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A simple off-lattice method of deriving the Sanchez-Lacombe equation of state is presented. The
Sanchez-Lacombe equation of state for mixtures is shown to be thermodynamically inconsistent for all
mixing rules in such away that fugacity coefficients, until now thought to correct for mixing inconsistencies,
cannot make the theory consistent. The theory is consistent, however, for constant hole volumes and it is
shown, for a sample mixture of polypropylene and carbon dioxide, that excellent agreement with
experimental solubility results is achieved without changing the mixture parameters with temperature or
pressure. To this end, pure-component Sanchez-Lacombe characteristic parameters for both branched and
linear polypropylene are also provided. The agreement between theory and experiment for solubility using a
constant hole volume for carbon dioxide mixtures with both branched and linear polypropylene is much
better than for typical mixing rules for the Sanchez-Lacombe equation of state. Fair agreement with
experimental swelling-ratio data at saturation is also achieved with no further free parameters, making this
equation of state a good choice for predictions related to polymeric foaming. A consideration of the hole
volume is given in terms of correlations, and evidence to support this perspective is presented in terms of the
characteristic parameters regressed from different architectures of pure polypropylene. It is shown that only
a single pure-polypropylene characteristic parameter is needed to characterize mixtures with carbon dioxide,
and that an estimate of this parameter can be extracted from mixture solubility data. This example
demonstrates the feasibility of applying the Sanchez-Lacombe equation of state to mixtures in which one of
the pure components has not been independently characterized.
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I. INTRODUCTION

Polymeric foams are used in a wide range of applications,
ranging from packaging, insulation, construction, automo-
tive and aircraft components, sports equipment, medical
applications, to other areas [1]. These foams, which consist
of gaseous voids surrounded by a denser polymer, can take
on structures as diverse as the applications. One key to
controlling the cell structure of foams is the interaction
between the polymer and the blowing agent which, in the
case of physical blowing agents, creates the voids through a
thermodynamic instability caused either by a rapid pressure
drop or a temperature increase. Clearly, the pressure-
volume-temperature (PVT) equation-of-state (EOS) rela-
tionship as expressed through the solubility of a blowing
agent in a polymer melt is at the heart of the design and
prediction of polymeric foams, particularly for micro- and
nanocellular foams, where the voids are on the order of
microns and nanometers, respectively. These more-
advanced foams represent existing or emerging materials
for higher-value and high-technology applications.

As a route to understanding the important physics of the
inhomogeneous structures of nanocellular polymeric
foams, self-consistent field theory (SCFT) has been applied
to investigate surface tension [2,3], the limitations of
classical nucleation theory [4], and thermodynamic limits
on cell densities [5,6]. The aforementioned work was done
on a qualitative basis due to a number of limiting theoretical
factors, one of which is the nature of the underlying EOS
embedded in SCFT. Compressibility was included in the
SCFT approach using the method of Hong and Noolandi
[7], by which they showed that SCFT reduces to the
Sanchez-Lacombe (SL) EOS. As such, an understanding
of the SL EOS is required for understanding the behaviors
of polymer foams, as described by SCFT, as well as
fundamentally in terms of the solubility of the blowing
agent in a homogeneous polymer melt.
In 1974, Sanchez and Lacombe introduced a lattice-based

statistical mechanical theory to describe fluid-phase equa-
tion-of-state behavior. Their original short paper [8] was
soon followed by more-detailed descriptions for both pure
fluids [9,10] andmixtures [11,12]. This theory, known as the
lattice-fluid model, or the SL EOS, relies on vacancies or
“holes” to account for compressibility and, due to its*thompson@uwaterloo.ca
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simplicity, continues to be widely used in everything from
hydrogen storage applications [13] to efforts to understand
dark energy [14]. Applications to polymer systems are the
most common, however, and the theory has been widely
applied to polymeric foams.
Among polymers, polypropylene (PP) is one of the most

widely used commodity polymers, with carbon dioxide
(CO2) often chosen as an environmentally friendly blowing
agent for the manufacture of polymeric foams [15–19]. The
advent of the experimental ability to independently mea-
sure both solubilities and swelling has shown the SL EOS
to perform poorly for these measurements, even when the
mixture parameters are allowed to change with temperature
and pressure [15,17,18,20]. Within the context of the
statistical mechanical derivation of the SL EOS, these
mixture parameters should be constant. There are, however,
a number of confounding factors. The SL EOS for mixtures
requires as input the parameters for the pure components—
poor estimates for the pure-component parameters will lead
to poor agreement with experiment for mixtures [21]. Also,
at coexistence, the SL EOS is often solved analytically,
requiring rather severe approximations which can corrupt
the agreement with experiment [22,23]. These approxima-
tions can be somewhat compensated for in certain circum-
stances [24]. Lastly, the SL EOS for mixtures has been
shown to be thermodynamically inconsistent due to the
mixing rules used to set the volume of the holes [25]. This
issue goes deeper than is presently appreciated.
In this paper, we rederive the SL EOS using an off-lattice

formalism in order to show that the limitations of the SL
EOS do not arise from the lattice. We also find the approach
to be particularly simple, as it follows the spirit of the SCFT
derivation of Hong and Noolandi [7], but without the path-
integral formalism required to describe inhomogeneous
systems. We show the inconsistency that arises from the so-
called mixing rules, originally noticed by Neau [25], but we
demonstrate this inconsistency from an additional perspec-
tive and show that the fugacity coefficients suggested by
Neau do not remove the inconsistency. In fact, we are not
presently aware of any way to remove the inconsistency for
any choice of mixing rules. Nonetheless, the theory can be
shown to be reliable in the context of coexistence calcu-
lations, where we will show mixing rules to be unnecessary.
Rather, constant hole volumes allow the SL EOS to be near
consistent for solubility calculations. At coexistence, we
find excellent agreement with experimental solubilities for
a mixture of PP and CO2 using a constant hole volume and
without changing the mixture parameters with temperature
or pressure. We are careful in obtaining the best possible
values for the pure-component parameters—we regress
new characteristic parameters for both linear and branched
PP to known data formulas and use parameters from our
previous in-depth study of CO2 [26]. It is shown, however,
that not all three pure-component parameters for PP are
needed. One can be ignored due to the corresponding-states

principle of the SL EOS, and another due to the avoidance
of mixing rules. Without mixing rules, the agreement with
PP-CO2 experiment is much better than for the SL EOS,
with typical mixing rules based on the same parameters and
methods. We also predict the swelling at saturation with no
further free parameters. The agreement with experiment
here is worse, but still better than mere order of magnitude.
We offer an explanation of the worse fit for swelling based
on the difference in hole size between the polymer and CO2

molecules, which causes the inherent inconsistency of the
SL EOS to be more pronounced for that calculation. We go
on to consider an empirical relationship between the holes
and missing correlations and show that the differing SL-
EOS parameters for pure linear PP and pure branched PP
become very similar when the parameters are made
independent of the hole size. Lastly, we are able to extract
a rough estimate of the single required pure-component PP
SL-EOS parameter from the solubility data, along with the
usual mixture parameters. Thus, we demonstrate the
predictive nature of our approach and its applicability to
systems where the pure-component parameters of a sub-
stance are not known. This offers a potentially better and
simpler alternative to approaches such as the group-
contribution method [13,27] and extends predictive
capability to a wider range of polymeric foams.

II. THEORY

The idea behind the SL EOS is to represent free volume
as discrete vacancies, or holes, that behave as an additional
chemical species in terms of translational entropy, but that
have no interactions or internal degrees of freedom. The
artificial translational entropy is adjusted, through a change
of hole size, so that the equation of state correctly describes
the density behavior of the pure-component substance or
mixture. Here, we give an off-lattice derivation that is
equivalent to the SL EOS, together with a different treat-
ment of mixture holes.
The canonical partition function for a multiple-chemical-

species system—consisting of nκ molecules of species κ
and n0 artificial holes that, combined, fill all space—is
given by

Q ¼ 1Q
0
κ nκ!Λ

3nκ
κ

Z Y0
κ

dfrκge−Vðfrκ≠0gÞ=kBT; ð1Þ

where products (and, later, sums) are over all species κ,
with the superscript 0 indicating that holes are included as a
species, whereas products (or sums) without the superscript
0 indicate that holes are not included. Λκ’s where κ ≠ 0 are
de Broglie wavelengths containing the kinetic-energy
contributions of all degrees of freedom of molecules of
species κ, and Λ0 is a normalization factor for the holes
such that the partition function remains dimensionless. The
sets of positions of the centers of mass of molecules of
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species κ are given by frκg. The total potential Vðfrκ≠0gÞ
depends on the positions of all molecules of all species, but
not on the positions of the holes. kB is Boltzmann’s
constant and T is the temperature. The potential will, in
general, be a very complicated function which, in principle,
should also depend on other degrees of freedom of the
molecules. If one divides the molecules up arbitrarily into
Nκ segments of volume vκ each, such that a single molecule
of species κ has a total volume of Nκvκ, one can instead
write the partition function in terms of a potential
Uðfrs;κ≠0gÞ based on the set of the positions of all of
the segments frs;κ≠0g of all molecules of all species
excluding holes, rather than the molecular centers of mass.
Note that each hole is defined with N0 ¼ 1 so that v0 is the
volume of a hole. The partition function is then

Q ¼ 1Q
0
κ nκ!Λ

3nκ
κ

Z Y0
κ

dfrκge−Uðfrs;κ≠0gÞ=kBT; ð2Þ

where the segment distribution frs;κ≠0g is dependent on the
molecular centers of mass frκ≠0g that we are integrating
over. The particular relationship between molecular centers
of mass and segment positions will depend on the details of
the molecular model. For example, for inhomogeneous
polymer systems, self-consistent field theory is used to
compute molecular volume fractions for Gaussian strings in
the mean-field approximation [4–6,28,29].
Instantaneous segment volume-fraction operators can be

defined for all κ chemical species, as well as holes, as

φ̂κðrÞ ¼ vκ
XNκnκ

i¼1

δðr − rs;iÞ; ð3Þ

where rs;i is the position of the ith segment, and the sum
runs over all segments of all molecules of species κ. The
various volumes of segments of different species vκ are, in
general, different, including the volume of a hole v0. In
terms of these volume-fraction operators, the constraint that
molecular segments plus holes fill all space can be phrased
simply as

X0
κ

φ̂κðrÞ ¼ 1: ð4Þ

Assuming only pairwise interactions between segments,
the potentialUðfrs;κ≠0gÞ can be written in terms of volume-
fraction operators as

Uðfrs;κ≠0gÞ¼
1

2

X
κ″κ0

1

vκ″vκ0

Z
drdr0φ̂κ″ðrÞuκ″κ0 ðjr−r0jÞφ̂κ0 ðr0Þ;

ð5Þ
where uκκ0 ðrÞ is the segment-segment pair potential and
self-energies are ignored [30]. Using this form of the
potential in Eq. (2) gives

Q¼ 1Q
0
κ nκ!Λ

3nκ
κ

Z Y0
κ

dfrκg

× e−ð1=2Þ
P

κκ0 ð1=vκvκ0 Þ
R

drdr0φ̂κðrÞuκκ0 ðjr−r0jÞφ̂κ0 ðr0Þ=kBT; ð6Þ

subject to the constraint (4).
The SL EOS is a mean-field and homogeneous theory,

which, in the present context, can be incorporated using

ϕκ ≡ 1

V

Z
drhφ̂κðrÞi ¼

1

V

Z
drφ̂κðrÞ; ð7Þ

where hφ̂κðrÞi are ensemble average segment volume
fractions and V is the system volume in the canonical
ensemble. Replacing the instantaneous volume fractions,
which depend on the segment positions, with the homo-
geneous mean-field volume fractions, which do not, means
that Eq. (6) becomes

Q ¼
Y0
κ

Vnκ

nκ!Λ
3nκ
κ

e−ð1=2Þ
P

κκ0 ðϕκϕκ0=vκvκ0 Þ
R

drdr0½uκκ0 ðjr−r0jÞ=kBT�;

ð8Þ
which is now subject to the homogeneous mean-field
constraint

X0
κ

ϕκ ¼ 1: ð9Þ

We define a spatially averaged interaction parameter,

ϵκκ0 ¼ −
vr
V

1

2vκvκ0

Z
drdr0uκκ0 ðjr − r0jÞ; ð10Þ

with a factor vr=V, where vr is an arbitrary reference
volume, included for later convenience, and a minus sign,
also for convenience, so that positive values of ϵκκ0 will
lower the free energy and contribute to the cohesion of the
substance. Note that, assuming the pair interaction potential
is not long-range, one can confirm that definition (10) is a
constant with respect to volume. The approximate partition
function (8) becomes

Q ¼
Y0
κ

Vnκ

nκ!Λ
3nκ
κ

eðV=vrÞ
P

κκ0 ϕκϕκ0 ðϵκκ0=kBTÞ; ð11Þ

subject to Eq. (9).
The Helmholtz free energy is obtained in the usual

way from the canonical partition function through F ¼
−kBT lnQ. From Eq. (11), we get a dimensionless free
energy of

F
kBT

¼ −
V
vr

X
κκ0

ϵκκ0

kBT
ϕκϕκ0 þ

X0
κ

�
nκ ln

�
nκΛ3

κ

V

�
− nκ

�

ð12Þ
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using Stirling’s approximation. The first summations on the
right-hand side are the summed energies of the molecular
segment interactions. The subsequent terms are the trans-
lational entropies of the molecules and holes. These are the
only physical aspects present in the SL EOS—all other
properties are mapped to phenomenological parameters. In
order to simplify later formulas, we can note that factors
linear in nκ will not affect any physical quantities derived
from the free energy, so we add a factor,

nκ

�
ln

�
Nκvκ
Λ3
κ

�
þ 1

�
;

to the right-hand side of Eq. (12) and it becomes

F
kBT

¼ −
V
vr

X
κκ0

ϵκκ0

kBT
ϕκϕκ0 þ

�
n0 ln

�
n0Λ3

0

V

�
− n0

�

þ
X
κ

nκ ln

�
nκNκvκ

V

�
: ð13Þ

Note that terms linear in n0 cannot be manipulated because
n0 is a function of both volume and particle numbers nk
through incompressibility. In particular, v0, which contrib-
utes to the value of n0 through incompressibility, is usually
taken to be a function of nk; that is, it is often defined
through mixing rules.
This free energy can be seen to generate the SL EOS

using the usual relation,

P ¼ −
�∂F
∂V

�
fnκg;T

: ð14Þ

Using Eq. (14), Eq. (13) gives a dimensionless pressure of

vrP
kBT

¼ −
X
κ

�
1

α0
−

1

ακ

�
ϕκ −

1

α0
lnϕ0 −

X
κκ0

ϵκκ0

kBT
ϕκϕκ0

þ 1

α0

�
1 − ln

�
Λ3
0

v0

��
; ð15Þ

where we use the fact that ϕκ ¼ nκNκvκ=V and that n0 ¼
n0ðVÞ due to Eq. (9); that is, for a given hole volume v0, the
number of holes must be chosen to fill all empty space. In
Eq. (15), we define

ακ ≡ Nκvκ
vr

ð16Þ

as the ratio of a molecular volume to the reference volume.
This definition is also taken to hold for the holes, where
α0 ¼ v0=vr. Equation (15) is subject to the constraint (9).
Equation (15) can be shown to be equivalent to the SL

EOS if we define the appropriate scaled quantities. The
scaled density is defined as

ρ̃≡X
κ

ϕκ; ð17Þ

which allows us to define a species-averaged interaction
energy,

ϵ� ≡ 1

ρ̃2
X
κκ0

ϵκκ0ϕκϕκ0 : ð18Þ

Using Eq. (18), we define a scaled pressure as

P̃≡ vrP
ϵ�

ð19Þ

so that Eq. (15) becomes

P̃ ¼ −ρ̃2 −
kBT
ϵ�

�
ρ̃

α0
−
X
κ

ϕκ

ακ
þ 1

α0
lnð1 − ρ̃Þ

−
1

α0

�
1 − ln

�
Λ3
0

v0

���
; ð20Þ

where we make use of the fact that ϕ0 ¼ 1 −
P

κϕκ. We
define the scaled temperature as

T̃ ≡ kBT
ϵ�

; ð21Þ

so that Eq. (20) can be rewritten as

ρ̃2þ P̃þ T̃

�
1

α0
lnð1− ρ̃Þ−

X
κ

ϕκ

ακ
þ ρ̃

α0
−

1

α0

�
1− ln

�
Λ3
0

v0

���

¼ 0: ð22Þ

An average molecular size r can be defined such that

1

r
≡ 1

ρ̃

X
κ

ϕκ

ακ
; ð23Þ

and the equation of state becomes

ρ̃2þ P̃þ T̃

��
1

α0
−
1

r

�
ρ̃þ 1

α0
lnð1− ρ̃Þ− 1

α0

�
1− ln

�
Λ3
0

v0

���

¼ 0: ð24Þ

For the choice of a reference volume equal to the hole
volume (vr ¼ v0), we get α0 ¼ 1, and Eq. (24) is the SL
EOS with an extra term. The extra term is unphysical
because, in the limit of ρ̃ → 0, we require the absolute
pressure to go to zero, P̃ → 0. This is possible only if we set
the hole normalization factor to Λ3

0 ¼ v0e, as suggested by
Hong and Noolandi [7]. Then the equation of state is
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ρ̃2 þ P̃þ T̃

��
1

α0
−
1

r

�
ρ̃þ 1

α0
ln ð1 − ρ̃Þ

�
¼ 0; ð25Þ

which, for vr ¼ v0, is the SL EOS.
Characteristic parameters ρ�, P�, and T� can be defined

following Sanchez and Lacombe [9], with ρ̃ ¼ ρ=ρ� (or,
equivalently, ρ̃ ¼ V�=V), P̃ ¼ P=P�, and T̃ ¼ T=T�. From
Eq. (17), V� is

V� ¼
X
κ

nκNκvκ ¼
X
κ

ακvrnκ ð26Þ

using the definition of ακ. Equation (26) can be phrased in
terms of the mass density characteristic parameter ρ� as

ρ� ¼
P

κnκMκ

V� ; ð27Þ

where Mκ is the molecular weight of species κ. Trivially,
from Eqs. (19) and (21), P� and T� are

P� ¼ ϵ�

vr
; ð28Þ

T� ¼ ϵ�

kB
; ð29Þ

respectively. Equations (26), (27), (28), (29), (18), and (23)
can be shown to be equivalent to Eqs. (17), (37), (25), (24),
(27), and (32), respectively, of Ref. [11], provided that the
reference volume vr is taken to be the hole volume.
The mixture characteristic parameters can be divided

into pure-component characteristic parameters [9] and
interaction parameters [11]. For the volume expression
(26), there are no cross terms, so one can define

V�
κ ¼ nκNκvκ ¼ ακvrnκ; ð30Þ

which is the total volume occupied by molecules of type κ.
The pure-component characteristic density is

ρ�κ ¼
nκMκ

V�
κ

¼ Mκ

ακvr
: ð31Þ

Equation (18) can be rewritten as

ϵ� ≡ 1

ρ̃2

�X
κκ0
κ≠κ0

ϵκκ0ϕκϕκ0 þ
X
κ

ϵκκϕ
2
κ

�
; ð32Þ

which allows us to define the pure-component character-
istic temperatures as

T�
κ ¼

ϵκκ
kB

: ð33Þ

Rather than defining the interaction parameters directly
from Eq. (32), we follow Lacombe and Sanchez [11] and

define a dimensionless interaction parameter as the
deviation from the geometric mean of any two pure-
component characteristic temperatures:

ζκκ0 ðT�
κT�

κ0 Þ1=2 ¼
ϵκκ0

kB
; κ ≠ κ0: ð34Þ

Finally, the pure-component characteristic pressures can be
written in the same way as the temperatures,

P�
κ ¼

ϵκκ
vr

: ð35Þ

No further binary interaction terms are required since P�
depends on ϵ� in the same way that it does for the
characteristic temperatures. A final parameter is v0, the
hole volume. This is determined for pure-component
systems by setting the reference volume equal to the hole
volume and determining this hole volume by comparison to
experiment. The hole volume will thus be different for each
chemical species. For mixtures, the accepted approach is to
define the hole volume using an arbitrary mixing rule that is
a composition-dependent average of the various pure-
component hole volumes. In this way, the hole volume
will correctly limit to the known pure-component values.
For example, the original mixture SL EOS suggests a

composition-based average such as [9]

v0 ¼
P

κnκNκv0κP
κnκNκ

; ð36Þ

where v0κ is the hole volume for the pure-component
species κ. For a binary mixture, this hole volume would be

v0 ¼
N1n1v01 þ N2n2v02

N1n1 þ N2n2
: ð37Þ

In order to account for deviations from this mixing rule, an
arbitrary parameter δ is later added to give [31]

v0 ¼
N1n1v01 þ N2n2v02

N1n1 þ N2n2

−
ðN1n1ÞðN2n2Þ
ðN1n1 þ N2n2Þ2

δðv01 þ v02Þ: ð38Þ

These rules are not derived but, rather, are arbitrary choices.
Whether using these rules or others, the mixture SL EOS
will necessarily be thermodynamically inconsistent, as can
be shown via the chemical potentials.
The chemical potentials can be found from the free

energy (13) using the relation

μκ ¼
�∂F
∂nκ

�
T;V;nκ0≠κ

ð39Þ
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for κ ≠ 0. Making use of incompressibility (9) and the free-
energy density, the dimensionless chemical potentials are

μκ
kBT

¼ ακ

�
−

1

α0
þ 1

ακ
ð1þ lnϕκÞ −

1

α0
lnϕ0

− 2
X
κ0

ϵκκ0

kBT
ϕκ0 þ

n0
v0

∂v0
∂nκ lnϕ0

�
: ð40Þ

This expression agrees with that of Hong and Noolandi [7]
for vr ¼ v0, except for the generalization to a nonconstant,
composition-dependent hole volume given by the last term
due to the assumption of mixing rules. This term disappears
in the dilute limit, and the chemical potentials become

lim
ϕκ→0

μκ
kBT

¼ −
Nκvκ
v0

þ 1þ lnϕκ: ð41Þ

These chemical potentials agree with ideal-gas expressions
up to additive constants, except for the presence of v0.
Since the hole volume will depend on the composition
through mixing rules, the functional form of Eq. (41) will
deviate from the ideal gas unless v0 is constant. If v0 is
constant for a mixture, however, it cannot limit correctly to
the pure components. Thus, a constant hole volume violates
the pure-component limits, and a variable hole volume does
not provide a consistent zero of energy for either the
chemical potentials or the free energy. This fundamental
inconsistency of the SL EOS was first reported by
Neau [25].
Neau offers a solution to the inconsistency. She argues

that the pressure derived from the configurational integral
should be equal to the pressure arising from the full
partition function since

lnQ ¼ ln λðn; TÞ þ lnZðn; V; TÞ; ð42Þ

where Q is the partition function, Z is the configurational
integral, and λ represent normalization and kinetic-energy
prefactors of the partition function. Since λ does not depend
on volume, the pressure calculated using Eq. (14) should be
the same for the configurational integral as for the full
partition function. Neau suggested integrating Pconf to get a
new free energy, which she then used to find chemical
potentials which limit in the dilute case correctly [25].
However, uniquely for hole theories, an n0 factor which
must enter λðn0; n; TÞ will depend on volume through
incompressibility since the free volume is represented as
another species filling all available space. This dependency
on volume can be understood by rephrasing Eq. (9) for the
incompressibility in terms of particle numbers instead of
volume fractions using the relation

ϕκ ¼
nκNκvκ

V
ð43Þ

so that Eq. (9) becomes

n0 ¼
V −

P
κnκNκvκ
v0

: ð44Þ

Thus, it can be seen that, for a hole theory, λðn0; n; TÞ ¼
λ(n0ðVÞ; n; T). Since there is now a volume dependence in
this prefactor term, Pconf ≠ P and the Neau argument is not
valid. The fugacity coefficients she provided cannot, there-
fore, be used to correct the chemical potentials. The SL
EOS remains inconsistent for all mixing rules except for
constant hole volumes, in which case it cannot limit
correctly to pure components.
There may be cases where limiting to pure-component

hole volumes is not required or expected. For example,
following the saturation line of a polymer–small molecule
(polymer-solvent) mixture to approaching the pure solvent
limit would imply reaching a condition of polymer in a
vapor phase within the solvent liquid. This situation is
unphysical for long polymer chains. Similarly, approaching
the pure polymer state following the saturation line could
be unphysical provided that the polymer solidifies before
excluding most solvent from the polymer matrix. Thus,
along the saturation line, one does not necessarily require
the hole volume to limit to the pure components.
Furthermore, as is evidenced in Sec. III, a constant hole
volume along this line is able to produce excellent agree-
ment with solubility experiments. An interpretation of this
agreement in terms of an empirical correlation correction at
saturation is also given in Sec. III.
Equilibrium calculations can, therefore, be attempted for

such cases using the chemical-potential expressions (40)
since these chemical potentials share a consistent energy
zero for constant hole volumes. The pressure formula also
limits correctly only for the choice of a constant hole
volume, as can be shown be rederiving it using

−PV ¼ F −
X
κ

μκnκ ð45Þ

or, equivalently,

vrP
kBT

¼ −
vrF
VkBT

þ
X
κ

μκ
kBT

nκvr
V

: ð46Þ

Equations (13) and (40) give a pressure expression of

vrP
kBT

¼ −
X
κ

�
1

α0
−

1

ακ

�
ϕκ −

1

α0
lnϕ0 −

X
κκ0

ϵκκ0

kBT
ϕκϕκ0

þ
X
κ

ϕκ
n0
v0

∂v0
∂nκ lnϕ0; ð47Þ

where we use the previous result that Λ3
0 ¼ v0e. This result

can be seen to agree with the pressure formula (15)
provided that

VON KONIGSLOW, PARK, and THOMPSON PHYS. REV. APPLIED 8, 044009 (2017)

044009-6



X
κ

ϕκ
n0
v0

∂v0
∂nκ lnϕ0 ¼ 0: ð48Þ

For dilute systems where ϕ0 → 1, this condition is met. In
general, however, we require

X
κ

ϕκ
∂v0
∂nκ ¼ 0; ð49Þ

subject to the boundary conditions that v0 ¼ v0κ for each
pure-phase κ. There is no physically meaningful solution to
this first-order partial-differential-equation boundary value
problem since it is overdetermined. Therefore, regardless of
the mixing rules chosen, the SL EOS will be inconsistent
unless a constant hole volume is used.
Even when using a constant hole volume along the

saturation line, some inconsistency is unavoidable due to
the approximate nature of using artificial holes to capture
equation-of-state effects. Returning to the polymer-solvent
mixture example, for the mixture phase to be in equilibrium
with the pure solvent phase at saturation, the chemical
potentials of the mixture and the pure-component phases
must be equal. The constant hole volume for the mixture
phase differs from the constant hole volume for the pure-
component phase, so the chemical-potential comparison is
based on different zeros of energies. However, for
the determination of solubilities, if the hole volume of
the mixture is not too different from the hole volume of the
pure component, one may hope for quantitatively reliable
results. This similarity between hole volumes can be
determined a posteriori by comparing the fitted mixture
hole volume to the known pure-component hole volume.
As is shown in Sec. III, excellent results are possible.
On the other hand, some quantities may not be

adequately determined. Swelling ratios at saturation may
also be computed, but they require hole volumes for the
mixture, for the pure solvent phase, and for the pure
polymer phase. Since the pure polymer hole volume will
certainly not be similar to the pure solvent hole volume, one
should anticipate significant inconsistencies. Nonetheless,
even for swelling ratios at saturation, one can achieve
order-of-magnitude results that are satisfactory.
Using a constant hole volume for mixtures, it is logical to

make it the reference volume. From Eqs. (46), (40), and
(13), we get

v0P
kBT

¼ −
X
κ

ϕκ

ακ
lnϕκ −

�
1 −

X
κ

ϕκ

�
ln

�
1 −

X
κ

ϕκ

�

þ
X
κ

ϕ2
κ

T̃κ

þ
X
κκ0
κ≠κ0

ϕκϕκ0

ζκκ0 ðT̃κT̃κ0 Þ1=2
þ
X
κ

ϕκμκ
ακkBT

; ð50Þ

with

μκ
ακkBT

¼ −1þ 1

ακ
ð1þ lnϕκÞ − ln

�
1 −

X
κ

ϕκ

�
−
2ϕκ

T̃κ

−
X
κ0≠κ

2ϕκ0

ζκκ0 ðT̃κT̃κ0 Þ1=2
: ð51Þ

These are useful forms for calculating coexistence quan-
tities. Note that, in Eqs. (50) and (51), the quantities ακ now
refer to the ratio of a molecular volume to the hole volume
of the mixture, ακ ¼ Nκvκ=v0. The hole volume of the
mixture and the binary mixture parameters ζκκ0 are not
known and have to be regressed from mixture data—in our
case, from solubility data. As input, we need the pure-
component parameters T�

κ and ρ�κ ¼ Mκ=Nκvκ, usually
regressed to pure-component PVT data. Note that the
pure-component parameter P�

κ is not directly needed to
fit to solubility in the context of a constant mixture hole
volume. Equations (50) and (51) are solved numerically,
which proceeds as follows.
Assuming values of ζκκ0 and v0, one can choose values of

μκ allowing one to solve the κ equations (51) for the set of
volume fractions ϕκ. There are κ independent solution sets
which include each κ-rich phase. The known ϕκ and μκ
values are substituted into Eq. (50) for all phases—the
resultant set of reduced pressures will, in general, not be
equal. One input μκ value is varied, with the others held
constant until the output pressures are equal, giving the ϕκ

volume fractions in all phases at one point at saturation, that
is, at equal pressures, chemical potentials, and temper-
atures. This process is repeated for the various values of the
μκ that were previously held constant to generate the entire
saturation region. In turn, this whole process is repeated for
different choices of ζκκ0 and v0 (through ακ ¼ Nκvκ=v0)
until the predicted solubilities match the experimentally
available data.
For a two-species mixture consisting of a long polymer

such as PP and a small molecule such as CO2 (the solvent),
such as in a polymeric foaming system, the process is
simplified since it is known that there will be no polymer
vapor in the CO2-rich phase at any pressure or temperature;
that is, ϕPP ¼ 0 in the CO2-rich phase. Thus, for a choice of
μPP and μCO2, one solves Eq. (51) for the polymer-rich
phase only and compares the pressure (50) so calculated
with the pure CO2 pressure using μCO2. One varies μCO2

until the pressures of the pure component and the mixture
are equal. This process is repeated for all values of μPP to
find the saturation line. Alternatively, since ϕPP ¼ 0, one
can choose a desired pressure, solve Eqs. (50) and (51) for
the CO2 phase for ϕCO2

and μCO2, and then, for the same
pressure, solve Eqs. (50) and (51) again—this time for the
mixture—for the unknowns ϕPP, ϕCO2

, and μPP. Again, the
process is repeated for different choices of ζ and v0 until
the predicted solubilities match the experimentally avail-
able data. Furthermore, for long molecules, ακ becomes
very large and the regression becomes insensitive to its
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value; that is, Eqs. (50) and (51) are independent of ακ in
the limit of a large ακ. Therefore, only the single parameter
T�
κ is needed to characterize the polymer in the mixture.
If the characteristic parameters of the long polymer are

not known, one may be able to extract sufficient informa-
tion from the solubility data to make predictions outside the
experimental range. As mentioned, P�

κ is not needed for
mixture calculations, and, for sufficiently long polymers,
αPP → ∞. This is the well-known corresponding-states
principle of the SL EOS. Given that the parameters ζκκ0
and the mixture v0 are constant across temperatures and
pressures, one can perform a regression for three param-
eters instead of two: ζκκ0 , the mixture v0, and T�

PP. While
this procedure does not fully characterize the pure-compo-
nent polymer, one would, in principle, have enough
information from limited experimental solubility data to
make solubility predictions at other temperatures and
pressures, albeit with limited accuracy.
From the known volume fractions of the mixture along

the saturation line, and the volume fractions of the pure-
component CO2, the solubility χκ of species κ in a mixture
can be calculated according to

χκ ¼
Mκϕκ=ακP
κ0Mκ0ϕκ0=ακ0

; ð52Þ

where all volume fractions are calculated in the mixture
phase at saturation. Formula (52) is just an expression of
the ratio of the mass of species κ with respect to the total
mass of all species in the mixture. In this work, we take
experimental solubility data and numerically regress the
mixture hole volume based on known CO2 and PP
characteristic parameters using a Levenberg-Marquardt
algorithm [32,33]. We also calculate swelling ratios for
species κ along the saturation line according to

SW ¼ ϕpure
κ

ϕmix
κ

: ð53Þ

Equation (53) is an expression of the ratio of the volume of
the mixture phase to the volume of the pure polymer phase
such that both exist at the same temperature and pressure
and contain the same number of κ molecules.

III. RESULTS AND DISCUSSION

Solubility and swelling are two quantities of significance
in polymeric foaming [24,34]. For physical blowing agents,
the amount of blowing agent dissolvable in a polymeric
matrix will greatly effect the formation of a polymeric foam
upon the inducement of a thermodynamic instability, either
through a temperature increase or a pressure drop. The
rapid temperature or pressure variation causes a change of
the solubility of the blowing agent in the polymer, allowing
the foam to form. Swelling is a measure of the amount of
expansion of the material with respect to the original

volume of the pure polymer before foaming. This is a
property that is extremely important for applications of the
foam. Equation-of-state knowledge of solubility and swell-
ing resulting from various chemistries of polymer and
blowing agent is therefore of high value in anticipating the
cell density of the foam and its other properties. In this
section, we compare experimental results for solubility and
swelling with predictions of the SL EOS without mixing
results, as described in Sec. II. We choose these two
quantities because of their relevance to polymeric foaming.
Experimental data for solubility experiments at satura-

tion for linear PP-CO2 mixtures are taken from Hasan et al.
[15] and are shown in Fig. 1. Theoretical fits based on
regressions to the experimental solubility data are also
shown in Fig. 1. The parameters used in the regressions are
given in Tables I and II. Characteristic parameters for pure
CO2 were regressed by us in Ref. [26], whereas, for pure
polypropylene, regressions were made to empirical for-
mulas fit to experimental data [34]. For mixtures, all
additional parameters are regressed by us. For a constant
mixture hole volume vmix

0 ¼ 8.436 × 10−24 cm3 and a
binary interaction parameter ζ ¼ 1.110, excellent agree-
ment with the experimental data is achieved over all
pressures and temperatures without changing any param-
eters. Comparing Tables I and II, we see that the pure CO2

hole volume of vCO2

0 ¼ 1.124 × 10−23 cm3 is relatively
similar to the mixture hole volume, justifying the equilib-
rium solubility calculation between the mixture and pure
CO2. By contrast, other mixing-rule-based regressions are
less satisfactory, with both the one- and two-parameter SL
EOSs performing worse than the present approach over the
three isotherms for constant ζ1SL and ζ2SL, δ2SL parameters.
The arbitrary nature of the mixing rules for the one- and
two-parameter SL EOSs mean that there is not a physical
basis for this behavior; rather, the deviation occurs math-
ematically because the zero of chemical potential is
changing in an arbitrary way, as expressed through the
mixing rules.
For the same value of ζ, rough agreement with the

swelling data at saturation is achievable for a constant
mixture hole volume. Figure 2 shows the experimental
swelling data for linear PP-CO2 mixtures together with
theoretical predictions. Experimental data are again taken
from Ref. [15], with additional data at 473 K taken from
Ref. [35]. The constant-hole-volume approach consistently
overestimates the swelling and, more importantly, fails to
capture qualitatively the slight concavity of the experimen-
tal curve. Nonetheless, quantitatively, the present approach
is better than mere order-of-magnitude agreement. The 2SL
EOS is similar to the present approach at 453 K, but it
becomes significantly worse at higher temperatures.
Surprisingly, the 1SL EOS remains competitive at all
temperatures, indicating that a quadratic modification to
the original SL mixing rule is not an appropriate correction
for this case. Given the poor performance of the 1SL EOS
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for solubilities, however, the present constant-hole-volume
method gives the best overall performance, with the
satisfactory swelling results arising without any free
parameters. The difference in quality between the excellent
solubility fits and the merely satisfactory swelling
results can be understood in terms of the various hole
volumes. Only the two relatively similar hole volumes
vmix
0 ¼ 8.436×10−24 cm3 and vCO2

0 ¼1.124×10−23 cm3 are
required for the solubility, whereas, for swelling, the
very different hole volume of pure linear PP with vPP0 ¼
2.894 × 10−23 cm3 enters the calculation. The swelling
ratio should, in principle, be calculated by comparing

the PP-CO2 mixture with the pure PP system under the
same conditions, but the different hole volumes indicate a
difference of the system chemical-potential zeros. Thus, we
are, physically, calculating ratios of systems under different
conditions, and one should thus not be surprised that the
results are imperfect. By contrast, the qualitative agreement
with experiment observed with the one-parameter SL
theory in terms of the concavity of the swelling curve is
unphysical, arising as it does through the arbitrary mixing
rule. The one-parameter SL seems to capture this concavity
trend through good fortune, which is borne out by the fact
that, quantitatively, it is worse than our suggested approach.
Overall, given the inherent inconsistency of all of the SL
theories for nonconstant hole volumes, one should expect

(a) (b)

(c)

FIG. 1. Solubility data for
linear PP-CO2 mixtures at
saturation at temperatures
(a) 453 K, (b) 473 K, and
(c) 493 K. Points indicate
experimental data and lines
display various theoretical
fits denoted by the legends.

TABLE I. Pure-component characteristic parameters and hole
volumes from Ref. [26] for CO2 and regressed from data of
Ref. [34] for PP. The hole volumes are derived from the
characteristic parameters according to v0 ¼ kBT�=P� [9].

Molecule T� (K) P� (MPa) ρ� (g=cm3) v0 (×10−23 cm3)

CO2 341.8 419.9 1.397 1.124
Linear PP 662.8 316.2 0.8685 2.894
Branched PP 656.0 356.4 0.8950 2.541

TABLE II. Mixture parameters for the present method (ζ, v0),
the two-parameter SL EOS (ζ2SL, δ2SL), and the one parameter SL
EOS (ζ1SL).

Mixture ζ
v0

(×10−24 cm3) ζ2SL δ2SL ζ1SL

Linear PP CO2 1.110 8.436 0.7244 0.1858 0.7571
Branched PP CO2 1.091 8.646 0.7398 0.1728 0.7709
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to have to use a more complicated EOS in order to improve
the predictions for swelling.
Similar agreement for solubility and swelling at satu-

ration is found for branched PP, using a hole volume of
vmix
0 ¼ 8.646 × 10−24 cm3 and a binary interaction param-

eter of ζ ¼ 1.091, as shown in Figs. 3 and 4. Mixture data
for branched PP is taken from Refs. [15,35]. Again, the
constant-hole-volume fit does noticeably better than either
the one- or the two-parameter SL-EOS fit, with excellent
agreement for solubility and satisfactory agreement for
swelling.
The surprisingly good performance of a constant hole

volume for the mixtures can be interpreted in terms of an
empirical correction to account formissing correlations. The
SL EOS is mean-field theory, meaning that physically real
correlations are not incorporated; on the other hand, holes,
which are not physically real, are included in the SL EOS.
One might wonder, then, if the holes can be roughly
interpreted, in part, as an empirical correction for themissing
correlations. For either a mixture or a pure-component
substance, the holes are the gaps left behind as molecular
segments—or groups of molecular segments—move about,
exploring the phase space of a given statistical mechanical

ensemble. If the segments tend to move, on average, in
correlatedways, then the size of the holes should reflect this.
While the holes themselves are uncorrelated, the unit of
discretized free space that is allowed to move around—that
is, the hole size—forces a correlation among themovements
of the remaining physical segments. In other words, the
segments must move in “clumps” of a certain size. Of
course, real correlations are, in principle, functions of
temperature and pressure, with larger changes taking place
near the critical point. If the neighborhood of the critical
point is excluded from regressions, one might hope to
represent these correlations approximately with a single
empirical value—that is, the volume of a hole. One therefore
expects the volume of holes to be different in various pure
substances and in mixtures. There are a number of conse-
quences in interpreting a hole in this way. First, at very low
densities, nearing the ideal gas, the holes will be the
dominant species filling most space, and the correlation
interpretation will break down. From this point of view, one
does not expect the SL EOS to be valid at very low densities.
The thermodynamic inconsistency in the SL EOS was first
shown by Neau by taking a low-density limit [25]—see
Eq. (41). If the SL EOS is not valid in the dilute region, an

(a) (b)

(c)

FIG. 2. Swelling data for
linear PP-CO2 mixtures at
saturation at temperatures
(a) 453 K, (b) 473 K, and
(c) 493 K. Points indicate
experimental data and lines
display various theoretical
fits denoted by the legends.
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inconsistency there is not surprising. Nonetheless, as we
have shown here—see Eq. (49)—the dilute limit merely
illustrates an inconsistency that is present at all densities.
Second, if hole volumes are viewed as empirical estimates of
correlations, pure-component parameters must be functions
of molecular architecture. Normally, in the SL EOS, pure-
component parameters are, in principle, supposed to be the
same for all molecular variations of a given substance. This
expected consistency of parameters can be seen from the
derivation in Sec. II, or the original lattice derivation [9], in
which no segment connectivity information is retained. In
reality, a consistency of pure-component parameters for
different molecular architectures is rarely found. For exam-
ple, branched and linear PP should have the same pure-
component parameters. From Table I, we can see this is not
so.WhileT� and ρ� are reasonably consistentwith variations
of between 1% and 3%,P� varies on the order of 11%. From
Eqs. (31), (33), and (35), it can be seen that, for a pure
componentwith a referencevolume equal to the holevolume
(vr ¼ v0), only the pressure characteristic parameter
depends on the hole volume. If the hole volume represents
correlations, we would expect to get different hole volumes
between linear and branched PP since the architectural

differences will cause different segment motions and group-
ings as the phase space is explored. Thus, a different value of
P� is expected between linear and branched PP,whileT� and
ρ� should be similar. On the other hand, from formula (35),
the product P�v0 is independent of the hole volume, so this
product should be the same between linear and branched PP.
From Table I, we find that this product changes only on the
order of 1% between linear and branched PP, consistent with
the small changes found for T� and ρ�. This finding provides
evidence in support of interpreting the holes empirically to
account for some correlations. Note that this discussion is
not intended to be a rigorous proof that holes represent
correlations—which, strictly speaking, they do not—but
rather that the holes, as a phenomenological feature, are
particularlywell suited to incorporatingmissing correlations
within an empirical parameter.
As mentioned in Sec. II, only one of the three character-

istic parameters for PP, specifically, T�
PP, is needed to fit to

the solubility data with CO2 when using a constant hole
volume for the mixture. If this characteristic parameter is
unknown, one could attempt to regress it together with v0
and ζ from the solubility data. Figure 5 shows such fits to
solubility data at 453 K for both branched and linear PP.

(a) (b)

(c)

FIG. 3. Solubility data for
branched PP-CO2 mixtures
at saturation at temperatures
(a) 453 K, (b) 473 K, and
(c) 493 K. Points indicate
experimental data and lines
display various theoretical
fits denoted by the legends.
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The values of the various regressed parameters are given in
Table III. The values of ζ and v0 for the mixture have
changed with respect to the known T�

PP case, as indicated
by the percentages in parentheses in Table III, as has
the prediction of T�

PP. Some of this change is due to fitting
to less data—that is, to 453 K only, rather than to all three
temperatures—but most of it is due to the removal of the

constraint that T�
PP should satisfy the pure PP PVT data.

Despite the large change in T�
PP (29% in the case of linear

PP; the much smaller 3% change for branched PP is just
fortuitous), the parameters from Table III can be used
effectively for predictions. Figure 5 shows comparisons to
solubility data at temperature of 473 and 493 K using only
the parameters regressed to data at 453 K. The excellent

(a) (b)

(c)

FIG. 4. Swelling data for
branched PP-CO2 mixtures
at saturation at temperatures
(a) 453 K, (b) 473 K, and
(c) 493 K. Points indicate
experimental data and lines
display various theoretical
fits denoted by the legends.

(a) (b) FIG. 5. Solubility data for
(a) linear and (b) branched
PP-CO2 mixtures at satura-
tion at temperatures of 453,
473, and 493 K, as denoted
by the legends. Points indi-
cate experimental data and
lines display theoretical fits
for parameters ζ, v0, and T�

PP
regressed at 453 K.
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agreement indicates that, operationally, the constant-hole-
volume approach for mixtures at coexistence can provide
information beyond the experimentally available data even
when a large molecule component is completely unchar-
acterized. Even when extrapolating very far from the data
range, one might still hope for reliable qualitative or order-
of-magnitude predictions.

IV. CONCLUSIONS

An off-lattice statistical mechanical derivation of the SL
EOS offers a simple approach for achieving the same result
as the lattice-based method, regardless of the mixing rules
chosen. The off-lattice result shows that issues of thermo-
dynamic inconsistency are not artifacts of the lattice, and it
further shows that fugacity coefficients cannot be used to
correct the inconsistencies as previously believed [25].
Instead, one may choose to abandon the requirement that
the mixture hole volume should reduce to the pure-
component hole volumes, which allows the use of a
constant hole volume for the mixture. For coexistence
calculations involving PP and CO2, this is shown to be a
reasonable approach since, at coexistence, one does not
expect to find the mixture phase limiting to either pure PP
or pure CO2. Furthermore, it is found that the hole volume
for the pure CO2 phase is close to the value of the hole
volume for the PP-CO2 mixture phase at coexistence,
justifying a posteriori near consistency for this case.
One might expect similar results for other polymer-small
molecule systems at coexistence, with a comparison of
mixture and pure small molecule hole volumes providing
evidence as to whether the approach is indeed applicable in
each case. In this work, the mixture hole volume is
regressed from solubility data, whereas the pure CO2 hole
volume is taken from previous data [26].
One might speculate that the similarity of hole volumes

at coexistence between PP and CO2 arises from a similarity
of correlations at coexistence. We discuss this as a possible
physical interpretation of the holes based on the picture that
molecular segments moving together in correlated ways
will, on average, leave vacancies behind them that will
differ in size from uncorrelated systems. In support of this
interpretation, we observe that, although linear PP and
branched PP have different pure-component P� parameters,
this parameter is dependent on the hole size. Because of the

differing architectures of linear and branched PP, one would
expect different correlations, and thus different hole sizes
and P� parameters. Indeed, removing the hole volume from
the definition of P� gives very similar quantities for both
linear and branched PP. For completeness, all three pure PP
parameters are given in Table I.
Using a constant hole volume for the mixture instead of

using mixing rules not only simplifies the theory but also
gives better agreement with solubility experiments than
using typical mixing rules. Although swelling ratios at
saturation agree less well with experiment than for solu-
bilities, the results are still satisfactory given that no free
parameters are left in the comparison. It also makes sense
that swelling predictions should be worse than solubility
since, for swelling, the hole volume for pure PP is required,
and it is very different from either the pure CO2 hole
volume or the PP-CO2 mixture hole volume. Nonetheless,
the swelling predictions using a constant hole volume are
also better than when using mixing rules. Solubility and
swelling measurements are of high significance to poly-
meric foaming, which is the focus of this paper, but the
constant-hole-volume approach could be used for other
coexistence quantities provided that the magnitudes of the
differences in hole volumes between the constituents
required for the particular coexistence property of interest
are not too large.
In all cases, the binary fitting parameters used for

solubility fitting, ζ and v0, do not need to be—and indeed
should not be—varied with temperature or pressure. This
means that, at coexistence, the use of a constant hole
volume for mixtures provides a quantitatively predictive
approach across temperatures and pressures based on a
limited set of solubility data. Given the constancy of the
mixture parameters, one can also attempt to regress the
pure-component parameters of one species if that data are
lacking. Operationally, only one pure-component param-
eter is needed for long polymers. The hole volumes of the
pure components are not needed for the mixture since those
hole volumes correspond to correlations in the pure
component, and the mixture hole volume is considered
to be constant and independent of them. Thus, the pure
component P� is not needed for the solubility regression.
Furthermore, for long polymers such as the PP studied here,
the corresponding-states principle of the SL EOS means
that, effectively, the ρ� of the pure components is not
needed either. For the pure CO2 phase, these parameters
are, of course, still required, but there is no pure PP phase at
coexistence, so one can do the solubility regression to
extract ζ, v0, and T�

PP. Although this regression does not
produce extremely accurate results for the parameters
themselves, the predicted results for PP-CO2 solubilities
are in excellent agreement with the experiments. In other
words, variations in T�

PP are counterbalanced by nonlinear
variations in ζκκ0 and/or vh. The predicted solubilities
seem far better than what one might expect from using

TABLE III. Mixture parameters for the present method (ζ, v0)
assuming that the parameter T�

PP is also unknown and is regressed
from the mixture. The percentages in parentheses indicate
changes in values with respect to Tables I and II, where T�

PP is
known from pure-component data.

Mixture ζ v0 (×10−24 cm3) T�
PP

Linear PP CO2 1.039 (6%) 7.745 (8%) 470.4 (29%)
Branched PP CO2 1.115 (2%) 7.719 (11%) 639.3 (3%)
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techniques such as group-contribution theory [13,27].
Thus, the SL EOS using a constant hole volume for
mixtures shows great promise for coexistence predictions
for both industrially relevant systems such as polymeric
foams and exotic systems where the pure-component
parameters of one component may not be known.
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