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We study the optical transmission of a waveguide that is side coupled to a high-Q circular
microresonator. The coupling is critical if the intrinsic resonator losses equal the coupling losses to
the waveguide. When this happens, the transmittance of the waveguide displays resonance dips with
maximal depth as the frequency is swept through the resonators’ resonances. We show that multiple
configurations, parametrized by the minimal distance between the resonator and the waveguide, can lead to
critical coupling. Indeed, for a sufficiently large resonator radius, the flow of power between the waveguide
and the resonator can change sign several times within a single pass. This leads to an oscillatory coupling
parameter as a function of the separation distance. As a result, multiple geometrical configurations can lead
to critical coupling, even if the waveguide lies in the equatorial plane of the resonator. These results are
explained using coupled-mode theory and full-wave numerical simulations. In the vicinity of secondary or
higher-order critical coupling, the depth of the transmittance dip is very sensitive to the environment. We
discuss how this effect can be exploited for sensing purpose. Alternatively, by actively controlling the
environment in the secondary critical configuration, the waveguide-resonator system can be driven as an
optical switch.
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I. INTRODUCTION

Circular resonators such as microspheres, microtoroids,
wedge resonators, and microrings have dramatically
improved the quality of light-matter interaction in cavities,
in the sense of enhanced interaction strength and spectral
purity of the recorded signals. With losses only limited by
intrinsic material absorption, quality factors Q reaching
3 × 1011 have been demonstrated [1]. The detection of
small wavelength shifts of the resonances of these cavities
is the basis of very sensitive detectors [2–6]. Nonlinear
effects are also enhanced, with a reduced threshold for
parametric oscillations [7–9] and second-harmonic gener-
ation [10], and with a strong current focus on frequency
comb generation [11,12]. In this respect, at the photon
level, phase matching corresponds to angular momentum
conservation and follows the associated composition rules
of quantum mechanics [13]. Thanks to the high Q, surface-
second-harmonic generation mediated by as few as one
hundred small molecules (equivalent in mass to a single
protein) has been demonstrated [14]. Furthermore, the large
Q-to-V ratios, where V is the mode volume, makes these
cavities particularly useful to study quantum electrody-
namics [15] and quantum optics [16]. Currently, the field is
steadily progressing towards integrated application, with
high-Q microresonators being demonstrated with silicon
[17,18] and silicon-nitride platforms [19–22].
The most effective way to pump and interrogate the

resonances of these resonators is to couple them with a
waveguide. A detailed theory of this coupling has been
worked out and demonstrated experimentally before

[23–25], with special emphasis on critical coupling, where
ideally all the optical power injected in the waveguide can
be dissipated by the resonator. The external waveguide,
through its coupling to the resonator, also represents an
adjustable loss mechanism and can therefore be a key
parameter in the hands of an experimentalist, notably to
control the threshold of optical parametric oscillations and
quantum light production [26].
Recently, it has been pointed out that multiple critical

configurations can exist if the waveguide is buried under
the microresonator [27,28]. As the vertical gap between the
waveguide is decreased, a pair of critical-coupling con-
figurations are demonstrated, in addition to the usual one.
Moreover, within the narrow range of gaps between the two
newly found critical-coupling distances, the system reverts
to an undercoupling state. Until now, it was assumed that
such an exotic situation was only possible if the waveguide
lies in a different plane from that of the resonator [27,28].
However, this is not the case. We show that similar multiple
critical couplings can be found with microresonators side
coupled to a waveguide. Moreover, our analysis shows that
an arbitrary number of critical-coupling configurations can
be achieved, depending on the microresonator radius, see
Fig. 1. We demonstrate this possibility using coupled-mode
theory and finite-element numerical simulations, which are
in full quantitative agreement.
As can be seen in Fig. 1, the transmission at resonance,

TðωRÞ, exhibits very sharp features in the multicritical
regime when plotted as a function of the waveguide-
resonator distance. In this paper, we will show how this

PHYSICAL REVIEW APPLIED 8, 034029 (2017)

2331-7019=17=8(3)=034029(7) 034029-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevApplied.8.034029
https://doi.org/10.1103/PhysRevApplied.8.034029
https://doi.org/10.1103/PhysRevApplied.8.034029
https://doi.org/10.1103/PhysRevApplied.8.034029


can be exploited for sensing purposes. Indeed, the trans-
mission increases very rapidly as soon as one departs from
the conditions of critical coupling. Rather than detecting
the shift of spectral resonance as a response to environ-
mental change, we propose to detect the increase of
transmission, or changes in extinction ratios.
In what follows, we first briefly review the general

derivation of the intensity transmittance of the waveguide-
microresonator system. This will be necessary to explain
and derive simple analytical estimates of the emergence of
multiple critical couplings. Next, we discuss the exploita-
tion of this effect for sensing or switching purposes. Finally,
we conclude.

II. THEORY OF MULTIPLE
CRITICAL COUPLINGS

We focus here on ideal coupling, whereby the waveguide
is a single mode and parasitic losses are negligible
[23,24,29,30]. The direct interaction between the wave-
guide and the resonator usually takes place in a narrow
region of space, where the resonator can be regarded as a
segment of curved waveguide as in Ref. [31]. Let us assume
for simplicity that the two waveguides have identical width
w, propagation constant β̄ at infinite separation, and that

they have the same refractive index, see Fig. 2. Departures
from this symmetrical situation can easily be taken into
account in principle (an accurate asymptotic formula of the
dispersion relation for curved waveguide is given in
Ref. [32]). If the local distance dðzÞ varies slowly compared
to the wavelength, then the Helmholtz equation can be
treated by perturbation [33]. In this frame, the field is
expanded in terms of the local modes of propagation as

ψ ≈ aþðzÞϕþðx; y; zÞ þ a−ðzÞϕ−ðx; y; zÞ: ð1Þ
Above, ϕþðx; y; zÞ and ϕ−ðx; y; zÞ are, respectively, sym-
metric and antisymmetric with respect to the middle point
and are normalized such that

hϕijϕji ¼
ZZ

ϕ�
i ðx; y; zÞϕjðx; y; zÞdxdy ¼ δi;j;

i; j ¼ �: ð2Þ
The evolution of aþðzÞ and a−ðzÞ is given by [33]

da�
dz

≈ iβ�ðzÞa�; ð3Þ

where β�ðzÞ are the local propagation constants. The
calculation of the local modes and their propagation
constants is a 2D problem for each value of z. It can be
solved by standard softwares such as LUMERICAL, COMSOL,
or the spectral index method [34]. Note that the graph of
β�ðzÞ allows one to objectively determine the extent of the
coupling region: outside it, the local propagation constants
are indistinguishable from their asymptotic values,
see Fig. 3.
Given the amplitudes a�ðzÞ associated with the sym-

metric and antisymmetric modes, the amplitudes in the
waveguide and in the resonator can be retrieved as

agðzÞ ¼ ða− þ aþÞ=
ffiffiffi
2

p
; arðzÞ ¼ ða− − aþÞ=

ffiffiffi
2

p
: ð4Þ

Combining the above relations, it is straightforward to
derive the following matrix relation between the amplitudes
at the entrance (z ¼ −zc=2) and exit (z ¼ zc=2) of the
coupling zone:

(a)

(b)

FIG. 1. (a) Schematic of the waveguide-resonator system.
(b) Transmittance at resonance (ω ¼ ωR) as a function of
coupling distance d0 for a 100-μm-radius silicon (refractive
index ¼ 3.48) ring coupled to a ridge waveguide on a SiO2

substrate (refractive index ¼ 1.45). Microring and waveguide
width, w ¼ 200 nm. Height, 400 nm. Base height, 50 nm.
Q ¼ 4.4 × 105, λ ≈ 1.55 μm, j ~αj ¼ 0.99. The near-zero trans-
mittance at d0 ≈ 600 nm is the usual critical-coupling situation.
Additional critical-coupling distances are found for
d0 < 210 nm, always appearing in pairs. The letters “u” and
“o” indicate undercoupled and overcoupled regions, respectively.

FIG. 2. Schematic of the coupling region and the local profiles
of the propagation eigenmodes ϕ�, between a waveguide and
microresonator. ng, guiding refractive index; nclad, cladding
refractive index; nr, resonator refracting index. Throughout this
paper, we will assume that nr ¼ ng.
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�
ag;2
ar;2

�
¼ M

�
ag;1
ar;1

�
: ð5Þ

The matrix M is given by

M ¼ 1

2

�
1 1

1 −1

� 
e
i
R

zc=2

−zc=2
βþdz 0

0 e
i
R

zc=2

−zc=2
β−dz

!�
1 1

1 −1

�
:

ð6Þ

Above, zc can be any sufficiently large value that
jΔβðzcÞj ≪ 1. If we write

β�ðzÞ ¼ β̄ � ΔβðzÞ=2 ð7Þ

and introduce

δ ¼ 1

2

Z
zc=2

−zc=2
ΔβðzÞdz; ð8Þ

then M assumes the familiar form

M ¼ eiβ̄zc
�

cos δ i sin δ

i sin δ cos δ

�
: ð9Þ

Following Yariv [25], Eq. (5) is completed by the feedback
condition

ar;1 ¼ ~αar;2; ð10Þ

where the complex constant ~α accounts for propagation in
the resonator outside the coupling region. Thus, one easily
obtains the intensity transmission coefficient of the wave-
guide-resonator system

ag;2=ag;1 ¼ eiβ̄zc
cos δ − ~αeiβ̄zc

1 − ~αeiβ̄zc cos δ
; ð11Þ

→ T ¼
���� cos δ − ~αeiβ̄zc

1 − ~αeiβ̄zc cos δ

����2: ð12Þ

To make contact with notations in previous works
[24,25], we write

cos δ ¼ jtjeiξ; sin δ ¼ κ; and ~αeiβ̄zc ¼ j ~αjeiφ; ð13Þ

where ξ ¼ 0 or π, according to the sign of cos δ. Above, t is
the single-pass transmission coefficient and φ� ξ is the
phase accumulated by a traveling wave in the micro-
resonator over a complete round-trip, whether it is given
by ϕ−ðxÞ or ϕþðxÞ in the coupling region. φ is a function of
the injection frequency ω through the dispersion relation
within the resonator. Resonant injection ω ¼ ωR happens if

φþ ξ ¼ 2lπ; l ∈ N: ð14Þ
The transmission at resonance is then

TðωRÞ ¼
�jcos δj − j ~αj
1 − j ~α cos δj

�
2

: ð15Þ

Hence, the condition for critical coupling, TðωRÞ ¼ 0, is
given by the well-known formula [25]

jtj ¼ j ~αj: ð16Þ
Typical microcavities have a very large Q factor, so that

j ~αj ¼ expð−ngkπR=QÞ ≈ 1. Consequently, critical cou-
pling requires jcos δj ≈ 1 and, in usual situations, this is
achieved for a very small single-pass phase shift: δ ≪ 1.
However, it is easy to see in Eq. (15) that TðωRÞ is a π-
periodic function of δ. If the single-pass interaction is
sufficiently strong that δ > π, then multiple critical cou-
plings arise.
With very good accuracy, Δβ decreases exponentially

with d, at least for large enough d:

ΔβðzÞ ≈ Δβ0e−mdðzÞ; ð17Þ
where Δβ0 is the splitting of propagation constants at
contact. In the simplified situation where the waveguide
and ring have infinite height, the decaying constant m is
simply given by

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄2 − n2cladk

2

q
; ð18Þ

and this expression remains applicable with reasonable
accuracy even for realistic situations such as in Fig. 1.
Given (17), with d ≈ d0 þ z2=ð2RÞ, one immediately
obtains

FIG. 3. Propagation constants β�ðzÞ for the symmetric and
antisymmetric modes of propagation in the straight and curved
waveguide systems. ng ¼ 3.48; nclad ¼ 1.45; resonator radius
R ¼ 100 μm; λ ¼ 1.55 μm; width of both waveguides,
w ¼ 200 nm. Minimal separation d0 ¼ 200 nm.

MULTIPLE CRITICAL COUPLINGS AND SENSING IN A … PHYS. REV. APPLIED 8, 034029 (2017)

034029-3



δ ≈
1

2

Z
∞

−∞
ΔβðzÞdz ¼ Δβ0e−md0

ffiffiffiffiffiffiffi
πR
2m

r
: ð19Þ

In this expression, expðmd0Þ=Δβ0 can be viewed as the
effective coherence length of interaction between the
waveguide and the portion of resonator with which it
interacts. On the other hand,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πR=2m

p
is the effective

coupling length [35]. Multiple critical couplings require the
effective coupling length to exceed the effective coherence
length.
This situation is depicted in Fig. 4. There, the field

amplitude is computed in the single-pass configuration, i.e.,
without the feedback provided by the cavity for various
values of d0. For simplicity of calculation, we assumed in
that figure an infinite height, both for the waveguide and the
microresonator. For sufficiently small d0 the coupling
length exceeds the coherence length, so that optical energy
is transferred back and forth several times between the
waveguide and the ring. Furthermore, Fig. 5 shows a finite-
element simulation (COMSOL MUTLIPHYSICS 5.3) of a ring

and waveguide at “third-order” critical coupling, in the
sense that δ ≈ ð3 − 1Þπ, or equivalently, that the effective
coupling length is twice the effective coherence length.
Note the presence of three “hot spots”; these result from
interferences within the coupling region, combined with
intensity buildup in the cavity.
From what precedes, the minimal radius for multiple

critical couplings is the one for which δ ¼ π as d0 → 0, i.e.,
at contact coupling,

Δβ0

ffiffiffiffiffiffiffiffiffiffiffiffi
πRmin

2m

r
¼ π: ð20Þ

Above, to evaluate Δβ0, we note that as d0 → 0, the
resonator plus the waveguide locally make a single wave-
guide of width 2w. Then, Δβ0 is the separation between the
fundamental even and odd modes (e.g., TE0 vs TE1) of that
waveguide. A precise estimation requires one to solve the
transcendental equation for the propagation constants of the
waveguide. As a general rule,

Δβ0 ≈
g
w
; ð21Þ

for some constant g that depends on the refractive index and
geometry of the waveguide. Substituting in Eq. (20), we
finally obtain

Rmin ¼
�
2πmλ

g2

�
w2

λ
≡ 4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2eff − n2clad

p
g2

w2

λ
; ð22Þ

where the left factor is dimensionless, m is defined in
Eq. (18), and the effective refractive index is defined as
neff ¼ β̄=k. The increase of Rmin in w is consistent with
intuition, since a larger value of w leads to a smaller
evanescent field outside the waveguide, hence a weaker
coupling and a longer coherence length.
The graph of Rmin is computed numerically for wave-

guides of infinite height in Fig. 6, confirming the trend
given in Eq. (22). The values ofΔβ0 andm are evaluated by
solving the transcendental equation for a slab waveguide of
width 2w and substituted in Eq. (20) to obtain Rmin.
Alternatively, we ran COMSOL simulations to compute
the single-pass transmittance t of a straight slab waveguide
in contact with a curved slab waveguide. We increased the
radius of curvature until obtaining t ¼ −1 (i.e., δ ¼ π) and
found very good agreement with the analytical results.
If we consider ridge waveguides, the transmission curve

shown in Fig. 1(b) can accurately be reproduced by
substituting Eq. (19) into Eq. (15) with appropriately
chosen values of Δβ0 and m. For the specific parameters
of Fig. 1, fitting values are Δβ0 ¼ 4.47 μm−1 and
m ¼ 8.42 μm−1.

FIG. 4. Waveguide field amplitude in the single-pass configu-
ration for various values of d0. The single-pass transmission
coefficient is given by jtj ¼ j cos δj ¼ limz→∞jagðzÞj. ng ¼ 3.48,
nclad ¼ 1.45, R ¼ 100 μm, λ ¼ 1.55 μm, w ¼ 200 nm, infinite
height. As d0 is decreased, jtj varies nonmonotonically, allowing
the critical condition jtj ¼ j ~αj ↔ TðωRÞ ≈ 0 to be achieved for
several values of d0, see Fig. 1(b).

FIG. 5. Field-intensity distribution in a waveguide resonantly
coupled to a ring resonator at a high-order critical-coupling
distance. The higher-order character of the coupling is attested to
by the presence of “hot spots” in the waveguide. R ¼ 30 μm,
d0 ¼ 46 nm, w ¼ 200 nm, and infinite height assumed.

NIRMALENDU ACHARYYA and GREGORY KOZYREFF PHYS. REV. APPLIED 8, 034029 (2017)

034029-4



III. SENSING AND SWITCHING APPLICATIONS

Once the conditions for the configurations of multiple
critical couplings are established, we note that the sharp
features in the dependence of T on d0 (see Fig. 1 and inset
of Fig. 7) could serve as the basis of a detection principle.
Indeed, a change in the cladding refractive index nclad, or in
the guiding index ng would amount to effectively chang-
ing d0.
Rather than monitoring the spectral shift of resonances in

the transmission spectrum, we propose to monitor changes
in the transmission dip at resonance. This is slightly
different from the previous intensity-detection scheme,
such as Ref. [36], where one monitors the transmitted
intensity at a fixed, near-resonant, wavelength, as the
cladding index is varied. In that case, variations of trans-
mitted intensity are due to resonance shift. Here, we
propose to follow the resonance peak and monitor the
depth of the resonant transmission dip as the refractive
index is changed.

Let the incident power be centered on the resonance and
given by IðωRÞ. A change of the guiding index

ng → ng þ Δng ð23Þ

leads to a transmission change

TðωRÞ → TðωRÞ þ
∂TðωRÞ
∂ng Δng; ð24Þ

and, hence, to change in transmitted power

IðωRÞ
∂TðωRÞ
∂ng Δng: ð25Þ

Given the noise equivalent power (NEP) of the photo-
detector and the measurement bandwidth Δf, the smallest
detectable index change is given by [37]

Δng;min ¼
NEP

ffiffiffiffiffiffiffi
Δf

p

IðωRÞj ∂TðωRÞ∂ng j
. ð26Þ

While the value of j∂T=∂ngj is rather modest around the
first critical distance, it raises sharply in the vicinity of
higher-order critical-coupling distances, see Fig. 7. Note
from the inset of Fig. 7 that the slope j∂T=∂d0j is highest on
the undercoupling side of the critical point.
Assuming an NEP on the order of 10 pW=

ffiffiffiffiffiffi
Hz

p
[37], an

input source power of IðωRÞ ¼ 10 mW with a frequency
bandwidth of 1 GHz, Table I gives limits of detection
(LOD) Δng;min in the vicinity of various critical-coupling
distances. With the numbers assumed here (λ ≈ 1.55 μm,
cavity radius R ¼ 100 μm, ng ¼ 3.48, waveguide width
w ¼ 200 nm) one finds an LOD of 7.5 × 10−7 refractive
index unit (RIU). This should not be regarded as an
ultimate value, as better sources can in principle be used,
with higher incident power and narrower bandwidth. Also,
we see from Table I that the LOD improves substantially
with the order of critical coupling. Higher-order critical
coupling, corresponding to smaller d0 is liable to yield even
smaller LOD. However, the rapidity of oscillation becomes
such that numerical investigations become challenging in
that region of parameters.

FIG. 6. Minimal ring radius leading to multiple critical cou-
plings as a function of wavelength for various waveguide widths.
Infinite height assumed. ng ¼ 3.48, nclad ¼ 1.45. Full line,
analytical results. Dots, COMSOL simulation.

FIG. 7. Resonant transmission as a function of ng for values of
d0 near critical values. Inset: transmission curve in the vicinity of
d0 ¼ 165 nm, w¼200nm, R¼100μm, nclas¼1.45, λ≈1.55 nm,
and ng ¼ 3.48 (black) or ng ¼ 3.475 (red curve).

TABLE I. Limit of detection through intensity measurements in
the vicinity of critical points. Same resonator and waveguide
parameters as in Fig. 4. NEP ¼ 10 pW=

ffiffiffiffiffiffi
Hz

p
. Detection band-

width Δf ¼ 1 GHz. Input power IðωRÞ ¼ 10 mW.

Critical region d0 (nm) j∂T=∂ngj Δng;min

1 432 1 3.2 × 10−5

2 165 25 1.3 × 10−6

3 93 31 1.0 × 10−6

4 51 42 7.5 × 10−7
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Alternatively to the above application, one may envisage
actively inducing a change of refractive index in order to
induce a desired change ΔIoutðωRÞ in the output intensity.
In this switching setup, the required change is, simply

Δng ¼
ΔIoutðωRÞ

IðωRÞj ∂TðωRÞ∂ng j
: ð27Þ

It is a simple matter to show that j∂T=∂d0j or j∂T=∂ngj
scales as

ffiffiffiffi
Q

p
: In the region of higher-order coupling,

critical-coupling configurations come in pairs, flanking a
state of complete transmission TðωRÞ ¼ 1, see Fig. 1. Let
us assume that, for the appropriate value of d0, the value n�g
of the guiding refractive index makes jtj ¼ 1, and, hence,
T ¼ 1. In the vicinity of this value, we have

jtj ∼ 1 − jt00ðn�gÞj
ðng − n�gÞ2

2
: ð28Þ

On the other hand,

j ~αj ∼ 1 − ϵ; with ϵ ∝ 1=Q ≪ 1: ð29Þ

The nearest critical-coupling configuration, jtj ¼ j ~αj, thus
happens for

jng − n�gj ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ=jt00ðn�gÞj

q
: ð30Þ

Since the resonant transmittance changes from 1 to 0 over
this change of refractive index, the average slope of this
dependence is proportional to 1=

ffiffiffi
ϵ

p
, i.e., to

ffiffiffiffi
Q

p
.

IV. CONCLUSIONS

In this work, we have expanded the classical theory of
waveguide-resonator coupling and shown that, contrary to
common assumption, distances for multiple critical cou-
plings can exist when the bus waveguide lies in the same
plane as the resonator. This effect exists as soon as the
resonator radius exceeds a critical radius, for which we give
an analytical estimate as a function of wavelength and
waveguide transverse dimension. The present treatment,
being expressed in terms of the local splitting of propaga-
tion constants ΔβðzÞ, can directly be transposed to other
geometries, e.g., racetrack resonators or waveguide and
ring lying in different planes. In the case of a circular
resonator side coupled to a waveguide, the function ΔβðzÞ
has a Gaussian profile with width controlled by the cavity
radius. Thus, the effective coupling length was found to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πR=2m

p
. For racetrack resonators, the splitting function

ΔβðzÞ exhibits a plateau around z ¼ 0. In all cases, the
space dependence of ΔβðzÞmakes the single-pass coupling
problem distinct from that of coupled straight parallel
waveguides.

As we have shown, multiple critical couplings can be
exploited as an alternative detection principle. Equally, the
on or off switching of resonances in the transmission
spectrum could be used as an optical gate. More generally,
this study shows that the single-pass transmission param-
eter t, and hence the coupling parameter κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
, may

vary in a much more complicated way than anticipated as a
function of the waveguide-resonator distance d0. This
behavior may become important to consider in future
designs of photonic integrated circuits in which micro-
resonators are expected to play major roles. Although we
have illustrated it with silicon refractive index and telecom
wavelength, the theory presented here is general and
independent of the material considered. Let us note that
water strongly absorbs light at λ ¼ 1.55 μm, so that sensing
in an aqueous environment is more suitably done at
λ ¼ 1 μm. We have therefore checked that all our con-
clusions hold with Al2O3 waveguides with realistic fab-
rication parameters operating around 1 μm.
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