associated with the heat flowing through the contact along
the direction orthogonal to the surface Ac is then given by

jq ¼ −κc
Tb − T

tc
; ð15Þ

where κc is the thermal conductivity of the contact and, in
the equality, we assume that the temperature varies linearly
inside the contact thickness tc.
The current density jq is also related to the specific and

latent heat through Eq. (14). In what follows, we will limit

FIG. 3. Typical length scales involved in the irreversible events
driving a MCE system through a first-order magnetic transition. L
is the linear size of the sample, λ represents the linear size of the
region in which T is uniform, and li is the linear size of the region
swept out by the ith piece of boundary interface of surface area
Ai ∼ li

2 during its motion at velocity v [see Eq. (12)]. The size λ
depends on the heat-diffusion properties of the system and can be
either ≪ L for macroscopic samples or ≳L for small fragments;
the size li depends instead on the material microstructure and, in
this work, we assume li ≪ λ.
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ourselves to investigating the case in which the temperature
T can be considered uniform in the whole sample, so that
we can neglect the role of the heat-diffusion processes
occurring inside the sample itself. This assumption is valid
when the macroscopic linear size of the sample L (see
Fig. 3) is smaller than λ and the thermal conductivity κ of
the MCE material, appearing in the relation jq ¼ −κ∇T, is
high. With the above assumptions, we can immediately
evaluate the heat current flowing through the sample
surface by substituting Eq. (15) into the left-hand side of
Eq. (14), and, in this way, we obtain the differential
equation governing the time behavior of TðtÞ during the
phase transition:

dT
dt

¼ κc
λcstc

ðTb − TÞ −
X
i

αsAi

λ3cs
ðT − TtÞ

¼ Tb − T
τc

−
X
i

T − Tt

τsi
: ð16Þ

In Eq. (16), we define the time constants τc ¼ λcstc=κc and
τsi ¼ λ3cs=ðαsAiÞ. While the latter, through the coefficient
αs and the typical sizes λ and Ai, is related only to the
intrinsic kinetics and the damping mechanisms governing
the phase transition, the former takes into account the role
of the external thermal reservoir through the thermal
contact resistance tc=ðκcAcÞ.
The solution of Eq. (16) is strictly dependent not only on

the initial conditions on T but also on the time behavior of
the thermal reservoir temperature TbðtÞ. There are two
cases of particular interest: (i) a constant Tb and (ii) Tb

varying at a constant rate _Tb. The former condition ensures
that the motion of each piece of boundary interface of
surface area Ai is separated in time from the other ones.
This circumstance happens because when the surface Ai
starts to move, the temperature T becomes lower than Thi
upon heating, or higher than Tci upon cooling, in a volume
λ3 which, in our case, corresponds to the whole sample
since we are assuming L < λ, in this way inhibiting the
occurrence of other events. This case is described in detail
in Sec. III C and Appendix A.
The case of a reservoir temperature Tb varying in time at

a constant rate _Tb is also very interesting from both a
physical and a mathematical point of view. Indeed, when
Tb varies uniformly in time, many events i, with each
corresponding to the motion of a piece of boundary surface
Ai, may occur concurrently and may collectively contribute
to the sum appearing on the right-hand side of Eq. (16).
This fact happens because the heat provided by the thermal
bath to the MCE sample during the phase transition is
enough to overcome the change in temperature occurring
within the λ3 volume. The solution TðtÞ shows, in this case,
many qualitatively interesting features, and it is derived in
Appendix B.

C. Kinetics of individual avalanches

Let us address now the case of a thermal reservoir
temperature Tb kept constant in time during the phase
transition. Then, as explained in Sec. III B, we can further
simplify Eq. (16) because, in this case, the individual events
i associated with the motion of the portions of boundary
interface of surface area Ai, are well separated in time. For
the sake of simplicity, we assume from here on that
Ai ∼ li

2, meaning that the surface area of each portion
of the boundary interface scales as the square of the typical
linear size li covered by the interface during its motion (see
Fig. 3). It is worth noting that the li value is strictly related
to the sample microstructure determining the nucleation
and pinning centers for the formation of a new phase, and
we will assume li ≪ λ. In this way, we can consider these
events as independent of each other, and we can investigate
the effect that each of them, taken one at a time, has on the
time evolution of T. This assumption means that the sum
appearing in Eq. (16) reduces to only one term and,
therefore, by defining ti, tf as the times at which the event
starts and ends, we can conclude that the time behavior of T
during a first-order transition driven by a single irreversible
event is governed by the following differential equation:

dT
dt

¼ Tb − T
τc

−
T − Tt

τsi
; for ti ≤ t ≤ tf: ð17Þ

For t > tf, once the transition ends, the contribution of
the latent heat associated with the boundary motion is no
longer present in Eq. (14), and the differential equation
governing the behavior of the sample temperature TðtÞ is

dT
dt

¼ Tb − T
τc

; for t > tf: ð18Þ

It is worth noting that Eq. (17) describes the system
during the phase transition, when T varies because of both
the effect of the external thermal contacts and of the
intrinsic kinetics of the moving boundary interface which
absorbs or releases heat, depending on whether we are
dealing with a heating or cooling process, thus reducing or
enhancing T with respect to its initial value. On the other
hand, Eq. (18) describes the behavior of the system once
the transition ends and the temperature T relaxes back to
the thermodynamic equilibrium value governed only by the
heat exchanged with the thermal reservoir.
The solutions of Eqs. (17) and (18) for a constant Tb and

tf − ti ≪ τc; τsi are analytically derived in Appendix A. It
is worth pointing out that the condition tf − ti ≪ τc; τsi
ensures that the sample temperature T—and, consequently,
the heat flux qsðtÞ—is far from the thermodynamic
equilibrium during the whole phase transition and that
the transformation thus occurs through a sequence of out-
of-equilibrium states far from Tt (see also Fig. 2).
Specifically, the time behavior of the heat flux qsiðtÞ for
an individual avalanche is given by
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qsiðtÞ ¼
(
� λ3cs

τcτsi
ΔThyst

2
ðt − tiÞ; for ti ≤ t ≤ tf;

�jqsiðtfÞje−½ðt−tfÞ=τc�; for t > tf;
ð19Þ

where the plus sign holds in a heating process so that
qsiðtÞ > 0, the minus sign holds for the cooling case so that
qsiðtÞ < 0, jqsiðtfÞj ¼ λ3csΔThystðtf − tiÞ=ð2τcτsiÞ is the
heat flux at the end of the phase transition when t ¼ tf and
ΔThyst ¼ Thi − Tci > 0 is the temperature hysteresis
between the heating, i.e., Thi, and the cooling, i.e., Tci,
transition temperatures of each avalanche. For the sake of
simplicity, in what follows, we assume ΔThyst to be the
same for all of the avalanches detected at a given field H,
meaning that the temperature hysteresis depends only on
H, not on the single microscopic irreversible events i
driving the transition. Moreover, we will choose Thi and
Tci to be symmetric around Tt (see Fig. 2). In this way,
Tt ¼ ðThi þ TciÞ=2 and ΔThyst=2 ¼ Thi − Tt ¼ Tt − Tci.
It is important to point out that, in the case of slow scan

rates and far-from-equilibrium avalanches that we are
considering, the theoretically expected behavior of the
heat-flux signal during the transition, i.e., for ti ≤ t ≤ tf,
is linear in time and governed by both of the time constants
τsi and τc, while the subsequent relaxation towards the
equilibrium is described by an exponential law governed by
the time constant τc alone, related to the thermal contact
details only.

IV. COMPARISON WITH EXPERIMENTS

We analyze the experimental data obtained by perform-
ing Peltier calorimetry temperature scans at different rates
and at various applied magnetic fields H on a series of
LaðFe-Mn-SiÞ13-H1.65 samples. Indeed, these kinds of
experiments, in which a calorimeter evaluates the heat flux
exchanged between the sample and the external thermostat
by performing temperature or magnetic-field scans at
different rates [70,71], are the right ones to apply the
theoretical model developed in Sec. III. The sample
preparation and the experimental procedure followed to
detect the heat-flux signals are detailed in Ref. [54].
Specifically, in Ref. [54], it was shown that the heat-flux
signals present well-separated avalanches only when the
temperature scans are performed at very low rates, i.e.,
lower than 20 mK=s, on small fragments of the material
under investigation characterized by a mass of a few
milligrams. We focus our analysis on the data obtained
through scans performed in heating at the lowest scan rate,
i.e., dTb=dt ¼ 1 mK=s, on two samples of the series
characterized by nominal compositions Mn ¼ 0.18 and
Mn ¼ 0.30. The mass of the samples is m1 ¼ 4.79 mg and
m2 ¼ 5.26 mg for the two compositions 0.18 and 0.30,
respectively. It is worth noting that such small masses allow
us to assume from here on that λ ¼ L, meaning that the
sample temperature T will be considered uniform within
the whole sample.

The resulting heat-flux signals as a function of time for
different fields H varying between 0 and 1.5 T and around
the transition temperature Tt are reported in Fig. 4. The data
clearly show the presence of avalanches separated in time
in both samples, increasing in number and changing in
shape by approaching the critical field Hc of the system, at
which the phase transition becomes second order, given
by Hc ≃ 2.3 T and Hc ≃ 1.2 T for Mn ¼ 0.18 and
Mn ¼ 0.30, respectively [72]. All of the avalanches are
characterized by a fast linear growth followed by a longer
exponential decay. To interpret this kind of behavior
theoretically, we can notice that since the experimental
temperature scans are performed at a very low rate for each
field H, we can safely treat the thermostat temperature Tb
as a constant during the phase transition. Then, we describe
the time behavior of the avalanches using Eq. (19) of
Sec. III C.
First, we obtain the values of τc by performing the fit of

the exponential decays observed in selected avalanches of
both samples at various H values, as shown in Fig. 5. The
resulting average values hτci for the various H and Mn
compositions are reported in Table I. We then fit the linear
rises with the function qsiðtÞ ¼ aðt − tiÞ. From the first
equation in Eq. (19), the slope a can be written as
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FIG. 4. Heat flux qs as a function of time at different magnetic
fields μ0H. Experimental data obtained by Peltier calorimetry
temperature scans performed at a rate of dTb=dt ¼ 1 mK=s,
upon heating, on the (top panel) LaFe11.60Mn0.18Si1.22-H1.65 and
(bottom panel) LaFe11.41Mn0.30Si1.29-H1.65 samples.

THERMODYNAMICS OF THE HEAT-FLUX AVALANCHES … PHYS. REV. APPLIED 8, 044023 (2017)

044023-7



a ¼ ðRsi=τcÞΔThyst=2, where we define the quantity
Rsi ¼ ðαsAiÞ−1 ¼ ðαsli

2Þ−1, having the units of a thermal
resistance, i.e., K/W. Specifically, from the definition of
Rsi, we notice that it accounts only for the internal damping
mechanism driving the system through the phase transition,
not for the contact details. The choice of evaluating Rsi
instead of τsi lies on the difficulty of estimating the
reversible contribution to the specific heat of the system
cs close to the transition temperature Tt. By using the
values of τc and those of the temperature hysteresis
ΔThyst=2 experimentally determined [54,72] and reported
in Table I and Fig. 7, it is possible to evaluate Rsi. The
behavior of Rsi for the avalanches analyzed is reported in
Fig. 6(a).
In order to evaluate the damping coefficient αs, we need

to evaluate the linear size li associated with each resistance
value Rsi. li is obtained by computing the latent heat
exchanged in each region of the sample involved in
the phase transition with the surroundings. As shown in
Sec. II B, the latent heat is related to the volume liAi ∼ li

3

covered by the boundary interface during its motion

through Eq. (10), so li ¼ f½R qsiðtÞdt�=ΔuLg1=3. Thus,
by integrating the individual heat-flux avalanches detected
experimentally (see Fig. 4) between the times corres-
ponding to the beginning of the avalanche and those

FIG. 5. Example of the fit of an individual avalanche: fitting
curves to Eq. (19) (the red dotted line) and the experimental data
(the black solid line). The fit of linear rise, exponential decay, and
area under the curve allow us to determine the parameters Rsi, τc,
and li, respectively. (Inset) Example of the fit in the case of a
multiple avalanche.

TABLE I. Experimental values of Tt, ΔThyst=2, and ΔuL ¼ TtΔsL, obtained by Peltier calorimetry temperature scans at different
magnetic fields μ0H on LaðFe-Mn-SiÞ13-H samples with Mn ¼ 0.18 and Mn ¼ 0.30 (density ρ ¼ 7200 kg=m3), following
Refs. [54,72]. The average values hτci are evaluated by fitting the decay parts of the heat-flux avalanches (Fig. 4) with the exponential
law of Eq. (19), as depicted in Fig. 5.

Mn ¼ 0.18 Mn ¼ 0.30

μ0H (T) Tt (K) ΔThyst=2 (K) ΔuL (×106 J=m3) hτci (s) μ0H (T) Tt (K) ΔThyst=2 (K) ΔuL (×106 J=m3) hτci (s)
0 321.4 0.45 31.2 4.0 0 295.8 0.2 21.9 6.1
0.5 323.1 0.3 30.2 4.1 0.4 297.6 0.1 20.1 5.8
1 325.1 0.2 29.3 4.2 0.7 298.6 0.1 18.3 10.5
1.5 326.7 0.15 28.2 4.6 1 300.5 0.05 16.9 22.0

(a)

(b)

(c)

(d)

FIG. 6. (a) Damping resistance Rsi, (b) linear size li, (c) veloc-
ity v ¼ dx=dt, and (d) ratio αs=ΔuL, as a function of the applied
field μ0H, for LaðFe-Mn-SiÞ13-H samples with nominal compo-
sitions Mn ¼ 0.18 (the red squares) and Mn ¼ 0.30 (the green
circles). Points are obtained by fitting the avalanches shown in
Fig. 4 through Eq. (19) with the parameters reported in Table I.
The dashed-dotted lines connecting the average values among
points serve as a guide for the eye.
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corresponding to the end of its exponential decay (see
Fig. 5), and by using the experimental values for ΔuL ¼
TtΔsL reported in Table I (see also Fig. 7), we find the li
values reported in Fig. 6(b).
Finally, we evaluate the damping coefficient αs through

the internal resistanceRsi and the sizeli asαs ¼ 1=ðRsili
2Þ.

In this way, we can also estimate the starting velocity of the
boundary interface v ¼ dx=dt ¼ ðαs=ΔuLÞΔThyst=2, a rela-
tion obtained by approximating Eq. (12) for T ≃ Tt. The
behavior of v, together with the values of the ratio αs=ΔuL,
are shown in Figs. 6(c) and6(d) for variousmagnetic fieldsH
and different Mn compositions.

V. DISCUSSION

As a first result of the fitting of the experimental
avalanches with the model, we can observe that Rsi,
beyond depending on the Mn composition, increases by
increasing the applied magnetic field H [Fig. 6(a)]. The
opposite behavior characterizes the typical size li swept
out by each piece of the domain boundary interface during
its motion [Fig. 6(b)]. Such a decrease in li, and hence in
the volume li

3 of each individual avalanche, is consistent
with the increase in the number of avalanches which are
experimentally detected when approaching the critical
point of the system (see Fig. 4) since the volume that
transforms during the transition from a certain phase to a
new one is λ3 ∼

P
ili

3.
This kind of behavior is not trivial, and it may be

interpreted as a consequence of the assumption that the
transition is driven by the heterogeneous nucleation and
pinning of the boundaries of the new phase at the defects
present in the MCE sample. The applied field H can be

thought of as acting on the typical energy profile character-
izing a first-order transition (Fig. 2) by modulating the
energy barrier between the stable phases S0 and S1—and
hence decreasing the temperature hysteresis ΔThyst—as
shown in the bottom of Fig. 7, without affecting the
material microstructure. In this way, it is possible to
distinguish three different regimes depending upon the
values of the applied field H. When H is far below the
critical point and, eventually, H ∼ 0, the energy barrier and
the hysteresis are high enough to prevent many defects of
the sample to be active as nucleation centers of the new
phase. As a consequence, when the new phase nucleates at
a certain point, the subsequent transformation involves the
whole sample and a single avalanche is observed. At higher
H but still below Hc, the energy barrier and ΔThyst are
reduced and the nucleation and growth of new domains
may occur in several points of the sample. Then, more
avalanches, still well separated in time, come into play and
are experimentally detected. Finally, by further increasing
H and getting closer to Hc—or even above it—the
hysteresis reduces essentially to zero and a proliferation
of avalanches superimposing each other is observed. The
number of avalanches is so high that they are blurred in an
almost continuous background, and the single peaks cannot
be distinguished anymore.
The situation described here can be efficiently illustrated

by choosing several samples having different critical points
Hc, so that a given applied fieldH may be well belowHc, at
an intermediate level between 0 and Hc, or close to or
higher than Hc, depending upon the specific sample under
investigation. This situation is well represented by the
compounds of the LaðFe-Mn-SiÞ13-H1.65 series that we
consider here. Indeed, an applied fieldH ∼ 1.5 T is already
higher than Hc ∼ 1.2 T for the Mn ¼ 0.30 sample, but it is
still belowHc ∼ 2.3 T in the case Mn ¼ 0.18. This circum-
stance is well reflected in the behavior of the heat-flux
signals detected at this field on the two compounds. These
signals indeed show a pattern already demonstrated in
separated avalanches for Mn ¼ 0.18 and, on the contrary, a
rather continuous background for Mn ¼ 0.30 (see Fig. 4
and the inset therein).
Interestingly, the increase in Rsi and the decrease in li

observed by increasing H compensate for each other, so
that the parameter αs=ΔuL ¼ ðRsili

2ΔuLÞ−1 appearing in
Eq. (12) is essentially constant, independent ofH and of the
material composition [Fig. 6(d)]. The average value
of this parameter, representing the starting velocity of
the moving phase-boundary interface corresponding
to a variation in temperature of 1 K, amounts to
αs=ΔuL ≈ 0.5 × 10−3 ðm=sÞK−1.
Another important feature to mention is that the velocity

v ¼ dx=dt of the heat-flux avalanches shows a clear
decrease by enhancing H and getting closer to Hc
[Fig. 6(c)], meaning that the associated boundary motion
slows down by approaching the critical point of the system.
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FIG. 7. Experimental values of entropy change per unit mass
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function of the applied field μ0H, for LaðFe-Mn-SiÞ13-H com-
pounds with nominal compositions Mn ¼ 0.18 (the red symbols)
and Mn ¼ 0.30 (the green symbols).
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This kind of behavior may be interpreted as a manifestation
of the critical slowing down known to appear around the
critical point of a phase transition [73,74], and it can be
ascribed to the disappearance of the avalanches above Hc.
A final comment concerns the role played by the intrinsic

kinetics governing the transition, with respect to extrinsic
factors, in affecting the heat exchanged between the MCE
sample and its surroundings. A comparison between the Rsi
values and the contact resistance values Rc can be made. A
rough estimate of Rc can be obtained from the average
values hτci reported in Table I for different fields H and for
different nominal Mn compositions. In order to relate Rc to
hτci, we must take into account the fact that, for the
particular measuring setup we have employed to perform
the temperature scans, the thermal contacts also comprise
the Peltier cells of the calorimeter which are characterized
by their own resistance and capacity, RP and CP, respec-
tively. Both of these quantities can be determined by
calibrating the calorimeter, and they evaluate to RP ¼
75 K=W and CP ¼ 48 mJ=K [71]. Then, by also including
the contribution associated with CP, the thermal contact
resistance can be expressed as Rc ¼ hτci=ðCs þ CPÞ. The
heat capacity Cs ¼ λ3cs may be evaluated by observing
that λ3 represents, in our case, the whole sample volume
since we have assumed λ ¼ L, and the specific heat cs
around the transition temperature at various H values can
be extrapolated from the experimental data reported in
Ref. [72]. With cs ≃ 600 J=ðkgKÞ for Mn ¼ 0.18, essen-
tially not dependent on H, and cs ≃ 1000 J=ðkgKÞ at H ¼
0 T and cs ≃ 1500 J=ðkgKÞ at H ¼ 1 T for Mn ¼ 0.30,
we can conclude that Rc ∼ 80–90 K=W in the Mn ¼ 0.18
case, while Rc ∼ 100–400 K=W for Mn ¼ 0.30. We can
notice that the Rc and Rsi values have the same order of
magnitude for both of the compositions considered here.
We can conclude that it would be attractive to envisage the
development of experiments able to enhance Rc with
respect to Rsi, or vice versa, by choosing the right MCE
materials and measuring setup. In this way, it would be
possible to clearly distinguish the effects on the heat-flux
exchange due to the intrinsic kinetics and to extrinsic factors,
such as the measurement system. Such an investigation will
be the subject of future work.

VI. CONCLUSIONS

In this paper, we introduce a thermodynamic model
describing the out-of-equilibrium effects proper in first-
order phase transitions to analyze the heat-flux signals
experimentally observed by performing temperature scans
at low rate on a series of LaðFe-Mn-SiÞ13-H1.65 fragments
with Mn ¼ 0.18 and Mn ¼ 0.30. The physical picture
arising from the comparison between the experimental
data and the model is coherent with the assumption of a
defect-driven phase transition, in which the system trans-
forms from a magnetically ordered LT-FM phase to a

disordered HT-PM phase because of the motion of the
domain boundaries which nucleate at the defects present in
the material microstructure.
Specifically, we show that, when the scan rate is low

enough, the nucleation and pinning centers of the sample
are active one at a time, and they give rise to characteristic
repeatable series of heat-flux peaks which have a typical
linear growth followed by an exponential decay. We relate
the appearance of these avalanches to individual, well-time-
separated, independent boundary motion events associated
with the latent heat of the system. Furthermore, we show
that the nontrivial patterns experimentally observed in the
heat-flux signals can be interpreted as a consequence of the
applied magnetic field H. The latter modulates the energy
profile and the hysteresis of the system by getting closer to
the critical pointHc, and it affects in this way the number of
nucleation centers that may be active in the sample.
Finally, we evaluate the coefficient αs associated with the

internal damping of the boundary motion events for the
LaðFe-Mn-SiÞ13-H1.65 compounds. Although a precise
quantitative estimate of this parameter is limited by the
limited amount of available experimental data, we find a
value αs which is essentially not dependent on either the
applied magnetic field H or the Mn composition. This
outcome suggests that αs may be considered as a parameter
related only to the intrinsic properties of each class of MCE
materials.

APPENDIX A: CONSTANT Tb

The case of a constant thermal reservoir temperature Tb
allows us to properly describe calorimetry measurements in
which the temperature scans are performed at very low
rates. In this regime, the single avalanches observed in the
heat-flux signal are well separated in time and are dis-
tinguishable from a uniform background, so it is possible to
follow the time evolution of each of them. The appearance
of each avalanche is due to individual nucleation and
pinning events occurring in many different regions of the
sample which are active at different subsequent times. The
separation in time of these events can be explained by
supposing that when the transition begins, the phase-
boundary interface will start to move around a certain
nucleation center, exchanging heat and causing the varia-
tion of the sample temperature T within a typical volume λ3

(see Fig. 3) around the nucleation center. This change in
temperature will prevent the occurrence of other nucleation
events and boundary motions inside the same volume since
T will be different from the threshold value necessary for
the motion of the boundary interface, i.e., Thi in a heating
process or Tci in the cooling case (see Sec. II B). Once the
phase boundary will stop and the heat-flux avalanche will
end, the whole region will relax again towards the equi-
librium temperature Thi or Tci, thus allowing a new
avalanche to start. The presence of an applied magnetic
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field H does not affect this picture, even if H is close to the
critical value Hc. Indeed, the increase in the H value is
reflected in a decrease of the temperature hysteresis ΔThyst

and in the consequent increase of the number of the active
regions of the sample in which an avalanche event may
occur. Therefore, by increasing H the number of individual
avalanches experimentally detected is also increased.
However, the separation in time among these avalanches
depends on the heat exchanged by the boundary interface
with the surrounding region of the sample and with the
external thermal reservoir and this feature is related only to
the internal properties of the material and to the external
scan rate, but it cannot be affected by H.
The differential equations governing the time behavior of

the sample temperature TðtÞ are derived in Sec. III and are
given by Eqs. (17) and (18). To solve these equations, we
assume that the transition starts at TðtiÞ ¼ Thi for a heating
process [TðtiÞ ¼ Tci for the cooling case]. Then the
constant Tb value is Tb ¼ Thi in heating (Tb ¼ Tci in
cooling). The solution of Eqs. (17) and (18) for an
individual avalanche is then

TðtÞ¼
(
TðtiÞ∓ τc

τcþτsi
ΔThyst

2
ð1−e−½ðt−tiÞ=τsc�Þ; for ti ≤ t≤ tf;

TðtiÞ∓ jTðtiÞ−TðtfÞje−½ðt−tfÞ=τc�; for t > tf;

ðA1Þ

whereTðtiÞ ¼ Thi and theminus sign hold for a heating pro-
cess, while TðtiÞ ¼ Tci and the plus sign hold in the cooling
case, and we introduce the quantity jTðtiÞ−TðtfÞj¼
τc=ðτcþτsiÞðΔThyst=2Þð1−e−½ðtf−tiÞ=τsc�Þ>0, with ΔThyst ¼
Thi − Tci and ΔThyst=2 ¼ Thi − Tt ¼ Tt − Tci. More-
over, in Eq. (A1), we define the time constant τsc ¼
ð1=τc þ 1=τsiÞ−1 ¼ λ3csðλ2κc=tc þ αsli

2Þ−1. We observe
that the time constant τsc, governing the behavior of T
during the transition, is the parallel of the time constants τc,
τsi defined in Sec. III C, and therefore it is dominated by the
smaller one between them. This observation implies that
the heat exchanged between the boundary interface and the
surrounding region of the sample during the phase transition
can be governed either by the intrinsic damping (τsi ≪ τc) or
by external factors only (τsi ≫ τc). Specifically, sincewe are
assuming that li ≪ λ (see Sec. III C and Fig. 3) and that the
contact resistance tc=ðκcAcÞ for the samples investigated
here is low (see Ref. [54]), the internal time constant τsi is
expected to be higher than the τc for any event i, so that
τsc ≃ τc. In this respect, it is worth noting that, from an
analytical point of view, the time constants τsi and τc can be
independently determined and do not mix together if
the individual heat-flux avalanches associated with the
transition event are far from equilibrium during the whole
transition, a condition which is realized if tf − ti ≪ τsc.
Indeed, in this case, we have exp ½−ðt − tiÞ=τsc�≃ 1−
ðt − tiÞ=τsc, and the first row of Eq. (A1) assumes the form

TðtÞ − TðtiÞ≃ ∓ ðΔThyst=2Þðt − tiÞ=τsi independent of
whether τsi ≪ τc or τsi ≫ τc. Then, we can conclude that
in the case of far-from-equilibrium avalanches, the sample
temperature T will vary linearly in time with a slope
determined only by the internal time constant τsi for
ti ≤ t ≤ tf, while it will relax back to the equilibrium for
t > tf, with an exponential law governed only by the time
constant τc.
The solution given by Eq. (A1), combined with Eq. (15),

allows us to determine the time behavior of the heat current
density jqðtÞ flowing through the thermal contact for an
individual avalanche event, which reads

jqðtÞ ¼
(∓ λcs

τcþτsi
ΔThyst

2
ð1 − e−½ðt−tiÞ=τsc�Þ; for ti ≤ t ≤ tf;

∓ jjqðtfÞje−½ðt−tfÞ=τc�; for t > tf;

ðA2Þ
with jjqðtfÞj ¼ λcsjTðtiÞ − TðtfÞj=τc being the modulus of
the heat current density at t ¼ tf, the minus sign holding for
a heating process, and the plus sign holding for the
cooling case.
Finally, from Eq. (A2) and by integrating the continuity

equation (8) on the volume λ3 enclosed in the surface area
λ2, we obtain the time behavior of an individual heat-flux
avalanche qsiðtÞ ¼ −λ2jqðtÞ:

qsiðtÞ ¼
(
� λ3cs

τcþτsi
ΔThyst

2
ð1 − e−½ðt−tiÞ=τsc�Þ; for ti ≤ t ≤ tf;

�jqsiðtfÞje−½ðt−tfÞ=τc�; for t > tf;

ðA3Þ
where, in this case, jqsiðtfÞj ¼ λ3csjTðtiÞ − TðtfÞj=τc is the
modulus of the heat flux at t ¼ tf, the plus sign holds for
heating so that qsiðtÞ > 0, and the minus sign holds for
cooling so that qsiðtÞ < 0. Again, if the avalanches are far
from equilibrium, and hence tf − ti ≪ τsc, the heat-flux
behavior during the transition becomes linear in time and is
governed by both of the time constants τsi and τc, while the
subsequent relaxation towards equilibrium can still be
described by an exponential law governed by the time
constant τc related to the thermal contact details only:

qsiðtÞ ¼
(
� λ3cs

τcτsi
ΔThyst

2
ðt − tiÞ; for ti ≤ t ≤ tf;

�jqsiðtfÞje−½ðt−tfÞ=τc�; for t > tf;
ðA4Þ

with jqsiðtfÞj ¼ λ3csΔThystðtf − tiÞ=ð2τcτsiÞ.

APPENDIX B: Tb VARYING AT
CONSTANT RATE _Tb

The case of a thermal reservoir temperature Tb varying
at a constant rate _Tb applies to the description of
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calorimetry experiments performed at high scan rates.
Contrary to the case discussed in Appendix A, the high
scan rate allows many regions surrounding different
domain nucleation centers inside the MCE sample to be
active at the same time and not independent of each other.
As for Appendix A, each of these regions contributes to
developing the phase-boundary interface with a portion of
surface having area Ai, and it affects the sample temper-
ature T within a volume λ3 around the nucleation center.
However, the main difference with respect to the case of a
thermal reservoir kept at a constant temperature Tb treated
in Appendix A is represented by the fact that many
irreversible events i, with each one associated with the
motion of a single piece of surface Ai, occur concurrently
within the volume λ3. This circumstance happens because
the heat provided by the reservoir at high scan rates is high
enough to balance the change in temperature occurring in
the λ3 volume because of the phase-boundary motion, so
the threshold temperatures Tci and Thi (see Sec. II B) are
overcome almost simultaneously by many nucleation
centers. Then all of the terms proportional to Ai appearing
in the sum on the right-hand side of Eq. (16) must be
taken into account and, since the damping coefficient αs,
the typical size λ, and the transition temperature Tt are the
same for all of the events, we can write the area of the
phase-boundary interface as A ¼ P

iAi ¼
P

ili
2 (see also

Sec. III A). The time constant related to the damping
mechanism associated with the motion of the whole
surface A is, in this case, denoted as τs, and it reads
τs ¼ λ3cs=ðαs

P
ili

2Þ ¼ ðPi1=τsiÞ−1, where τsi is the
time constant, defined in Sec. III C, which refers to the
damping of only a portion Ai of the whole boundary
interface. It is worth noting that, depending on the upper
limit in the previous sum, it can be either Ai ∼ A if the
limit is low or Ai ≪ A if the limit is high enough. In the
former case, we can assume that τs ∼ τsi ¼ λ3cs=ðαsli

2Þ,
while, in the latter case, we have τs ≪ τsi. More impor-
tant, although Ai ≪ λ2, since we are assuming li ≪ λ, it
may happen that A, being the sum of many Ai’s, will be
greater than λ2, so that also τc > τs. Hence, with respect to
the constant Tb case, in the fast-scan-rate regime, there is
also the possibility that the heat exchanged between the
MCE sample and the external thermal reservoir may be

primarily governed by the thermal contact details instead
of the intrinsic kinetics of the phase transition.
From the experimental point of view, the heat-flux signal

qsðtÞ detected in this regime is no longer characterized by
individual peaks well separated in time associated with the
different events i, as it is for the case of a constant Tb, but it
rather shows a continuous behavior due to the super-
position of many concurrent events. It is worth noting
that, in this case also, the times ti and tf at which the phase
transition begins and ends, respectively, identify the length
in time of the whole heat-flux signal composed of many
superimposed avalanches and not merely the time span of
an individual single avalanche, as it is in Sec. III C and
Appendix A. Moreover, the shape of qs is also highly
affected by the magnetic field H, which plays a prominent
role here, since it determines the number of irreversible
events i occurring in the sample at the same time. Indeed, as
discussed in Appendix A, while H is approaching the
critical value Hc, the temperature hysteresis ΔThyst is
reduced, and thus the number of active regions in which
new domains nucleate and grow is increased. This also
means that the number of terms contributing to the sum
appearing in Eq. (16) is increased, and this fact is reflected
by the behavior of the sample temperature TðtÞ and the
heat-flux signal qsðtÞ.
To solve Eqs. (17) and (18) in the case of a thermal-bath

temperature varying in time as TbðtÞ ¼ TbðtiÞ þ _Tbðt − tiÞ
for t > ti, with _Tb > 0 in a heating process or _Tb < 0 in a
cooling case, we must first determine the initial value
TbðtiÞ. To this aim, we observe that, before the transition
starts, i.e., for t ≤ ti, the sample temperature T has a small
leg behind Tb due to the contact resistance tc=ðκcAcÞ
between the MCE sample and the reservoir. Then we can
conclude that TbðtÞ ¼ TðtÞ þ τc _Tb for t ≤ ti. At t ¼ ti, the
sample temperature reaches the threshold value TðtiÞ ¼ Th
in a heating process or TðtiÞ ¼ Tc in the cooling case, so
the initial condition on Tb reads TbðtiÞ ¼ Th þ τc _Tb in
heating and TbðtiÞ ¼ Tc þ τc _Tb ¼ Tc − τcj _Tbj in cooling.
With the above conditions and the time constant τsc

defined as in Eqs. (A1), (A2), and (A3) but with τsi
replaced, in this case, by τs, the solution TðtÞ of Eqs. (17)
and (18) and the heat flux qsðtÞ read

TðtÞ ¼
(
TðtiÞ þ τs

τcþτs
_Tbðt − tiÞ ∓ τc

τcþτs
ðΔThyst

2
− τscj _TbjÞð1 − e−½ðt−tiÞ=τsc�Þ; for ti ≤ t ≤ tf;

TðtiÞ − ½TðtiÞ − TðtfÞ�e−½ðt−tfÞ=τc� þ _Tbðtf − tiÞð1 − e−½ðt−tfÞ=τc�Þ þ _Tbðt − tfÞ; for t > tf;
ðB1Þ

qsðtÞ ¼
8<
:� λ3cs

τc
½τcj _Tbj þ τc

τcþτs
j _Tbjðt − tiÞ þ τc

τcþτs
ðΔThyst

2
− τscj _TbjÞð1 − e−½ðt−tiÞ=τsc�Þ�; for ti ≤ t ≤ tf;

qsðtfÞe−½ðt−tfÞ=τc� þ λ3cs _Tbð1 − e−½ðt−tfÞ=τc�Þ; for t > tf;
ðB2Þ
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where the minus sign in Eq. (B1) and the plus sign in
Eq. (B2) hold in heating, while the opposite signs in the
same equations hold for cooling. Moreover, in analogy
with Appendix A, we set ΔThyst ¼Th−Tc and ΔThyst=2 ¼
Th − Tt ¼ Tt − Tc. Specifically, we observe that Eq. (B2)
is evaluated by combining Eq. (B1) with Eqs. (8)–(15),
following the same procedure used in Appendix A to
obtain Eq. (A3). The heat current density jqðtÞ, analogous
to Eq. (A2), is simply obtained from Eq. (B2) as
jqðtÞ ¼ −qsðtÞ=λ2.
There are two special limits of Eqs. (B1) and (B2) that

deserve attention and allow us to simplify the above
expressions, namely, the case in which the sample temper-
ature TðtÞ and the heat-flux signals qs are far from their
equilibrium values for the whole phase transition, a con-
dition realized whenever tf − ti ≪ τsc, and, conversely, the
case in which T and qs can be close and can even reach the
thermodynamic equilibrium during the transformation,
i.e., tf − ti ≳ τsc.

1. Far-from-equilibrium signals

When the signals are far from the thermodynamic
equilibrium, the behavior of both TðtÞ and qsðtÞ during
the phase transition, i.e., for ti ≤ t ≤ tf, becomes linear in
time, as it is for Eqs. (A1) and (A3), and it is given by

TðtÞ ¼ TðtiÞ þ _Tbðt − tiÞ ∓ ΔThyst

2τs
ðt − tiÞ; ðB3Þ

qsðtÞ ¼ �λ3cs

�
j _Tbj þ

ΔThyst

2τcτs
ðt − tiÞ

�
; ðB4Þ

where in both equations we use the same convention on the
signs as in Eqs. (B1) and (B2). Therefore, the far-from-
equilibrium regime allows us to clearly distinguish the role
played by the time constants τs and τc in determining the
behavior of TðtÞ and qsðtÞ during and after the phase
transition. Indeed, as shown in Eq. (B3), the slope in the
linear behavior of T during the phase transition is governed
by the internal time constant τs only, independent of
whether τc ≪ τs or, conversely, τc ≫ τs. Concerning
qsðtÞ, Eq. (B4) shows, furthermore, that its linear behavior
is characterized by a slope determined by both of the time
constants τs and τc. When the transition is ended, i.e., for
t > tf, both T and qs relax back to the thermodynamic
equilibrium with an exponential law governed by τc only
and described by Eqs. (B1) and (B2). The major difference
with respect to the case of a constant Tb treated in
Appendix A is that the behavior of both TðtÞ and qsðtÞ
depends now also on the constant rate _Tb. This fact is
qualitatively depicted in Figs. 8 and 9, where the sample
temperature T and the heat flux qs are reported, upon
heating, as a function of the thermal-bath temperature Tb at
different rates _Tb > 0.

2. Close-to-equilibrium signals

The case of signals that can be close to or may even reach
the thermodynamic equilibrium arises, interestingly, when
the applied magnetic field H approaches the critical point
Hc. Indeed, for H ≃Hc, we have already noted that
τc > τs, so that also τsc ≃ τs, because τsc is the parallel
between τc and τs. Since, in this case, we have also pointed
out that τs ≪ τsi and we know from the experimental
results reported in Sec. IV that τsi ¼ λ3csRsi ¼ CsRsi is on
the order of 10–100 ms, we may suppose that the heat-flux

FIG. 8. Qualitative behavior of T vs Tb for far-from-equilibrium
signals at different rates _Tb ¼ dTb=dt > 0, using Eq. (B3) for the
linear decrease and Eq. (B1) (second row) for the exponential
relaxation. The dotted red line shows the temperature Tb. _Tb
values in the legend are expressed in arbitrary units.

FIG. 9. Qualitative behavior of qs vs Tb for far-from-equilibrium
signals at different rates _Tb ¼ dTb=dt > 0, using Eq. (B4) for the
linear growth and Eq. (B2) (second row) for the exponential decay.
A constant offset λ3cs _Tb is subtracted from all of the curves. For the
values in the legend, see Fig. 8.
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signals last in times more than τs, i.e., tf − ti ≳ τsc ≃ τs. The linear approximation derived for the far-from-equilibrium
signal regime no longer holds, but we can also, in this case, simplify Eqs. (B1) and (B2), noting that τs is now negligible
with respect to τc. Then we obtain

TðtÞ ¼
8<
:

TðtiÞ ∓ ΔThyst

2
ð1 − e−½ðt−tiÞ=τs�Þ � τsj _Tbjð1 − e−½ðt−tiÞ=τs� þ t−ti

τc
Þ; for ti ≤ t ≤ tf;

TðtiÞ − ½TðtiÞ − TðtfÞ�e−½ðt−tfÞ=τc� þ _Tbðtf − tiÞð1 − e−½ðt−tfÞ=τc�Þ þ _Tbðt − tfÞ; for t > tf;
ðB5Þ

qsðtÞ ¼
8<
:

�λ3cs½j _Tbj þ ΔThyst

2τc
ð1 − e−½ðt−tiÞ=τs�Þ þ j _Tbj t−tiτc

− τs
τc
j _Tbjð1 − e−½ðt−tiÞ=τs�Þ�; for ti ≤ t ≤ tf;

qsðtfÞe−½ðt−tfÞ=τc� þ λ3cs _Tbð1 − e−½ðt−tfÞ=τc�Þ; for t > tf:
ðB6Þ

We note from Eqs. (B5) and (B6) that TðtÞ and qsðtÞ
show, in this regime, an exponential behavior both during
and after the transition, governed by τs and τc separately.
Even in this case, Eqs. (B5) and (B6) can be linearized as a
function of the thermal reservoir temperature TbðtÞ—if the
time constant τs is small enough—so that we can consider
t − ti ≫ τs and we can safely neglect the exponentials
appearing in these equations for ti ≤ t ≤ tf. Then the
solutions describing the temperature and heat-flux behavior
as a function of TbðtÞ during the phase transition, i.e., for
ti ≤ t ≤ tf, read

T ≃ τs
τc
Tb þ Tt −

τs
τc
TðtiÞ≃ Tt; ðB7Þ

qs ≃ λ3cs
τc

ðTb − TtÞ: ðB8Þ

The most important feature encompassed in Eq. (B8) is
represented by the fact that the heat flux qs has a linear
dependence on the thermal-bath temperature Tb charac-
terized by a slope which is not dependent on the rate _Tb.
Similar linear behavior is shown, but as a function

of the time t, at times well beyond the end of the transition,
i.e., at t ≫ tf. In this case, the time behavior of T
and qs again becomes linear, as it is for t ≤ ti before the
transition starts, and it is given by TðtÞ ¼ TbðtÞ − ½TðtiÞ−
TðtfÞ þ _Tbðtf − tiÞ�e−½ðt−tfÞ=τc� − τc _Tb ≃ TbðtÞ − τc _Tb and
qsðtÞ ¼ λ3cs½TbðtÞ − TðtÞ�=τc ¼ λ3cs _Tb.
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