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It is known that the eye’s scotopic photodetectors, rhodopsin molecules, and their associated
phototransduction mechanism leading to light perception, are efficient single-photon counters. We here
use the photon-counting principles of human rod vision to propose a secure quantum biometric
identification based on the quantum-statistical properties of retinal photon detection. The photon path
along the human eye until its detection by rod cells is modeled as a filter having a specific transmission
coefficient. Precisely determining its value from the photodetection statistics registered by the conscious
observer is a quantum parameter estimation problem that leads to a quantum secure identification method.
The probabilities for false-positive and false-negative identification of this biometric technique can readily
approach 10−10 and 10−4, respectively. The security of the biometric method can be further quantified
by the physics of quantum measurements. An impostor must be able to perform quantum thermometry
and quantum magnetometry with energy resolution better than 10−9ℏ, in order to foil the device by
noninvasively monitoring the biometric activity of a user.
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I. INTRODUCTION

In recent years there is an increasing need for secure
biometric identification. Besides the traditional fingerprint-
ing, the most advanced methods currently appear to be the
retina and iris scan. For example, the distinctiveness of the
acquired retinal image is due to the subject-specific for-
mation of blood vessels on the retina’s surface. However,
all existing methods [1] are “classical,” meaning that in
principle they can be foiled, or equivalently, (i) there is no
law of physics prohibiting such a foil, and (ii) their security
is neither guaranteed nor quantified by any fundamental
law of physics, but relies on the hope that the majority of
potential impostors lack the means to foil them.
We here propose and analyze a biometric method based

on the “single-photon” detection ability of the human
retina. The method relies on the quantum estimation of
α, a parameter describing the optical and detection losses
along particular optical paths ending on the retina. The
estimation follows from knowledge of the incident number
of photons and from the subject’s response regarding the
perception or not of a series of light flashes.
The proposed method can be termed “quantum” for three

reasons. (i) It is based on detecting coherent light pulses
containing a few tens of photons by the conscious subject
supposed to be positively identified (call her Alice). (ii) An

impostor pretending to be Alice, call her Eve, is forced by
the physics and methodology of this biometric technique to
reply randomly to the biometric device’s interrogations, no
matter how technologically advanced she is, in particular,
no matter how good the photon detectors are that she is
equipped with. (iii) In the event that Eve is attempting by
physical means to noninvasively infer Alice’s particular
biometric characteristics while Alice is being interrogated
by the biometric device, the ability to do so can be
quantified in the context of the energy resolution of
quantum measurements.
In Sec. II we introduce the basic photon statistics of

low-intensity light perception by the retina and define the
parameter α that is to be estimated and used as the biometric
quantifier. In Sec. III we introduce two central performance
metrics, the false-positive and false-negative identification
probabilities, as well as some basic features of the bio-
metric methodology. In Sec. IV we briefly comment on a
naive biometric strategy, the quantum estimation of the α
map across the retina, which requires an impractically long
interrogation time. In Sec. V we introduce the central idea
of the method, the random illumination of either low-α or
high-α spots, which is further refined by considering a
Bayesian update of the identification probability condi-
tioned on the running record of responses. This approach
leads to a realistically short interrogation time, which is
further reduced by introducing in Sec. VI a “parallel”
method based on pattern recognition. With conservative
assumptions we obtain unprecedented performance metrics,
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in particular a false-positive and false-negative probability at
the level of 10−10 and 10−4, respectively. In principle, both
metrics can be readily reduced even further. Finally, in
Sec. VII we examine whether the proposed method can be
indeed termed quantum. We then analyze the physical
means by which an impostor could noninvasively monitor
the biometric activity of Alice, infer her biometric character-
istics, and then pass the test. The quantum technology the
impostor must possess in order to do so amounts to
performing quantum thermometry and magnetometry with
an energy resolution better than 10−9ℏ.

II. QUANTUM PARAMETER ESTIMATION
OF THE EYE’S “TRANSMISSIVITY”

Quantum information science has turned the counterin-
tuitive traits of quantum physics into potentially useful
technology, with examples like quantum communications
[2–4] and cryptography [5–7] already leading to commer-
cial applications [8]. In the case of quantum cryptography,
security is guaranteed by the laws of quantum physics.
Coherent sources with few photons [9,10] and nonideal
photodetectors feature prominently in such protocols.
Part of the recent quest to explore the possibilities

biological systems offer for novel quantum technology
realizations [11–13] has been the question of how well
biological photodetectors, in particular rhodopsinmolecules
in retinal rod cells [14], compare with modern photodetec-
tors [15]. Historically, the role of photon statistics in vision
was addressed in the 1930s [16] and elucidated with human
behavioral experiments in the 1940s [17–19], single-cell
responseshavebeen recorded since the1970s [20–24],while
it was only recently that the quantum physics of human
vision [25] was addressed with the modern experimental
[26–30] and theoretical [31–34] tools of quantum optics.
It is now established that fluctuations in the perception

of light by a small number of rods are governed by photon
statistics. Indeed, the probability to see a flash of light of
incident intensity I, illuminating a small area of the retina
(about 0.1 mm2) for a time τ is given by the probability to
count a number of photons n larger than the visual system’s
perception threshold K. This probability, call it P½see�, is a
function of Ĩ, where Ĩ ¼ Iτ is the average incident photon
number. The actual number of detected photons n follows
[35] a Poisson distribution having average n̄ ¼ αIτ. As
succinctly noted in Ref. [35], the parameter α “includes all
messy details of what happens to light on its way through
the eyeball.” In particular, the parameter α includes (a) the
optical losses along the beam’s path to the retina, i.e., the
cornea, anterior chamber, pupil, lens, and vitreous body, as
well as (b) the absorption probability of the particular spot
of the retina being illuminated, determined by the local
surface density of rod cells and their quantum efficiency.
Typical values of α range from zero up to 0.2 [36–38].
Although each human subject had a different α, the data of

the early experiment [17], asking several individuals to
respond positively or negatively on the perception of weak
light flashes, could be fit by P½see� ¼ P∞

n¼K pðn; αĨÞ,
where pðn;n̄Þ¼e−n̄n̄n=n!, using a common threshold K.
The universal quantum noise properties of visual percep-
tion were thus revealed.
We here turn the previous arguments around and view

P½see� from the perspective of quantum parameter estima-
tion [39–41], aiming to measure the unknown, and subject-
dependent parameter α. In other words, while previous
studies aimed at establishing single-photon detection
capability and threshold, treating the subject variation of
α as an unwanted nuisance, we take the former for granted
and aim to measure α.
As shown in Fig. 1(a), we model the particular light

beam path through the eye including its detection by the rod
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FIG. 1. (a) Equivalence of the proposed biometric measurement
with an optical setup consisting of a filter, the transmission
coefficient α, of which is to be estimated, followed by an ideal
(unit quantum efficiency) single-photon counter (SPC), having a
threshold equal to the brain’s light perception threshold of at
least K ¼ 6 photons illuminating a ganglion-receptive field. The
output of the SPC is then registered by the conscious observer.
The transmissivity of the filter captures the photon losses along
the particular beam path ending on a particular retinal spot,
including the detection efficiency of the illuminated rods.
(b) Probability to see the flash of coherent light having an
average photon number Ĩ for three indicative values of the
parameter α.

LOULAKIS, BLATSIOS, VRETTOU, and KOMINIS PHYS. REV. APPLIED 8, 044012 (2017)

044012-2



cells as a filter, the power transmission coefficient of which,
α, we wish to estimate. The filter is followed by a single-
photon counter, the output of which is registered by the
conscious human brain. To estimate α we use (i) a coherent
laser beam of known average photon number per pulse and
(ii) a conscious observer with a given light perception
threshold. In other words, knowing the incident photon
number and the see–don’t see responses of the tested
subject, we estimate P½see�, and from the dependence of
P½see� on α we infer α. Examples of this dependence are
shown in Fig. 1(b). Interestingly, the results of the quantum
measurements leading to the estimation of α are registered
by Alice’s brain, offering a first layer of security practically
difficult to bypass.
The proposed biometric identification method rests on

two facts [42]. First, the values of α vary significantly
across the retinal surface of an individual, at the level of
40 dB, and (ii) for a geometrically similar spot on the retina
they vary significantly between individuals, at the level of
at least 3 dB. Hence, a precisely measured map of α values
can uniquely distinguish human subjects.

III. BIOMETRIC PERFORMANCE
METRICS AND METHODOLOGY

We here introduce two central metrics for the perfor-
mance of the biometric method, the false-positive and
false-negative probabilities, pFP and pFN, respectively. The
former refers to the probability that an impostor, Eve,
presents herself as Alice and successfully passes the test.
The latter is the probability that Alice fails the test. The
required specifications for pFP and pFN will determine the
interrogation time.
Before proceeding with the analysis of the various

identification strategies, we make a few introductory
remarks. Consider a single spot on the retina being
illuminated with a coherent pulse of light having an average
photon number Ĩ when incident on the eyeball. The
probability to see the flash depends on the eye’s “trans-
missivity” α corresponding to the particular light path
ending on this particular spot. In order (i) to be able to serve
multiple users, and (ii) to suppress the probability that Eve
foils the device, the test will rely on a whole map of retinal
spots, each with its own α value. We call this the α map.
All strategies to be presented have a common feature: for

the user to be positively identified, Alice, the device has
once measured and stored the user’s α map. The method-
ology for this measurement is the following. Considering a
given retinal spot with a given α parameter, the probability
to see the flash of coherent light having Ĩ photons on
average is P½see� ¼ P∞

n¼K pðn; αĨÞ. The sum can be
evaluated in terms of the incomplete Gamma function

GKðxÞ ¼
Z

x

0

dt
tK−1e−t

ðK − 1Þ! ; ð1Þ

and is equal to GKðαĨÞ (see Appendix A). Repeating the
measurement for several values of Ĩ, we can use GKðxÞ to
estimate α for that particular retinal spot. The same
procedure is used for all other spots constituting the user’s
α map, which can thus be measured and stored. Obviously,
the user’s α map should not be public or accessible
information. This is a common requirement of all current
biometric modalities, e.g., if the database containing finger-
prints or retinal images is compromised, the particular
identification method is prone to failure. We further com-
ment on this point in the closing remarks of Sec. VIII.
When Alice presents herself and asks to be identified,

the device uses the information on Alice’s α map and some
identification strategy to make an inference. We next
present several identification strategies in order of decreas-
ing interrogation time, which besides the aforementioned
performance metrics, is also a central parameter relevant to
the practicality of the method.

IV. BIOMETRIC STRATEGY I:
ESTIMATION OF THE α MAP

For this strategy, when the user Alice registers herself at
the device for the first time, the value of α is measured and
stored for each retinal spot as described before. Then, when
Alice presents herself and asks to be identified, the value of
α is estimated again using the same procedure and the result
is compared with the stored values.
The test of a single spot is considered “passed” if the

estimated α of the subject presenting herself as Alice is
within a given range of Alice’s stored α. The estimate
follows after a number ν of see–don’t see interrogations
illuminating the particular spot. Then, the subject is
positively identified as Alice if she passes the test for at
least μ different retinal spots. Thus, the total number of see–
don’t see interrogations is νμ. As we prove in Appendix B,
in order to achieve performance metrics pFN < 10−4 and
pFP < 10−10, the total number of required interrogations
would be νμ ≈ 2500. That is, not only in the registration
process, but also every time Alice wishes to be identified,
such a large number of interrogations would be necessary,
leading to a time consuming and impractical test.

V. BIOMETRIC STRATEGY II: SERIAL
ILLUMINATION OF HIGH-α AND LOW-α SPOTS

A much better strategy is to rely on Alice’s retinal spots
with markedly high α or low α values. If the device were
to interrogate only low-α spots or only high-α spots, Eve
would eventually learn this interrogation strategy and tune
her responses appropriately. Thus, the first central idea of
this strategy is that in each interrogation the biometric
device will randomly (e.g., using a quantum random
number generator [43,44]) choose to illuminate a low-α
or a high-α spot. Eve is unaware of what type of spot is
illuminated. The second central idea is that for both low-α
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and high-α spots, the laser pulses will contain, on average,
the same number of photons. Hence, even if Eve is
equipped with an ideal photodetector, she cannot extract
any useful information from measuring the photon number
in each interrogation pulse. Not knowing what type of
retinal spot is being illuminated in each interrogation pulse,
Eve is forced to respond randomly on perceiving or not the
light flash. Moreover, no matter how many times Eve takes
the test, she is always facing the same average number of
photons per pulse, and hence she is always forced to
respond randomly, i.e., there is no information to be
acquired by Eve with time. These ideas underlie all three
identification strategies to be presented next.
Low-α and high-α spots are defined by αmin ≤ α ≤ αL

and αH ≤ α ≤ αmax, respectively. As mentioned in Sec. II, it
typically is αmax ≈ 0.2 [36–38], while α varies by at least
40 dB across the retina. As will be detailed in the following,
the smaller the amin, the better for the proposed identi-
fication strategy. To be conservative and thus underestimate
the performance of the strategy, we will consider through-
out this work a 20-dB span of α, and thus take αmin ¼ 0.02
and αmax ¼ 0.2.
For the following strategies, we assume that Alice’s α

map has been measured and stored as classical information.
There are several statistical approaches to this first meas-
urement (e.g., absolute estimate versus classification into
low α or high α), which will be explored in detail else-
where. Now, when Alice presents herself and asks to be
identified, the biometric device can resort to the following
identification protocols.

A. Collective analysis of responses

For a flash of coherent light having Ĩ photons on average,
the probabilities that Alice sees the flash in the low-α
illumination and does not see the flash in the high-α illu-
mination are bounded above by GKðαLĨÞ and 1−GKðαHĨÞ,
respectively. The average photon number per pulse, Ĩ, is
chosen so that

GKðαLĨÞ ¼ 1 −GKðαHĨÞ ≕ q: ð2Þ

This gives

αH
αL

¼ G−1
K ð1 − qÞ
G−1

K ðqÞ :

For example, choosing αH=αL ¼ 3 and setting K ¼ 6, the
preceding equation can be solved numerically and deter-
mines the value of q≃ 0.1. We can go back to Eq. (2) to
determine Ĩ, according to Alice’s αL and αH values. For
instance, if αL ¼ 0.05, then Ĩ ≃ 62.
The parameter q represents the probability that Alice

responds wrongly, i.e., she perceives the light pulse if a
low-α spot is being interrogated, or she does not see the
light pulse if a high-α spot is interrogated. The smallness of

q reflects the advantage Alice has over Eve, who neces-
sarily responds randomly. To reduce q we can reduce αL
and/or increase αH. On a practical level, this should not be
done in a way that reveals to Eve what kind of spot is
illuminated. That is, on average α is reduced in the
periphery of the retina compared to the center. But one
should not take advantage of this reduction to suppress
the choice of αL, because the spatial distribution of the
illuminated spots would reveal their character. Instead,
one should locate neighboring spots with the highest
ratio αH=αL.
We now consider a series of N such interrogations. For

i ¼ 1; 2;…; N we define the Bernoulli random variable X i.
If in the ith interrogation we illuminated a low-α (high-α)
spot, then X i ¼ 0 (X i ¼ 1) if the tested subject did not, and
X i ¼ 1 (X i ¼ 0) if the tested subject did see the flash. That
is,

P
N
i¼1X i counts the wrong responses. The tested subject

is identified as Alice, if
P

N
i¼1X i < Nw for some w ∈ ðq; 1

2
Þ

that will be determined later.
We use the same average photon number in all pulses,

hence when Alice is tested, we have PA½X i ¼ 1� ≤ q, for
all i ¼ 1; 2;…; N. By Lemma 4.7.2 in Ref. [45], the
probability that Alice fails the test is

pFN ¼ PA

�XN
i¼1

X i ≥ Nw

�
≤ e−NHðwjqÞ; ð3Þ

where HðxjyÞ ¼ x lnðx=yÞ þ ð1 − xÞ ln (ð1 − xÞ=ð1 − yÞ)
is the relative Shannon entropy.
On the other hand, the probability that Eve guesses

wrong is PE½X i ¼ 1� ¼ 1
2
, for i ¼ 1; 2;…; N. Hence, the

probability that Eve passes the test is

pFP ¼ PE

�XN
i¼1

X i < Nw

�
≤ e−NHðwj1=2Þ: ð4Þ

Now, since w ∈ ðq; 1
2
Þ, it follows that HðwjqÞ appearing

in Eq. (3) is an increasing function of w, whereas Hðwj 1
2
Þ

appearing in Eq. (4) is a decreasing function of w.
Hence, the respective bounds for N obtained from
Eqs. (3) and (4) have the opposite w dependence, and to
minimize N we set

ln

�
1

pFN

�
H

�
w

���� 12
�

¼ ln

�
1

pFP

�
HðwjqÞ;

solving which we obtain w. Inserting this into either
Eq. (3) or Eq. (4), we then obtain N. For instance, requiring
pFN ¼ 10−4 and pFP ¼ 10−10, we get w≃ 0.22 and N ¼
138 interrogations, which is an order of magnitude lower
than the “naïve” strategy of the previous section.
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B. Real-time Bayesian update
of identification probability

Wewill now demonstrate that we can significantly speed
up the process, by more than a factor of 2, terminating the
test when the conditional probability that the tested subject
is Alice, given her running record of answers, reaches a
satisfactory level.
In particular, let P½A� ∈ ð0; 1Þ be the a priori probability

that the tested subject is Alice and for i ∈ N denote by
P½AjF i� the conditional probability that the tested subject is
Alice, given her answers to the first i interrogations. We
also define Si ¼ 1 (0), if the response of the tested subject
to the ith interrogation is see (no see). Based on Bayes’s
rule, we can update the conditional probabilities P½AjF i�.
For instance, if i ¼ 1 and v ∈ f0; 1g, then the conditional
probability P½Ajα1 ¼ α; S1 ¼ v� is equal to

P½S1 ¼ vjA; α1 ¼ α�P½A�P
X¼A;EP½S1 ¼ vjX; α1 ¼ α�P½X� : ð5Þ

Here, P½E� ¼ 1 − P½A� is the a priori probability that the
tested subject presenting herself as Alice is not Alice, and
P½S1 ¼ vjX; α1 ¼ α� is the conditional probability that the
response is v, given the subject is X (where X ¼ A, E) and
the tested spot has α1 ¼ α.
For iterating the calculation it is helpful to define

ZAðα; vÞ ¼ P½S1 ¼ vjA; α1 ¼ α�. We can write

ZAðα; vÞ ¼
�
GKðαĨÞ; for v ¼ 1

1 −GKðαĨÞ; for v ¼ 0:

To calculate Eq. (5), we need to set P½S1 ¼ vjE; α1 ¼ α�.
The choice of this parameter is made by the test designer
and reflects the designer’s belief to get the answer S1 ¼ v,
given that the subject who claims to be Alice is not.
Intuitively, we could set this to 1=2, given that Eve cannot
guess what type of spot (low α or high α) the device
illuminates. Another reasonable choice is to set this
parameter equal to p ¼ Eα½GKðαĨÞ�. After all, this is the
best guess one can make for the probability that Alice sees a
flash without any information on the value of α. It is readily
shown (see Appendix C) that p ∈ (ð1 − qÞ=2; ð1þ qÞ=2).
With this choice, we can get analytically tractable and

nearly optimal bounds for the identification thresholds and
interrogation time, regardless of the answering strategy a
potential impostor may follow. At the end, the judicious
choice of p is reflected in the success and optimality of the
identification algorithm. To proceed, define

ZEðp; vÞ ¼
�
p for v ¼ 1

1 − p; for v ¼ 0:
ð6Þ

From Bayes’s rule for i ¼ 1 we find

P½AjF 1� ¼
ZAðα1; S1ÞP½A�

ZAðα1; S1ÞP½A� þ ZEðp; S1ÞP½E�
:

Iterating this argument, it follows for any nonnegative
integer i that

P½AjF i� ¼
ZAðαi; SiÞP½AjF i−1�

ZAðαi; SiÞP½AjF i−1� þ ZEðp; SiÞP½EjF i−1�
:

If we define the odds ratio after i interrogations

Ri ¼
P½AjF i�

1 − P½AjF i�
¼ P½AjF i�

P½EjF i�
;

the updating rule takes the simple form Ri ¼
ZAðαi; SiÞRi−1=ZEðp; SiÞ, hence

Rn ¼ R0

Yn
i¼1

ZAðαi; SiÞ
ZEðp; SiÞ

:

1. Identification thresholds

Wemay now set two thresholds x, y, with 0 < x < 1 < y
and stop the interrogation at the random time T ∈ N as
soon as the ratio Rn=R0 falls outside the interval ðx; yÞ. The
tested subject is identified as Alice, if RT=R0 ≥ y, and is
rejected, if RT=R0 ≤ x. The thresholds x and y are set by the
desired specifications for pFP and pFN.
In Appendix D we prove that the process fR−1

n gn≥0 is a
martingale forAlice, and the processfRngn≥0 is amartingale
for Eve, regardless of her answering strategy. A stochastic
process fMngn≥0 is a martingale when, given the history up
to any time n, its expected value at time nþ 1 is the same as
its value at time n, much like a gambler’s fortune in a fair
game. That is, the definition of a martingale is

E½Mnþ1jF n� ¼ Mn;

aconsequenceofwhich is that themartingale’s expectation is
constant in time. Notably, this expectation does not change
even ifwe stop themartingalewith a randomstrategy such as
the one discussed here. This is the optional stopping theorem
(cf. 10.10 in Ref. [46]), which we use next to find the
expected values of RT and 1=RT for Eve and Alice, denoted
by EE½RT � and EA½1=RT �, respectively. For Eve we get

R0 ¼ EE½RT � ≥ R0yPE

�
RT

R0

≥ y

�
:

Hence, PE½RT=R0 ≥ y� ≤ 1=y, and it suffices to take
y ¼ 1=pFP to achieve the desired false-positive probability.
The optional stopping theorem for Alice gives
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1

R0

¼ EA

�
1

RT

�
≥

1

xR0

PA

�
RT

R0

≤ x

�
:

Hence, PA½RT=R0 ≤ x� ≤ x, and it suffices to take x ¼ pFN
to achieve the desired false-negative probability.

2. Duration of interrogation

We finally address the duration of the test for Alice and
Eve. Note first that

ln

�
Rn

R0

�
¼

Xn
i¼1

ln

�
ZAðαi; SiÞ
ZEðp; SiÞ

�
: ð7Þ

The test ends when lnðRn=R0Þ exits the interval
ðlnpFN;− lnpFPÞ and the test taker is identified as Alice
if lnðRT=R0Þ ≥ − lnpFP, or is rejected if lnðRT=R0Þ ≤
lnpFN. Hence, we may view the test as a random walk
starting from 0, with increments ln (ZAðαi; SiÞ=ZEðp; SiÞ).
In Appendix C we establish that Alice’s walk always has
a drift to the right, while Eve’s walk always has a drift to
the left. As shown in Appendix E, we can use Eq. (7) and
the optional stopping theorem to estimate the expected
stopping times for Alice and Eve. They read

EA½T� ≤
ln ( 2

ð1−qÞpFP
)

Hðqj 1
2
Þ ; ð8Þ

EE½T� ≤
2 lnð2qminpFN

1þq Þ
ln (4qð1 − qÞ) ; ð9Þ

where qmin ¼ minfGKðαminĨÞ; 1 −GKðαmaxĨÞg. With our
choice of pFP ¼ 10−10, pFN ¼ 10−4, q ¼ 0.1, and αmin ¼
0.02 we obtain EA½T� ≤ 65 and EE½T� ≤ 28. The above
estimates on T are rigorous bounds and they are sharp if we
only target retinal spots with α ¼ αL or α ¼ αH [47].
A Monte Carlo simulation for the random walk of

lnðRn=R0Þ is shown in Fig. 2. In Figs. 2(a) and 2(b), we
consider the simple scenario of targeting spots with α ¼ αL
or α ¼ αH. Targeting spots with α < αL or α > αH
improves the running time of the algorithm. This is shown
in Figs. 2(c) and 2(d), where we use a uniform distribution
of α in [0.02,0.05] for low α, or in [0.15,0.18] for high α.
It is seen that with a modest number of about 50

interrogations (even fewer if we can increase αH and
decrease αL) we can identify Alice and meet the desired
specifications for pFP and pFN. This interrogation time is 2
orders of magnitude smaller than the time needed to
absolutely estimate the α map as discussed in Sec. IV.
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(a),(b) Illumination of spots with (a) αL ¼ 0.05 and αH ¼ 0.15. For these values of αL and αH it is q ¼ 0.096 and Ĩ ¼ 62.4. (c),(d)
Illumination of spots with low α and high α uniformly distributed in [0.02,αL] and [αH ,0.18], respectively. If lnðRn=R0Þ becomes higher
(lower) than the upper (lower) threshold defined by − lnðpFPÞ shown by the black solid line [lnðpFNÞ shown by the dashed black line] in
(a),(c), the interrogation stops and Alice is identified (Eve is rejected). The obtained mean values of T shown in (b) and (d) are consistent
with the bounds (9). In (a) and (c) we plot just 100 walks, the distributions (b) and (d) are obtained from 5000 walks.
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3. Optimality of the algorithm

For practical reasons, identifying Alice with the shortest
possible test duration is obviously of interest. We here
evaluate the optimality of the previous identification
algorithm, in particular the bound (8). To do so, we find
the lower bound of interrogations N needed to achieve a
desired pFP in a series of questions having binary answers,
given the probability of an incorrect answer by the subject
supposed to pass the test. This bound is just dependent on
binomial statistics and thus is general, i.e., independent of
any particular context and physical realization of the
questions.
If q is the probability of an incorrect answer by Alice, the

number of incorrect answers in N interrogations follows
the binomial distribution, the median of which lies in
½½qN�; ½qN� þ 1Þ, where [x] is the integer part of x. By the
definition of the median, the probability that at least ½qN�
answers are incorrect is at least 1=2. To avoid rejecting
Alice as often as half of the times she is tested, the tested
subject has to be identified as Alice if she gives at most
½qN� incorrect answers.
Now, suppose Eve answers randomly. N has to be large

enough so that the event Eq, that Eve gives at most ½qN�
incorrect answers, has a probability smaller than pFP. Eve’s
incorrect answers also follow a binomial distribution, so
Lemma 4.7.2 in Ref. [45] gives

pFP ≥ P½Eq� ≥
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8NqNð1 − qNÞ
p e−NHðqN j1=2Þ;

where qN ¼ ½qN�=N. Taking the approximation qN ≃ q
this equation gives that

NH

�
q

���� 12
�
þ 1

2
ln (8Nqð1 − qÞ) ⪆ ln

1

pFP
:

Comparing this lower bound for N with Eq. (8), we see
that the average number of interrogations required by the
algorithm we propose is close to the absolute lower bound.
For example, setting q ¼ 0.1 and pFP ¼ 10−10, we find
N ≥ 57, to be compared with the upper bound of 65 found
previously.

VI. BIOMETRIC STRATEGY III:
PATTERN RECOGNITION

To even further reduce test time, we finally describe a
parallel interrogation scheme using a pattern recognition
method. We will here not delve into discussing receptive
fields and complex cognitive interactions among them
[48,49], since we assume that we illuminate non-
overlapping ganglion receptive fields, which are roughly
[49] 0.2-mm wide, so we take a 2 cm × 2 cm retinal
surface to approximately contain 10 000 pixels.

When Alice presents herself and asks to be identified,
the device picks among all possible retinal spots of Alice a
small subset with high α in such a way that they form a
particular pattern, e.g., the number 2. Moreover, the device
picks another set of spots having low α, and illuminates
both the former and the latter with the same average photon
number. In Fig. 3, we describe how this method works. We
first generate a 100 × 100 matrix of retinal spots with α
randomly picked for each spot from the interval between
αmin and αmax. This α matrix is shown in Fig. 3(a), where
black pixels denote 0.02 ¼ αmin ≤ α ≤ 0.04, gray pixels
0.04 ≤ α ≤ 0.16, and white pixels 0.16 ≤ α ≤ 0.2 ¼ αmax.
Although the retina has a spatial α distribution far from
random, this simulation is adequate to exhibit the features
of our model which can be extended to realistic spatial
distributions. In any case, the 10 000 pixels provide many
possibilities for picking a small subset (containing around
100 pixels), which includes a recognizable pattern. This is
not to imply that 10 000 pixels ought to be measured
in Alice’s retina. The simulation is just depicting that
patterns can be readily found in an array of randomly
varying α.
For example, two such subsets are contained in the two

(yellow) boxes of Fig. 3(a). Among the pixels in those
boxes, we choose some having high α in such a way that
they form the number 2 (upper box) or the letter Y (lower
box). We augment those high-α pixels with a larger number
of low-α pixels, in such a way that the combined set cannot
reveal the pattern. We illuminate all with pulses having the
same average number of photons Ĩ. An ideal photodetector
would see the patterns in Figs. 3(c) and 3(e). This is what
Eve would observe in the best possible scenario she is
equipped with an ideal photon detector, and she would
obviously be unable to infer any pattern. In contrast, Alice
would observe the patterns in Figs. 3(b) and 3(d) in the
ideal case that the high-α pixels perceive light, and the
low-α pixels do not.
In reality, both high- and low-α pixels of Alice might

or might not perceive the light flashes. To simulate that,
we sample independent Poisson variables for each of the
illuminated pixels (i; j) with average αijĨ, so that the pixel
is bright if the realization of the process exceeds the
detection threshold K. Some of the possible realizations
are shown in Figs. 3(f1)–3(f6).
Alice is interrogatedm times, asked to respond on which

symbol she saw, and given a choice of M symbols, where
M could easily be around 40 (alphabet, numbers, etc.). It is
straightforward to calculate the false-positive probability.
Even if Eve is equipped with an ideal photodetector, all she
measures is an apparently random pattern of illuminated
spots with the same average number of photons. As she is
unaware of Alice’s α map, the only option Eve has is to
respond randomly given the same choice of M symbols,
hence the probability that she correctly responds to m
questions is pFP ¼ ð1=MÞm. For M ¼ 40 and just m ¼ 6
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(a) (b) (c)

(d) (e)

(f1) (f2) (f3) (f4) (f5) (f6)

(g1) (g2) (g3) (g4) (g5) (g6) (g7) (g8) (g9)

(g10) (g11) (g12) (g13) (g14) (g15) (g16) (g17) (g18)

FIG. 3. Biometric strategy. (a) We suppose Alice’s retina consists of 100 × 100 nonoverlapping ganglion-receptive cells that can be
individually addressed with a laser pulse. The light path ending in each one of those is described by a characteristic α value, which
here takes a random value between αmin ¼ 0.02 and αmax ¼ 0.2 (we ignore the spatial dependence of α, i.e., in a real retina the
average α decreases going from the center to the periphery). The color coding in (a) is white for high-α values, i.e., 0.16 ≤ α ≤ 0.2,
gray for 0.04 ≤ α ≤ 0.16, and black for low-α values, i.e., 0.02 ≤ α ≤ 0.04. We can easily find a number of white pixels forming a
pattern, for example, the number 2 (upper yellow box) or the letter Y (lower yellow box). To the set of pixels forming the pattern we
add another set of low-α pixels so that in the combined set there is no discernible pattern. However, Alice would ideally (only high-α
pixels fire) just see the pattern, as shown in (b) and (d). In contrast, even if Eve is equipped with an ideal photodetector, all she would
see is the combined set of pixels, shown in (c) and (e). Realistically, Alice can miss some high-α pixels and see noise from some firing
low-α pixels. A few realizations of a Poisson simulation [a pixel ði; jÞ is lighted if a Poisson random variable with average αijĨ
exceeds the detection threshold K ¼ 6, where we used Ĩ ¼ 72] are shown in (f1)–(f6) for the case of 2. (g1)–(g18) Example for
realizing pFP ≈ 10−10 with m ¼ 8 interrogations. Among the illuminated spots of (c) we can form at least 18 patterns, in particular 2,
4, 6, S, v, 7, x, b, f, 3, h, t, q, d, Z, L, %, U. The tested subject is offered these 18 patterns from which she is supposed to pick her
response. While Alice would most probably perceive 2, since 2 is the pattern formed by Alice’s high-α spots, Eve’s only option would
be to randomly pick her response among the 18 choices, thus after eight interrogations one could achieve ð1=18Þ8 ≈ 10−10 for the
false-positive probability.
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interrogations we obtain pFP ≈ 10−10. Practically, m ¼ 6
interrogations can be realized in less than one minute of
test time.
An example for the realization of the above scheme is the

following. In the illuminated set of spots shown in Fig. 3(c),
the tested subject could be offered the choice of M ¼ 18
patterns shown in Figs. 3(g1)–3(g18). These patterns (and
perhaps more) are formed by spots which are a subset of the
illuminated spots of Fig. 3(c). While Alice would most
probablyperceive2, since2 is thepattern formedby thehigh-
α spots of Alice, Eve would be clueless as to which pattern
Alice would perceive and would have to randomly pick one
of the 18 patterns as her response. Thus, in this case, with
m ¼ 8 interrogations we can achieve pFP ≈ 10−10. We now
calculate the probability that Alice fails the test.
We assume that the pattern to be recognized is formed

by nH high-α spots. We also illuminate nL spots of low α to
create noise for Eve. Suppose the probability that Alice
fails to see a pattern spot is bounded by pH, while the
probability to see a noise spot is bounded by pL. Without
entering into cognitive issues of object recognition, which
would only increase Alice’s chances to recognize the
pattern, we assume that Alice fails to recognize the pattern,
if she wrongly gets at least k > nHpH of the pattern spots,
or if she sees at least l > nLpL noise spots. Then, the
probability P that Alice fails to recognize the pattern
satisfies

P ≤ e−nHHðk=nH jpHÞ þ e−nLHðl=nLjpLÞ:

Thus, the probability that Alice passesm questions is larger
than ð1 − PÞm, hence

pFN ≤ 1 − ð1 − PÞm: ð10Þ

As in the examples of Figs. 3(b) and 3(d), we take the
pattern to be composed of nH ≈ 25 pixels, and add another
nL ≈ 75 “noise” pixels, so that in total we illuminate about
100 pixels. We assume that recognition is possible if Alice
misses at most 20% of the pattern’s pixels and at most an
equal number of noise pixels are perceived by her, i.e., we
take k ¼ l ¼ 5. We choose the average photon number
per pixel Ĩ by minimizing pFN and find the minimum
pFN ¼ 5 × 10−4 occurs at Ĩ ¼ 72.
The achieved pFN depends dramatically on the values of

αL and αH. Thus, if it is possible to create patternsþ noise
by finding spots with lower αL and higher αH, the
probability that Alice will fail the test and will have to
retake it can be further reduced. Finally, we note that we
refrained from introducing cognitive aspects of object
recognition into the calculation of pFN, i.e., we chose as
20% what seems to be a reasonable percentage of missed
spots and added noise. We could have considered maxi-
mum-likelihood image classification strategies [50], how-
ever, the fundamental results would be unchanged.

VII. THE QUANTUM ASPECT OF THIS
BIOMETRIC METHOD

There are several reasons why this biometric method
can be termed quantum. (i) The method is essentially a
quantum parameter estimation process, where a classical
parameter (here the optical loss of a particular light path
ending on a particular retinal spot) is estimated using a
quantum process (here photodetection). Rod cells realize
the single-photon detector, while the conscious brain
realizes the counter. (ii) While in this work we utilize
coherent light for illuminating the retinal spots, the same
measurement can, in principle, be performed with single-
photon sources [51,52] or other nonclassical light sources.
In fact, such sources provide an advantage for the biometric
methodology that will be explored elsewhere. (iii) Finally,
unlike other biometric methods, the security of this method
can be explicitly quantified by the laws of quantum
measurements and stated in terms of energy-measurement
resolution given in units of ℏ. This is presented in detail in
the following subsection.

A. Quantum technology required to noninvasively
access the biometric information

As discussed previously, if an impostor, Eve, presents
herself as Alice and asks to be identified by the device, no
matter how technologically advanced Eve is, the only
strategy she has is to respond randomly to the device’s
interrogations. We will now entertain a different way to foil
the device. Suppose that Eve is proximal to Alice (e.g.,
1 m away), and while Alice is being interrogated by the
biometric device, Eve is secretly operating a highly
advanced quantum sensor monitoring Alice’s activity.
For example, if Eve could measure the number of photons
scattered in Alice’s eye, and at the same time monitor her
brain activity, it might be possible for her to correlate these
observations and infer Alice’s α map.
Before proceeding with the estimates, we note that in the

scenario of a single retinal spot being illuminated, if Eve is
aware of (or measures) the incident photon number Ĩ, then
she only needs to “detect” brain activity in order to infer α
of that spot. We can easily force her to also require sensitive
thermometry by changing (randomizing) the incident
photon number in each interrogation.
Now, since α ≈ 0.1 on average, there will be on the order

of ns ¼ 50 scattered photons for Ĩ ¼ 50 incident photons.
Eve could try to noninvasively detect a minute temperature
change in Alice’s eye (or in turn in the environment), due
to the energy deposited by the scattered photons. We use
simple order-of-magnitude estimates and consider just a
single illuminated pixel, i.e., we ignore the issue of spatial
resolution of Eve’s measurement needed for the multipixel
scenario, and we also ignore the thermal eye-environment
contact as well as the eye’s physiological cooling mech-
anisms (eye-body thermal contact). So, we will heavily
underestimate the level of technology required by Eve.
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Let us approximate the eye, having a mass of about
m ¼ 10 g, by water, the specific heat of which is
cw ¼ 4 J g−1 C−1. Thus, the ns scattered photons of wave-
length λ ¼ 532 nm would deposit nsðhc=λÞ of energy into
the eye, so Eve should be able to resolve the eye’s
temperature change δθ ¼ nsðhc=λÞ=mcw ≈ 10−19 K. This
would happen during the pulse time τ ¼ 0.1 s, so Eve
should be able to noninvasively measure the thermal energy
deposited in Alice’s eye with a resolution ðkBδθÞτ ≈ 10−9ℏ.
Furthermore, it is known that the magnetic activity of

the brain can be modeled with current dipoles [53]
producing on the head’s surface, being about 10 cm away
from the dipoles, magnetic fields on the order of 1 fT in
the case of visual perception [54]. Hence, at a distance 1 m
away, the fields will be attenuated (due to the 1=r3

distance dependence of dipolar fields) by a factor of
103. Eve should thus be equipped with a magnetometer
having sensitivity at the 0.1 aT=

ffiffiffiffiffiffi
Hz

p
level [55,56]. Using

the electron’s gyromagnetic ratio, this translates to an
energy resolution of 10−9ℏ. While modern optical mag-
netometers [57,58] are about 3 orders of magnitude away
from 10−9ℏ, quantum thermometers [59–61] are many
more orders of magnitude away.

VIII. DISCUSSION

(i) The proposed biometricmethod resembles static visual
perimetry [42,62,63], a diagnostic tool in ophthalmology
used to assess, e.g., glaucomatous disease. Perimetry is
the measurement of the differential light sensitivity, i.e., the
threshold of perception of a test object projected on the
visual field against its background. Yet, there is a significant
difference of our approach from visual perimetry. The latter
can hardly profit from the idea of interrogating only low-α or
high-α spots in any of our serial, Bayesian or parallel pattern
recognition schemes discussed in Secs. V–VI. The reason is
that pathological patterns could appear in any particular
retinal spot or area, and hence their detection requires the
time-consuming α-map estimate discussed in Sec. IV. In
other words, detecting pathology poses a different statistical
inference problem than verifying identity.
(ii) Even in the absence of some pathology, because of the

psychophysical character of the test, a fluctuation in the
measured threshold at a particular testing point of the same
individual at different times can be observed. This could be
related to the visual perception threshold K, the exact value
of which is still debated [30,38]. Moreover, its value might
depend on other physiological parameters and not even be
constant for the same subject. We use K ¼ 6, but our
estimates are robust and can be extended to include a
distribution of K. Similarly, it is known that the parameter
α is age dependent. Again, such issues can be mitigated by
proper statistical analysis or a slightly increased number of
required interrogations, i.e., they do not alter the fundamental
principle or the underlying statistics. Another technical point

is the ability to consistently target specific areas of the retina.
This is accomplished by fundus-based eye tracking [64] as
applied, e.g., in optical coherence tomography [65].
(iii)We consider the perception thresholdK to be spatially

constant across the retina. A spatial variation of K could be
considered to lead to a deterioration of the identification
algorithm’s performance. Counterintuitively, the opposite
is the case. The reason is that the algorithm is based on
the variability of α across the retina. But essentially, it is the
variability of P½see� that we take advantage of. Now, the
probabilityP½see� is given byGKðαĨÞ. Tacitly assuming that
K is constant, the variability of α is translated into the
variability of P½see�. If the parameter K also varies inde-
pendently, it will add an independent channel of variability
to P½see�, and thus give the physical realization of the
algorithm a greater versatility.
(iv) Our method is a scotopic measurement, i.e., in the

dark-adapted eye, which is known to be tedious for the
human subject under examination. The required dark adap-
tation (lasting at least half an hour) is a serious limitation on
the practicality of the method. However, what we aim at in
this work is the proof of principle of the methodology using
the rod response, which is well studied and documented
in terms of single-photon sensitivity. We expect that cones
and the light adapted eye, which does not suffer from this
limitation, will provide similar capabilities for realizing the
method. While cone single-photon detection capabilities are
not broadly established so far, cones have some unique
characteristics, like a much shorter integration time and a
much faster response and recovery time to repeated stimuli
compared to rods. Furthermore, they have a much wider
dynamic range, making fine threshold determination easier.
Thus,we expect wewill be able to apply the same or a similar
methodology in photopic conditions.
(v) Any biometric method one can imagine suffers from

the possibility that the impostor, Eve, can have access to the
biometric data. For all biometric methods known so far the
biometric data are stored in a computer database as classical
information. If the privacy of these databases is compro-
mised, the security of all known biometric methods can be
readily thwarted. The biometric method proposed here is
not an exception in this respect, i.e., it is assumed that the
impostor cannot have access to the stored biometric data of
the device’s users.
(vi) Another common feature of all known biometric

modalities is that they cannot resist forceful tactics by the
impostor. The method proposed here is also prone to failure
if forceful tactics are allowed. Regarding, for example, the
pattern recognition strategy, Eve could force Alice to reveal
which j patterns she is perceiving (assuming in the worst
case that not allM patterns can be formed on Alice’s retina,
i.e., j ≪ M), so Eve could increase her chances of success
to ð1=jÞm. This scenario can be easily mitigated by
combining tests in both eyes, effectively doubling j and
possibly requiring slightly more interrogations thanm ¼ 6.
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Essentially, the M patterns to choose from in order to reply
to each interrogation could be public information.
A more extreme scenario would be that Eve acquires the

biometric device, forcefully measures Alice’s α map, and
then passes the test with a properly designed photodetector
mimicking Alice’s eye. We here wish to entertain another
scenario, because it has a scientific interest in its own right.
Since Alice would still have to cooperate by properly
responding to the light-flash interrogations, in the event that
shewould not, Eve could resort to amore subtle approach and
measure (with Alice either being conscious or sedated)
Alice’s pupillary light reflex [66–70], hoping to extract
information on Alice’s α map. However, existing evidence
suggests a higher detection threshold for the pupillary reflex,
and in general, the relation of the physiological backgrounds
of light perception and pupillary reflex is poorly understood.
In any case, the relevance of this reflex measurement to the
proposed method, and its own potential for yet another
biometric quantifier will be addressed elsewhere.
Summarizing, we have here presented the principal

workings of a quantum optical biometric identification
method based on the photon-counting capabilities of the
human retina, and the subsequent perception of light. The
method offers a significantly increased level of security
against malicious attacks. In contrast to existing methods
which work within classical physics, we also placed limits
on how technologically advanced an impostor has to be in
quantum thermometry and quantum magnetometry in order
to foil the biometric device by noninvasively monitoring
the biometric activity of the device’s users. This work
presents a venue for exploring quantum optics in a
biological context, having both a fundamental scientific
interest and the immediate potential for commercial appli-
cations in the security industry.

APPENDIX A: THE PROBABILITY P½see�
The probability P½see� that a coherent light pulse of

intensity I and duration T is perceived by a retinal spot of
loss parameter α is equal to GKðαITÞ, where GK is defined
in Eq. (1)
Proof.—Photons are incident on the eyeball as a Poisson

process of intensity I. Each incident photon is detected at
the retina with probability α independently of others.
Hence, photons are detected as a Poisson process of
intensity αI (Ref. [71], p. 318). Interval lengths between
successive detections are independent exponential random
variables with a rate αI and the time TK until the Kth
detection follows the Erlang distribution with scaling
parameter αI and order parameter K (Ref. [71], p. 316).
That is, TK ∼ ð1=αIÞEK , where EK is a random variable
with cumulative distribution functionGK . The pulse will be
perceived exactly if TK ≤ T. Thus,

P½see� ¼ P½TK ≤ T� ¼ P½EK ≤ αIT� ¼ GKðαITÞ:

APPENDIX B: ESTIMATES OF THE
NAIVE STRATEGY

We will here derive the number of required interrog-
ations for the naive strategy of Sec. IV, namely the
estimation of the value of α. For a particular retinal spot
being interrogated ν times, the subject’s jth response,
where j ¼ 1;…; ν, is a Bernoulli random variable Sj,
taking the values 1 ¼ see and 0 ¼ don’t see. Hence, an
estimator for P½see� is 1

ν

P
ν
j¼1 Sj. We will now calculate

how many times we have to interrogate a subject with
photon pulses (the number of pulses ν for each of the μ
retinal spots) in order to achieve a desired pFP and pFN. We
will obtain a lower bound on the number of interrogations
assuming an impostor, Eve, responds randomly to all νμ
interrogations.
A successful 1-spot test is defined by an acceptance

region around Alice’s α parameter. In view of the result in
Appendix A and the monotonicity ofGK , we may recast the
test in terms of the estimated P½see�. Call pC ≡GKðαĨÞ the
“correct” probability and consider integers nL, nR, to be
determined later, such that pL ≡ nL=ν < pC < nR=ν≡ pR.
We will consider that the tested subject presenting herself
as Alice passes the 1-spot test if nL <

P
ν
j¼1 Sj < nR. In

terms of the α parameter the 1-spot test is passed if the
estimated α value lies in the interval ðaL; aRÞ, where the left
and right acceptance limits are defined by pL ≡GKðαLĨÞ
and pR ≡GKðαRĨÞ, as shown in Fig. 4(a).
Let us now suppose that Eve chooses p uniformly in

(0,1) and answers see with probability p, independently for
each interrogation. The number of see answers is then
uniformly distributed over the set ½ν� ¼ f0; 1;…; νg.
Indeed, for k ∈ ½ν� we have

P

�Xν
j¼1

Sj ¼ k

�
¼

Z
1

0

�
ν

k

�
pkð1 − pÞν−kdp

¼
�
ν

k

�
k!ðν − kÞ!

ðkþ ν − kþ 1Þ! ¼
1

νþ 1
:

Hence, the probability that Eve successfully passes the
1-spot test is equal to ðnR − nL − 1Þ=ðνþ 1Þ. Thus, given
the desired false-positive probability pFP, we must satisfy
the following inequality:

nR − nL − 1

νþ 1
≤ p1=μ

FP : ðB1Þ

Next, we will obtain a second inequality from the desired
false-negative probability pFN, which is the probability that
Alice fails the test. We will use Lemma 4.7.2 in Ref. [45] to
get a lower bound for the deviation of ð1=νÞPν

j¼1 Sj from
its expectation pC:
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P

�Xν
j¼1

Sj ≥ nR

�
≥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8νpRð1 − pRÞ

p e−νHðpRjpCÞ;

P

�Xν
j¼1

Sj ≤ nL

�
≥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8νpLð1 − pLÞ

p e−νHðpLjpCÞ;

where HðxjyÞ is the relative Shannon entropy. Now, let

w ¼ P

�Xν
j¼1

Sj ≥ nR

�
þ P

�Xν
j¼1

Sj ≤ nL

�
ðB2Þ

be the probability that Alice fails the 1-spot test. The
probability that she fails the whole μ-spot test will then be
the probability that she fails at least one of the μ tests, and
this is equal to 1 − ð1 − wÞμ. This should be smaller than
the desired false-negative probability pFN. Using the pre-
ceding estimates and the elementary inequality 4pð1−pÞ≤
1 for all p ∈ ð0; 1Þ, we arrive at the requirement

1 −
�
1 −

1ffiffiffiffiffi
2ν

p ðe−νHðpRjpCÞ þ e−νHðpLjpCÞÞ
�
μ

≤ pFN: ðB3Þ

To make further progress, suppose pR − pC ≃ pC − pL,
and use Eq. (B1) to find pR ≃ pC þ 1

2
p1=μ
FP and

pL ≃ pC − 1
2
p1=μ
FP . Using these in Eq. (B3) and solving

for ν, we obtain the number of interrogations per spot that
are required to achieve a desired pFP and pFN for a given
number of spots μ. The result is shown in Fig. 4(b). For
example, to secure that by responding randomly Eve is
positively identified as Alice at most once per 1010

attempts, and that Alice would fail the test and hence
would have to be retested once per 10 000 times, we require

slightly more than 50 interrogations for each of 50 retinal
spots, i.e., a total of 2500 interrogations.

APPENDIX C: DRIFTS OF RANDOM WALKS

Define μAðiÞ ¼ EA½ln (ZAðαi; SiÞ=ZEðp; SiÞ)jF i−1� and
μEðiÞ ¼ EE½ln (ZAðαi; SiÞ=ZEðp; SiÞ)jF i−1�. Then, for all
i ∈ N

μAðiÞ ≥ H

�
q

���� 12
�

> 0; ðC1Þ

μEðiÞ ≤
1

2
ln (4qð1 − qÞ) < 0: ðC2Þ

Before we proceed with the proof of this assertion
we need to introduce some notation. Let us denote
by π the distribution of GKðαĨÞ induced by the random
choice of α. This is a probability measure supported on
½0; q�∪½1 − q; 1�, such that for C ⊂ ½0; 1�, πðCÞ ¼
P½GKðαĨÞ ∈ C�. In particular, we have p ¼ E½GKðαĨÞ� ¼R
xdπðxÞ.
Sincewe randomly target a high-α or a low-α retinal spot,

we must have πð½0; q�Þ ¼ πð½1 − q; 1�Þ ¼ 1
2
. We will denote

by πL (πH) the conditional distribution ofGKðαĨÞ, given that
we have selected to target a low (high)-α spot. That is,
πLðCÞ ¼ 2πðC ∩ ½0; q�Þ and πHðCÞ ¼ 2πðC ∩ ½1 − q; 1�Þ.
Finally, we will denote by qL (respectively, qH) the mean
value of these measures, that is

qL ¼
Z

xdπLðxÞ ≤ q and qH ¼
Z

xdπHðxÞ ≥ 1 − q:

ααmin α maxαL αR

α  acceptance

GK (αLI) GK (αRI)0 GK (αmaxI)GK (αminI ) 1GK (αI )

GK acceptance

GK (αI )

(a) (b)

10–11 10–10 10–9 10–8 10–7

40

50

60

70

80

pFP

ν

pFN = 10–3

p
L

p
Rp

C

pFN = 10–4

pFN = 10–5

pFN = 10–6

FIG. 4. (a) The desired level of precision in the estimate of the true α sets a range of acceptable values around the true α, given by αL
and αR, defining the α acceptance region, which lies within the possible α values, ranging from αmin to αmax. The α axis is mapped into
the corresponding probability space by the function GKðxÞ, which gives the probability to see a flash when x photons on average are
detected by the tested spot of the retina. The inverse map leads from the measured P½see� to α. (b) Number of interrogations per spot ν
required to achieve a false-positive probability pFP for a test involving μ retinal spots, for various values of the false-negative probability
pFN. For this plot we took μ ¼ 50.
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Hence,

p ¼ qL þ qH
2

∈
�
1 − q
2

;
1þ q
2

�
:

Proof of (C1) and (C2).—We condition first on the value
of αi to get

μAðiÞ ¼ E

�
GKðαiĨÞ ln

�
GKðαiĨÞ

p

�

þ ½1 −GKðαiĨÞ� ln
�
1 − GKðαiĨÞ

1 − p

�����F i−1

�

¼ E½H(GKðαiĨÞjp)�;

since αi is independent of the information available up to
time i − 1. Since π is the distribution of GKðαĨÞ,

μAðiÞ ¼
Z

HðxjpÞdπðxÞ:

Recall that x ↦ HðxjpÞ is decreasing in ½0; p� and increas-
ing in ½p; 1�. We may now split the integral over x ∈ ½0; q�
and x ∈ ½1 − q; 1�. Using that q < p < 1 − q, we further
obtain

μAðiÞ ≥
1

2
HðqjpÞ þ 1

2
Hð1 − qjpÞ

¼ H

�
q

���� 12
�
þ H

�
1

2

����p
�

≥ H

�
q

���� 12
�
:

We now turn to Eq. (C2).

μEðiÞ ¼ EE

�
pi ln

GKðαiĨÞ
p

þ ð1 − piÞ ln
1 −GKðαiĨÞ

1 − p

����F i−1

�

≤ max

�
E

�
ln
GKðαiĨÞ

p

�
;E

�
ln
1 −GKðαiĨÞ

1 − p

�	

¼ max

�Z
ln

x
p
dπðxÞ;

Z
ln

1 − x
1 − p

dπðxÞ
	
: ðC3Þ

We estimate the two terms in (C3) by Jensen’s inequality.

Z
ln
x
p
dπðxÞ ¼ 1

2

Z
q

0

ln
x
p
dπLðxÞ þ

1

2

Z
1

1−q
ln

x
p
dπHðxÞ

≤
1

2

�
ln
qL
p

þ ln
qH
p

�
¼ ln

2
ffiffiffiffiffiffiffiffiffiffiffi
qLqH

p
qL þ qH

:

It is straightforward that, since qL ≤ q < 1 − q ≤ qH,
the last expression is maximized when qL ¼ q and
qH ¼ 1 − q. Hence,

Z
ln

x
p
dπðxÞ ≤ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qð1 − qÞ

p
:

Similarly,
Z

ln
1 − x
1 − p

dπðxÞ ≤ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qð1 − qÞ

p
;

and Eq. (C2) follows from Eq. (C3).

APPENDIX D: ODDS-RATIO MARTINGALES

The process fR−1
n gn≥0 is a martingale for Alice, and the

process fRngn≥0 is a martingale for Eve, regardless of her
answering strategy.
Proof.—We have

EA½R−1
n jF n−1� ¼ R−1

n−1EA

�
ZEðp; SnÞ
ZAðαn; SnÞ

����F n−1

�
:

If we condition first on the value of αn, the right-hand side
becomes

R−1
n−1E

�
GKðαnĨÞ

p

GKðαnĨÞ

þ ½1 − GKðαnĨÞ�
1 − p

1 −GKðαnĨÞ
���F n−1

�
¼ R−1

n−1:

Eve may have her own strategy and there is no reason for
her to answer see with probability p, as the test assumes.
The probability that she answers see may change form one
interrogation to another, may be random, and may even
depend on previous answers. However, it may not depend
on α, as this information is undisclosed. Let us denote by
pn the probability that Eve answers see to the nth inter-
rogation. We have

EE½RnjF n−1�

¼ Rn−1EE

�
ZAðαn; SnÞ
ZEðp; SnÞ

����F n−1

�

¼ Rn−1EE

�
pn

GKðαnĨÞ
p

þ ð1 − pnÞ
1 −GKðαnĨÞ

1 − p

����F n−1

�
:

There are two independent sources of randomness we are
integrating in the final equation: Eve’s possibly random
choice of pn and the choice of αn. If we condition first on
Eve’s answer the expression above becomes

Rn−1EE

�
pn

E½GKðαnĨÞ�
p

þ ð1 − pnÞ
1 − E½GKðαnĨÞ�

1 − p

����F n−1

�

¼ Rn−1EE½pn1þ ð1 − pnÞ1jF n−1� ¼ Rn−1:

It is useful to note at this point that the choice p ¼
E½GKðαĨÞ� makes the preceding expression independent

QUANTUM BIOMETRICS WITH RETINAL PHOTON … PHYS. REV. APPLIED 8, 044012 (2017)

044012-13



of pn, leaving Eve no option to improve her odds by
devising a clever strategy.

APPENDIX E: INTERROGATION
TIME ESTIMATES

An immediate consequence of Eqs. (7) and (C1) is that
JAn ¼ ln ðRn=R0Þ − nHðqj 1

2
Þ is a submartingale for Alice.

We can apply once more the optional stopping theorem
to get

0 ≤ EA½JAT � ¼ EA

�
ln
RT

R0

�
− H

�
q

���� 12
�
EA½T�: ðE1Þ

By the definition of the stopping time T we must have
RT−1 < yR0, and since p ∈ (ð1 − qÞ=2; ð1þ qÞ=2), we
must have minfp; 1 − pg ≥ ð1 − qÞ=2. Hence,

RT

R0

¼ RT−1

R0

ZAðαT; STÞ
ZEðp; STÞ

≤
2

ð1 − qÞpFP
: ðE2Þ

The last two inequalities together imply that

EA½T� ≤
ln ( 2

ð1−qÞpFP
)

Hðqj 1
2
Þ : ðE3Þ

Likewise, JEn ¼ ln ðRn=R0Þ − 1
2
ln (4qð1 − qÞn) is a super-

martingale for Eve, and the optional stopping theorem gives

EE½T� ≤
2EE½ln RT

R0
�

ln (4qð1 − qÞ) ≤
2 lnð2qminx

1þq Þ
ln (4qð1 − qÞ) ;

where qmin ¼ minfGKðαminĨÞ; 1 −GKðαmaxĨÞg.
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