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We study the radiative decay, or fluorescence, of excitons in organic solar cells as a function of its
geometrical parameters. Contrary to their nonradiative counterpart, fluorescence losses strongly depend on
the environment. By properly tuning the thicknesses of the buffer layers between the active regions of the
cell and the electrodes, the exciton lifetime and, hence, the exciton diffusion length can be increased.
The importance of this phenomenon depends on the radiative quantum efficiency, which is the fraction of
the exciton decay that is intrinsically due to fluorescence. Besides this effect, interferences within the cell
control the efficiency of sunlight injection into the active layers. The optimal cell design must rely on a
consideration of these two aspects. By properly managing fluorescence losses, one can significantly
improve the cell performance. To demonstrate this fact, we use realistic material parameters inspired
from literature data and obtain an increase of power-conversion efficiency from 11.3% to 12.7%.
Conversely, not to take into account the strong dependence of fluorescence on the environment may lead to
a suboptimal cell design and a degradation of cell performance. The presence of radiative losses, however
small, significantly changes the optimal set of thicknesses. We illustrate the latter situation with
experimental material data.
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I. INTRODUCTION

Organic solar cells attract considerable research interest
as a low-cost, mechanically flexible, and low-temperature
manufactured alternative to inorganic solar cells. Various
architectures exist, including donor-acceptor bilayer heter-
ojunctions [1], bulk heterojunctions [2], tandem structures
[3], and cascaded exciton-dissociating heterojunctions [4].
One of the main factors that limits the efficiency of organic
solar cells is the short diffusion length of excitons com-
pared to the absorption length [5–7]. Indeed, because of the
poor transport of photogenerated electrical excitations, the
active layers are restricted to thicknesses that are too thin to
fully absorb the incident sunlight. In order to overcome this
difficulty, several photonic strategies have been devised to
efficiently trap light: randomly structured interfaces [8],
hexagonal arrays of nanocolums [9,10], nanoholes [11],
and nanospheres [12,13]. More recently, a photonic fiber
plate was shown to significantly improve light trapping
through intermittent ray chaos [14,15]. While bulk hetero-
junctions are an answer to the exciton-transport problem,
they come with additional difficulties, such as dead ends in
the path of electrons and holes towards their respective
electrodes and chemical stability. Moreover, nonradiative
recombinations at interfaces between the donor and the
acceptor are found to severely limit the efficiency of bulk-
heterojunction cells [16,17]. Hence, bulk heterojunctions
are not a definitive solution to exciton transport, and to

increase the diffusion length of excitons in planar solar cells
remains a critical objective.
Aside from material engineering, it has been pointed

out that radiative losses (i.e., the diffusion length) can be
optically engineered through the geometrical arrange-
ment of the cell when it is thin and hence present
microcavity effects [18]. Indeed, a radiating exciton is
electromagnetically equivalent to an oscillating dipole.
The optical power emitted by such a dipole can be
increased or decreased in the proximity of boundaries,
as was experimentally demonstrated by Drexhage [19].
A theoretical treatment of this radiation problem was
worked out as early as 1909 by Sommerfeld in his study
of antennas [20,21]. More-complete accounts followed
Drexhage’s pioneering experiments, both theoretically
[22–25] and experimentally [26,27]. In high-Q cavities,
it is well known that spontaneous emission of radiation
can be strongly suppressed [28]. As for solar cells, they
are, by construction, poor cavities, in order to let as much
light in as possible. Nevertheless, it was found that
spontaneous emission, i.e., radiative losses, can still be
significantly reduced. A general rule to promote this
effect is to sandwich the photoactive layer with low-index
regions. Specifically, taking n1 and n2 as the refractive
indexes of the active layer and its surrounding layer,
respectively, the rate of spontaneous emission can be
reduced by up to a factor of ðn2=n1Þ5 for excitons with a
perpendicular orientation [18]. In addition to the above
aspect, it has been emphasized that a proper choice of
layer thickness inside the solar cell can significantly
influence the distribution of sunlight intensity within the
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cell and, hence, the absorption of solar photon by the
photoactive material [29–37].
The influence of exciton radiative losses on the device

performance depends on the radiative quantum efficiency q,
defined as

q ¼ Γr;bulk

Γbulk
; Γbulk ¼ Γr;bulk þ Γnr; ð1Þ

where Γr;bulk and Γnr are the rate of radiative and nonradiative
decay, respectively, and the “bulk” subscript indicates that it
is the bulk value. The factor q is also called “fluorescence
quantum efficiency” or “photoluminescence quantum effi-
ciency.” The bulk value of the radiative losses is an intrinsic
quantity which is obtained in the absence of boundary
effects. In a confined environment such as in an organic cell,
the actual radiative losses ΓrðzÞ generally differ from Γr;bulk

and depend on the position, z, of the exciton. The total losses
can be written as

Γðz; qÞ ¼ Γbulk

�
1 − qþ q

ΓrðzÞ
Γr;bulk

�
: ð2Þ

In this paper, we seek to optimize the solar-cell geometry by
taking both issues into account: efficient interference for
sunlight absorption together with low exciton radiative
losses. The fact that it is possible to reduce exciton emission
while still efficiently admitting light into the solar cell relies
on two observations: The exciton emits light (i) at a well-
defined frequency, and (ii) in all directions. Conversely,
sunlight comes in a broad spectrum and enters the cell
through a narrow cone around the normal direction. In
Ref. [18], only the short-circuit current was evaluated, and a
simplified incident spectrum was assumed, which did not
allow for evaluation of the cell power-conversion efficiency
under a realistic illumination.
In order to assess device performance, we first establish a

generalization of the Shockley-Queisser (SQ) theory [38]
for organic solar cells. Indeed, in this classic theory, the
transport of electrical excitations is not an issue since
only inorganic semiconductor materials with high charge
mobilities are considered. Besides, microcavity effects are
absent from SQ theory. We therefore generalize SQ theory
to take into account the diffusive exciton transport and
microcavity effects for both sunlight injection and exciton
radiation. In this more general theory, the external quantum
efficiency (EQE), defined as the number of electrons
generated per incoming photon, essentially replaces the
material absorptivity.
The rest of the paper is organized as follows. In Sec. II,

we present the generalized SQ theory, taking into account
exciton transport with space-dependent radiative losses. In
Sec. III, we apply our theory to several cell geometries and
discuss the impact of q on the optimal cell design. Finally,
we conclude.

II. GENERALIZED SHOCKLEY-QUEISSER
THEORY

A. Shockly-Queisser detailed balance theory
for conventional solar cells

In its simplest form, the SQ theory of solar cells derives
from the following statement of detailed balance:

Is ¼ IRðVÞ þ IðVÞ: ð3Þ

Above, Is is the number of electron-hole (e-h) pairs
generated per unit of time and area by photon absorption.
From this current, a portion IRðVÞ will recombine to
produce thermal electromagnetic radiation, leaving a par-
ticle current IðVÞ [and hence an electrical current −eIðVÞ]
of electrons to flow in the external circuit under an
electrical potential V. For the sake of the present discus-
sion, nonradiative recombination processes are omitted
from the right-hand side of Eq. (3).
If each absorbed photon leads to the generation of one

and only one electron-hole pair, then

Is ¼ Ωs

Z
∞

0

aðλÞϕAM1.5ðλÞdλ; ð4Þ

where Ωs ¼ 6.85 × 10−5 is the solid angle under which
illumination is received from the Sun, aðλÞ is the
absorptivity, ϕAM1.5 is the AM1.5 solar spectrum (in
photons s−1m−2m−1 sr−1), and λ is the optical wavelength.
We restrict our attention to illumination at normal inci-
dence. Similarly, the recombination term is given by

IRðVÞ¼2π

Z
π=2

0

sinθcosθ
Z

∞

0

aðλÞϕðλ;T;VÞdλdθ; ð5Þ

ϕðλ;T;VÞ¼ð2c=λ4Þ
�
exp
�
hc=λ−eV

kT

�
−1

�
−1
: ð6Þ

Above, ϕðλ; T; VÞ is the Planck’s distribution in which the
chemical potential of radiation is given by eV [39–41], c is
the speed of light, h is Planck’s constant, k is Boltzmann’s
constant, and T is the cell temperature. In Eq. (5), we use
Kirchhoff’s law and equate the emissivity of the cell with
its absorptivity. Thus, Eq. (3) becomes

IðVÞ ¼
Z

∞

0

aðλÞ½ΩsϕAM1.5ðλÞ − πϕðλ; T; qVÞ�dλ: ð7Þ

This equation eventually leads to the Shockley-Queisser
limit if we assume that aðλÞ is a step function. Stated in the
above way, SQ theory can simply be generalized to a more
general cell, such as those in which the internal electrical
transport is controlled by excitons.
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B. Exciton-regulated solar cell

In organic solar cells, the absorption of a photon gives
rise to an exciton, with a binding energy that is large
compared to kT. The excitons are therefore long-lived;
moreover, being electrically neutral, their motion is gov-
erned by diffusion. It is only at the interface between the
donor and acceptor materials that the local electric gradient
can break the exciton into a free hole and a free electron.
Neglecting other processes, elecron-hole pairs are gener-
ated by exciton dissociation only at the donor-acceptor
interface, and they subsequently disappear only by radia-
tive recombination or by being collected in the external
circuit. Thus, the detailed-balance equation (3) becomes

IχðϕAM1.5Þ ¼ IðVÞ þ IRðVÞ; ð8Þ

where IχðϕAM1.5Þ is the exciton-dissociation current under
the AM1.5 illumination equal to the number of e-h pair
generated per unit of time and area. This term is indepen-
dent of voltage since excitons are neutral particles. It can be
expressed as

IχðϕAM1.5Þ ¼ Ωs

Z
∞

0

EQEðλ; 0ÞϕAM1.5ðλÞdλ; ð9Þ

where we define EQEðλ; θÞ as the number of e-h pairs
generated per incident photon with wavelength λ and
incidence angle θ with respect to the normal direction.
This coincides with the usual definition if the charge-
collection efficiency is unity at short circuit, which is a
common assumption [29,42].
Next, we must establish the radiative current IRðVÞ.

We first note that, in the dark, under an ambient isotropic
illumination, ϕðλ; T; 0Þ, it must be equal to the e-h
generation current, Iχ , as equilibrium conditions request.

IRð0Þ ¼ 2π

Z
π=2

0

sin θ cos θ
Z

∞

0

EQEðλ; θÞϕðλ; T; 0Þdλdθ:

ð10Þ

Outside equilibrium, the cell emits light with a potential of
radiation, as in Eq. (6). In that case, one postulates that
Eq. (10) can be extrapolated to nonzero values of V as

IRðVÞ ¼ 2π

Z
π=2

0

sin θ cos θ
Z

∞

0

EQEðλ; θÞϕðλ; T; VÞdλdθ:

ð11Þ

The validity of this modeling step is discussed and
confirmed in Ref. [43]. Note that this last expression is
similar to Eq. (5) but with the absorptivity, aðλÞ, replaced
by EQEðλ; θÞ [44]. Finally, Eq. (8) yields

IðVÞ ¼ Ωs

Z
∞

0

EQEðλ; 0ÞϕAM1.5ðλÞdλ

− 2π

Z
π=2

0

sin θ cos θ

×
Z

∞

0

EQEðλ; θÞϕðλ; T; VÞdλdθ: ð12Þ

A similar derivation can be found in Refs. [45,46]. Other
phenomenological factors, such as series and parallel
resistances and the ideality factor, are unnecessary for
the present discussion and are therefore omitted from the
model. Note that the theory so far is very general and is
valid beyond the theory of organic cells. In order to
determine the current-voltage curve (12) for a given cell,
one has to calculate EQEðλ; θÞ. This is what we do in the
next section for bilayer-heterojunction organic solar cells.

C. Calculation of EQE

We now wish to compute EQEðλ; θÞ, i.e., the number of
e-h pairs produced at the donor-acceptor interface per
incoming photon as a function of the photon wavelength
and incidence angle.
Let Nðλ; θÞ ¼ ϕAM1.5ðλÞ cos θ be the number of photons

that are incident per unit time and device area at an angle θ.
This illumination results in an electromagnetic intensity
distribution gðz; λ; θÞ inside the device, which can be
computed by the transfer-matrix method [47,48] (with
unpolarized light assumed). With the proper normalization
for gðz; λ; θÞ, which takes into account the absorption
coefficient and the conversion efficiency of absorbed
photons into excitons, the rate of production of excitons
per unit length is Nðλ; θÞgðz; λ; θÞ. Hence, the distribution
of excitons ρ produced by the flux Nðλ; θÞ satisfies

D
∂2ρ

∂z2 − Γðz; qÞρþ Nðλ; θÞgðz; λ; θÞ ¼ 0; ð13Þ

with

∂ρ
∂z ¼ 0; z ¼ z−1; ð14aÞ

ρ ¼ 0; z ¼ z0; ð14bÞ

∂ρ
∂z ¼ 0; z ¼ z1: ð14cÞ

Above, D is the exciton diffusion constant, which takes
the value DA or DD in the acceptor or donor material,
respectively. Next, Γðz; qÞ is the exciton decay rate, which
is computed as in Ref. [18] assuming random exciton
orientation. Finally, Eq. (14) expresses a no-flux boundary
condition for excitons at the interfaces (z ¼ z�1) between
the active layers and the adjacent blocking layers, while
ρðz0Þ ¼ 0 models complete exciton dissociation into free
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electrons and holes at the donor-acceptor interface
[29,42,49]. Exciton dissociation into free electrons and
holes is assumed to be negligible everywhere else [50].
Note that if we divide Eq. (13) by Γbulk and normalize ρ

as ρ ¼ ðN=ΓbulkÞρ0, the exciton-transport equation becomes

L2
∂2ρ0

∂z2 −
Γðz; qÞ
Γbulk

ρ0 þ gðz; λ; θÞ ¼ 0; L2 ¼ D
Γbulk

:

ð15Þ

Solving that equation, the diffusive current at the donor-
acceptor interface yields the EQE as

EQEðλ; θÞ ¼ 1

NðλÞ

 
DD

∂ρ
∂z
����
z0þϵ

−DA
∂ρ
∂z
����
z0−ϵ

!

¼ L2
D
∂ρ0
∂z
����
z0þϵ

− L2
A
∂ρ0
∂z
����
z0−ϵ

: ð16Þ

Once EQEðλ; θÞ is determined, the IðVÞ curve and the
power-conversion efficiency can be computed from
Eq. (12).

III. NUMERICAL RESULTS

In this section, we illustrate our theory with two bilayer
cells, each one of the form Ag=HBLðhbÞ=acceptor=
donor=EBLðhtÞ=ITO=glass. Here, Ag designates the
back silver electrode, HBL is a hole-blocking and elec-
tron-transporting layer with thickness hb, and EBL is an
electron-blocking and hole-transporting layer with thick-
ness ht. Finally, ITO denotes a transparent indium tin
oxide electrode (ultrathin metal film could be considered
instead [37,51], but we omit this possibility here, as doing
so does not change our general conclusions).
Given the large number of geometrical parameters

available, we choose to maximize the cell power-
conversion efficiency by varying only the thickness hb
and ht of the HBL and EBL, respectively, for a given q.
These two thicknesses are easily tunable fabrication
parameters and it has been pointed out that they can
significantly affect the efficiency of the cell [29–37].
As we vary q, we keep the bulk diffusion length

unchanged, so as to compare active regions that would
otherwise be equivalent. The power-conversion efficiency
is given by

η ¼ max
V

½−eIðVÞV�=Ωs

Z
∞

0

ðhc=λÞϕAM1.5ðλÞdλ: ð17Þ

We consider two distinct situations. First, we demonstrate
the potential benefit of using large-q photoactive organic
molecules if the cell is properly designed. To this end, we
assume a favorable set of refractive indexes and thicknesses
within ranges that are dictated by the literature. We show
that a substantial gain in cell efficiency can be obtained.

Second, we simulate the following cell: Al=BCP=C70=
DBP=MoO3=ITO=glass, for which we use experimentally
measured refractive indexes. Here, BCP stands for bath-
ocuproine and DBP for tetraphenyldibenzoperiflanthene.
The photovoltaic junction is achieved by C70 (acceptor) and
DBP (donor). BCP and MoO3 are the electron- and hole-
transporting layers, respectively. In the study of the latter
cell, we simulate the possibility that C70 and DBP would be
replaced by equivalent molecules, C�

70 and DBP�, with
identical complex refractive indexes and bulk diffusion
lengths, but a variable radiative quantum efficiency q. For
this cell, the refractive indexes do not yield an increase of η
with q. However, the optimal BCP and MoO3 thicknesses
do vary substantially with q.
In our computation of Γðz; qÞ, we assume that radiative

excitons emit at 900 nm. Furthermore, the distribution
gðz; λ; θÞ in Eq. (15) is computed by assuming that the
incoming field is an even combination of TE and TMwaves
at oblique incidence. Finally, we assume the same value of
q for the two active materials.

A. First example: High-efficiency cell

We first consider a favorable set of refractive indexes for
increasing the diffusion length through the management
of radiative losses. This set, together with layer thicknesses,
is given in Table I. All refractive indexes are assumed
independent of wavelength, except the imaginary part in
the active layers, which is nonzero between 300 and
700 nm only. The assumed values of the refractive indexes
for the blocking layers are consistent with the literature
[29,36,52] and with the index of BCP. The large index in
the active region is chosen to maximize the contrast
between the blocking and photoactive layers, in accordance
with the conclusion of Ref. [18]. A larger ratio of the real
part of the refractive index in the photoactive layers and the
blocking layers is liable to improve the cell efficiency.
Furthermore, we assume an exciton diffusion length of
10 nm in both the donor and the acceptor layer, while the
thickness of these layers is chosen to be 1.5 times the
diffusion length. The ITO thickness of 150 nm is chosen so
as to promote good light injection in the active layers
thanks to constructive interferences in the spectral range of

TABLE I. Optical parameters for an example cell. The imagi-
nary part of the refractive index in the acceptor and the donor
layer is nonzero only for λ ∈ ½300; 700 nm�.
Layer Thickness Refractive index Diffusion length

Glass ∞ 1.45
ITO 150 nm 1.76þ 0.08i
EBL ht 1.7
Donor 15 nm 2.8þ 0.85i 10 nm
Acceptor 15 nm 2.8þ 0.85i 10 nm
HBL hb 1.7
Ag ∞ 0.03þ 5.19i
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interest. To avoid spurious resonances in the glass capping,
we assume this layer to have infinite thickness and correct
the incoming intensity accordingly.
Figure 1 shows the cell efficiency as a function of the

top and bottom blocking-layer thicknesses, ht and hb, for
three values of q. One notices that there is a qualitative
change in the graph as soon as q > 0, with low efficiency
for very small values of either ht or hb. This result is due to
the quenching effect experienced by radiative excitons in
the vicinity of a dissipative medium. As q progresses from
q¼0 to q ¼ 1, the optimal geometry varies from ðht; hbÞ ¼
ð40, 12 nm) to ðht; hbÞ ¼ ð45; 21 nmÞ. Meanwhile, the cell
efficiency steadily progresses from 11.3% to 12.7%; see
Fig. 2. For the most efficient configuration, we plot in Fig. 3,
the space-dependent decay rate Γðz; qÞ for different values of
q. In that figure, the advantage of managing the exciton
radiative decay is clear.

B. Second example: Low-efficiency cell

In this second example, we study the following cell,
Al=BCPðhbÞ=C�

70ð31.5 nmÞ=DBP�ð10.5 nmÞ=MoO3ðhtÞ=

ITOð150 nmÞ=glass, where C�
70 and DBP� designate mate-

rials with identical complex refractive indexes to those of
C70 and DBP, but where q is a free parameter. According to
Ref. [53], the diffusion length is 21 nm in C70 and 7 nm in
DBP. As in the previous example, the C�

70 and DBP�

thicknesses are chosen to be equal to 1.5 times the diffusion
length, which is consistent with Ref. [54].
The graph of η as a function of hb and ht is given in Fig. 4

for four values of q. This time, the maximum efficiency,
10.8%, is obtained for q ¼ 0. The cell performance steadily
degrades with an increasing q and does not exceed 10% for
q ¼ 1. However, it is important to note that the optimal
configuration varies significantly between these extreme
cases: For q ¼ 0, the best set is near ðhb; htÞ ¼ ð25; 0 nmÞ;
next, for q ¼ 0.05, the optimal configuration is ðhb; htÞ ¼
ð25; 9 nmÞ; for q ¼ 0.5, the optimal configuration is
ðhb; htÞ ¼ ð29; 15 nmÞ; finally, for q ¼ 1, it becomes
ðhb; htÞ ¼ ð32; 18 nmÞ.
This last observation is a warning sign that the cell

architecture should be designed with a proper account of q.

FIG. 1. Power-conversion efficiency η for the configuration presented in Table I as a function of the blocking-layer thicknesses ht and hb,
for q ¼ 0, 0.05, 0.5, 1 in both acceptor and donor layers.

FIG. 2. Power-conversion efficiency η as a function of
radiative quantum efficiency q for the parameters given in
Table I and ðht; hbÞ ¼ ð45; 21 nmÞ.

FIG. 3. Normalized exciton decay rate as a function of the
distance from the back electrode for the configuration presented
in Table I with ðht; hbÞ ¼ ð45; 21 nmÞ. The vertical line separates
the donor and acceptor layers.
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Indeed, with ðhb; htÞ ¼ ð25; 0 nmÞ, which is optimal for
q ¼ 0; η drops from 10.8% to 8.7% if q ¼ 0.5 and is only
8.2% for q ¼ 1 (see Fig. 5). The cause of this rapid decay
can be understood from Fig. 6, which shows Γðz; qÞ for this
configuration and various values of q. Here, boundary
effects strongly increase the radiative losses in DBP�.
While a reduction of radiative losses is achieved in C�

70,
this reduction is not sufficient to counterbalance the adverse
effect in DBP.
Looking again at Fig. 5, it is important to note that there

is a sudden drop of η as soon as q differs from zero, even if
one keeps track of the best possible configuration ðhb; htÞ
while varying q. Hence, to model the organic cell with
q ¼ 0 is an inaccurate modeling assumption.

IV. DISCUSSION

In this paper, we emphasize the importance of properly
taking into account the space-dependent rate of radiative
decay of excitons, Γðz; qÞ in organic solar cells. It is well
known that, as soon as the radiative quantum yield q is not
zero, the radiative decay rate diverges as an exciton comes
into contact with a dissipative surface [22], leading to
exciton quenching. However, it has thus far been over-
looked that radiative decay can be reduced elsewhere in
the cell. Here, we show that with a proper choice of spacer
thicknesses, hb and ht, this effect leads to a significant
increase of the diffusion length and, hence, of the cell
efficiency η. A general rule to exploit this effect is that the
(real part of) the refractive-index contrast between the
photoactive layers and the electron- and hole-blocking
layers should be large. With a ratio of 2.8=1.7 and random
exciton orientation, we numerically demonstrate an
increase of η from 11.3% in the best configuration for q ¼
0 to 12.7% in the best configuration for q ¼ 1. Note that the
gain in efficiency rapidly increases with the refractive
index in the active layers. If we suppose, for instance,
that the blocking layers have a refractive index of only
1.45, then the maximum efficiency would increase from
11.3% with q ¼ 0 to 14.3% with q ¼ 1. Conversely, one

FIG. 4. Power-conversion efficiency η for Al=BCPðhbÞ=C�
70ð31.5 nmÞ=DBP�ð10.5 nmÞ=MoO3ðhtÞ=ITOð150 nmÞ=glass as a

function of ht and hb for q ¼ 0, 0.05, 0.5, 1 in both the acceptor and donor layers.

FIG. 5. Power-conversion efficiency η as a function of
radiative quantum efficiency q, for Al=BCPðhbÞ=C�

70ð31.5 nmÞ=
DBP�ð10.5 nmÞ=MoO3ðhtÞ=ITOð150 nmÞ=glass cell. Blue
curve, ðhb; htÞ ¼ ð25; 0 nmÞ for all q’s; red curve, ðhb; htÞ set
to the optimal value for each q.

FIG. 6. Normalized exciton decay rate in the active layers
for different values of q for the following configuration: Al=
BCPð25 nmÞ=C�

70ð31.5 nmÞ=DBP�ð10.5 nmÞ=MoO3ð0 nmÞ=
ITOð150 nmÞ=glass. The vertical line separates the two active
layers.
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may seek active materials with larger refractive indexes.
As an example, phthalocyanine (Pc) and its derivatives
(sub-Pc, fluorinated-Pc, Mg-Pc, etc.), or subnaphthalocya-
nine (sub-Nc) can display refractive indexes above 3 and a
large radiative quantum yield [55–60]. Similarly, perovskites
are found to display large refractive indexes in their
absorption range [61], along with high photoluminescence
efficiency [62]. Another way to drastically improve this gain
would be to orient the exciton dipole moment, preferably
along the cell axis, as doing so can dramatically decrease
Γðz; qÞ [18].
Based on the above calculation, it would be desirable to

develop organic solar cells with molecules having a large q.
In this regard, one may turn his or her attention to organic-
light-emitting-device (OLED) molecules. With OLEDs,
substantial development have already been made in tailor-
ing the dipolar emission of excitons [63–65]. Moreover, q’s
of nearly unity and good exciton orientation have been
demonstrated [66]. However, instead of maximizing exci-
ton emission, as in OLEDs, here wewant to suppress it. The
maximization of η is found to require large spacers, in order
both to maximize light injection and to suppress exciton
decay. In practice, one is limited by the finite conductivity
of these spacers. Nevertheless, large spacer values have
been used in OLEDs [65] and have also been considered
previously in organic solar cells [31,34,36,67,68].
It has been claimed that a good solar cell must also be a

good emitter [69]. Our conclusion above that solar cells can
be improved based on good exciton radiative properties is
consistent with this statement. However, it should be stressed
that having a large value of q is not sufficient in itself to
improve the cell efficiency. We demonstrate this fact in our
second numerical example. For refractive indexes corre-
sponding to Al=BCP=C70=DBP=MoO3=ITO=glass, a large
value of q tends to degrade the cell performance, because
radiative exciton decay is increased overall in the optimal
configuration. Still, taking q into account appears to be
crucial. Indeed, if not properly managed, radiative losses can
be worse than anticipated. Thus, even in such a case, q is an
important parameter to take into account.
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